Способ преобразования угла поворота вала в код

Изобретение относится к области автоматики и вычислительной техники. Техническим результатом является повышение точности преобразования угла в код без использования внешнего эталона. В способе для контроля преобразователя формируют разность выходного и второго выходного кодов, по которой контролируют точность преобразования. Для этого вал датчиков устанавливают с шагом 360°/(p1⋅p2) в расчетные положения по значениям второго кода угла, а не по значениям эталона, в этих положениях фиксируют значения первого кода угла, находят приращения первого кода угла при повороте на р2 шагов, формируют первую поправку как сумму пространственных гармоник погрешности первого датчика для угла, соответствующего первому коду угла, формируют выходной код, прибавляя первую поправку к первому коду угла. Для формирования второго выходного кода угла находят приращения первого кода угла при повороте вала на p1 шагов, формируют вторую поправку как сумму пространственных гармоник погрешности второго датчика для угла, соответствующего второму коду угла, формируют второй выходной код, прибавляя вторую поправку к второму коду угла, и используют разность выходного и второго выходного кодов для контроля точности преобразования. 1 ил.

 

Изобретение относится к области автоматики и вычислительной техники и может быть использовано для связи источников информации об угловом положении вала с ЭВМ в управляющих и информационных системах.

Известны способы преобразования угла поворота вала в код (авторские свидетельства №1181135, №1381711, №1786662, патент РФ №2235422), основанные на том, что вал датчиков угла (далее - датчиков) поворачивают в диапазоне преобразования, преобразуют угол поворота вала в сигналы, определяют амплитуды и фазы пространственных гармоник погрешности преобразования, формируют поправки и затем формируют выходной код угла. Недостатком этих способов является необходимость разворота вала на полный оборот, при ограничении угла поворота вала меньшим углом перечисленные способы не могут быть использованы.

Наиболее близким техническим решением, выбранным за прототип, является способ преобразования угла поворота вала в код по патенту РФ №2266614. Известный способ основан на том, что вал первого и второго датчиков поворачивают в пределах диапазона, не меньшего 360°(1/p1+1/p2), где p1 и p2 - числа периодов погрешности соответственно первого и второго датчика на обороте вала; преобразуют угол поворота вала в сигналы первого и второго датчиков с различными спектрами пространственной погрешности; выходные сигналы первого и второго датчиков преобразуют в первый и второй коды угла; определяют амплитуды и фазы пространственных гармоник погрешности первого и второго датчиков; формируют первую поправку как сумму пространственных гармоник погрешности первого датчика для угла, соответствующего первому коду угла; формируют выходной код, прибавляя первую поправку к первому коду угла, формируют вторую поправку как сумму пространственных гармоник погрешности второго датчика для угла, соответствующего второму коду угла; формируют второй выходной код, прибавляя вторую поправку к второму коду угла; формируют разность выходного и второго выходного кодов, по которой контролируют точность преобразования.

В известном способе определение амплитуд и фаз пространственных гармоник погрешности осуществляется при повороте вала датчиков в пределах диапазона, не меньшего 360°(1/p1+1/p2). Условием для реализации способа является преобразование сигналов датчиков в код в угловых положениях, равномерно распределенных в диапазоне угла поворота с заданным шагом, равным 360°/(p1⋅p2). Условие выполняется при использовании внешнего эталона угла, например, на углоизмерительном стенде. В технических системах возможность использования внешнего эталона часто ограничивается конструкцией системы, что не позволяет использовать известный способ для аттестации и компенсации погрешности преобразования.

Предлагаемое изобретение решает задачу совершенствования способов преобразования угла в код при ограниченном угле поворота.

Техническим результатом является повышение точности преобразования угла в код без использования внешнего эталона.

Для решения поставленной задачи в способе преобразования угла поворота вала в код, основанном на том, что вал первого и второго датчиков поворачивают в пределах диапазона, не меньшего 360°(1/p1+1/p2), где p1 и p2 - числа периодов погрешности соответственно первого и второго датчика на обороте вала, преобразуют угол поворота вала в сигналы первого и второго датчиков с различными спектрами пространственной погрешности, выходные сигналы первого и второго датчиков преобразуют в первый и второй коды угла, определяют амплитуды и фазы пространственных гармоник погрешности первого и второго датчиков, формируют первую поправку как сумму пространственных гармоник погрешности первого датчика для угла, соответствующего первому коду угла, формируют выходной код, прибавляя первую поправку к первому коду угла, формируют вторую поправку как сумму пространственных гармоник погрешности второго датчика для угла, соответствующего второму коду угла, формируют второй выходной код, прибавляя вторую поправку к второму коду угла, формируют разность выходного и второго выходного кодов, по которой контролируют точность преобразования. При этом согласно предлагаемому изобретению:

- вал датчиков устанавливают с шагом 360°/(p1⋅p2) в расчетные положения по значениям второго кода угла, далее в этих положениях фиксируют значения первого кода угла, находят приращения первого кода угла при повороте на p2 шагов;

- определяют амплитуды и фазы i-x пространственных гармоник погрешности первого датчика, умножая амплитуды спектральных составляющих приращений первого кода угла при повороте на p2 шагов на и сдвигая их фазу на угол ;

- находят приращения первого кода угла при повороте вала на p1 шагов, а амплитуды и фазы j-x пространственных гармоник погрешности второго датчика определяют, умножая амплитуды спектральных составляющих приращений первого кода угла при повороте на p1 шагов на и сдвигая их фазы на угол , где i и j - номера пространственных гармоник погрешности первого и второго датчиков угла.

Блок-схема устройства, реализующего предлагаемый способ преобразования угла поворота вала в код, приведена на фиг. 1, где приняты следующие обозначения:

1, 2 - датчики с различными спектрами пространственных погрешностей (далее - датчики),

3, 4 - преобразователи сигналов датчиков в код угла (далее - преобразователи),

5 - блок формирования массива (значений) кодов,

6, 12, 18 - блоки вычитания кодов,

7, 13 - блоки сдвига кодов,

8, 14 - анализаторы спектра,

9, 15 - блоки коррекции,

10, 16 - блоки синтеза поправки,

11, 17 - сумматоры,

19 - компаратор.

Способ преобразования угла поворота вала состоит из следующих действий:

- преобразуют угол поворота вала в сигналы первого и второго датчиков с различными спектрами пространственной погрешности;

- выходные сигналы первого и второго датчиков преобразуют в первый и второй коды угла;

- перед началом преобразования вал первого и второго датчиков поворачивают в диапазоне, не меньшем 360°(1/p1+1/p2));

- вал датчиков устанавливают с шагом 360°/(p1⋅p2) в расчетные положения по значениям второго кода угла, в этих положениях фиксируют значения первого кода угла;

- находят приращения первого кода угла при повороте вала на p2 шагов;

- проводят спектральный анализ совокупности приращений первого кода угла при повороте вала на p2 шагов, полученной в диапазоне, не меньшем 360°(1/p1+1/p2);

- определяют амплитуды и фазы i-x пространственных гармоник погрешности первого датчика, умножая амплитуды спектральных составляющих приращений первого кода угла при повороте вала на р2 шагов на и сдвигая их фазу на угол ;

- в процессе преобразования угла поворота вала в код формируют первую поправку как сумму пространственных гармоник погрешности первого датчика для угла, соответствующего первому коду угла, и формируют выходной код, прибавляя первую поправку к первому коду угла.

Для контроля точности преобразования угла в код дополнительно выполняют следующие действия:

- находят приращения первого кода угла при повороте вала на p1 шагов;

- проводят спектральный анализ совокупности приращений первого кода угла при повороте вала на p1 шагов, полученной в диапазоне, не меньшем 360°(1/p1+1/p2);

- определяют амплитуды и фазы j-x пространственных гармоник погрешности второго датчика, умножая амплитуды спектральных составляющих приращений первого кода угла при повороте вала на p1 шагов на и сдвигая их фазы на угол ;

- в процессе преобразования угла поворота вала в код формируют вторую поправку как сумму пространственных гармоник погрешности второго датчика для угла, соответствующего второму коду угла, формируют второй выходной код, прибавляя вторую поправку к второму коду угла;

- формируют разность выходного и второго выходных кодов, по которой контролируют точность преобразования.

Устройство работает следующим образом.

Датчики 1 и 2 преобразуют угол α поворота вала в электрические сигналы, а преобразователи 3 и 4 преобразуют эти сигналы в первый N1 и второй N2 коды угла соответственно. Коды угла N1 и N2 формируются с некоторыми погрешностями Δ1 и Δ2 соответственно:

;

.

В устройстве комплексируются датчики 1 и 2 с различными спектрами пространственных погрешностей так, чтобы при всех i=1,2,…,а и j=1,2,…,b выполнялось неравенство i⋅p1≠j⋅p2.

Перед началом преобразования поворачивают вал в пределах диапазона, не меньшего 360°(1/p1+1/p2), устанавливая с шагом 360°/(p1⋅p2) в расчетные положения по значениям второго кода угла N2, в этих положениях фиксируют значения первого кода угла N1.

При установке вала датчиков в k-е расчетное положение, в котором второй код угла N2 равен k⋅360°/(p1⋅p2), истинное угловое положение вала датчиков отличается от расчетного на угол, соответствующий погрешности второго датчика угла, при этом и значение первого кода угла также смещается на величину погрешности второго датчика угла. В результате значения первого кода угла N1, фиксируемые в задаваемых положениях, содержат погрешности как первого, так и второго датчиков угла.

В блоке 5 из этих значений формируется массив значений MN1.

Массив значений MN1 подается в блок 6 вычитания кодов непосредственно и через блок 7 сдвига кодов, где массив значений MN1 сдвигается на p2 позиций. В блоке 6 в результате вычитания поступающих кодов формируется массив первых приращений первого кода угла N1 при повороте вала на p2 шагов.

Массив приращений первого кода угла при повороте вала на р2 шагов поступает в анализатор 8 спектра, который производит спектральный анализ массива и определяет амплитуды и фазы его спектральных составляющих. В блоке 9 коррекции определяют амплитуды и фазы i-x пространственных гармоник погрешности первого датчика, умножая амплитуды спектральных составляющих приращений первого кода угла N1 при повороте вала на p2 шагов на и сдвигая их фазу на угол .

Амплитуды и фазы гармоник с номерами i⋅p1 при всех i=1,2,…,а запоминаются в памяти блока 10.

В процессе преобразования первый код угла N1 из преобразователя 3 поступает в блок 10, в котором формируется поправка Q1:

.

В сумматоре 11 поправка Q1 добавляется к первому коду угла N1, поступающему из преобразователя 3, и на выходе формируется выходной код угла Nout1:

.

При малых значениях погрешности Δ1, таких, что обеспечивается условие , поправка и выходной код угла равен , т.е. погрешность в выходном коде скомпенсирована с точностью до величины второго порядка малости, обусловленной вычислительными погрешностями и точностью выполнения условия .

Для обеспечения контроля точности преобразования массив значений MN1, первого кода угла N1 подается также в блок 12 вычитания кодов непосредственно и через блок 13 сдвига кодов, где массив значений MN1 сдвигается на p1 позиций. В блоке 12 в результате вычитания поступающих кодов формируется массив приращений первого кода угла N1 при повороте вала на p1 шагов.

Массив вторых приращений поступает в анализатор 14 спектра, который производит спектральный анализ массива и определяет амплитуды и фазы его спектральных составляющих. В блоке 15 коррекции определяют амплитуды и фазы j-x пространственных гармоник погрешности второго датчика, умножая амплитуды спектральных составляющих приращений первого кода угла при повороте вала на p1 шагов на и сдвигая их фазы на угол . Из блока 15 амплитуды и фазы гармоник с номерами j⋅p2 при всех j=1,2,…,b перед началом преобразования записываются в память блока 16.

В процессе преобразования второй код угла N2 из преобразователя 4 поступает в блок 16, в котором формируется поправка Q2:

.

В сумматоре 17 поправка Q2 добавляется к второму коду угла N2, поступающему из преобразователя 4, и на выходе формируется второй выходной код угла Nout2:

.

При малых значениях погрешности Δ2, таких, что обеспечивается условие , поправка и второй выходной код равен , т.е. погрешность во втором выходном коде Nout2 также скомпенсирована с точностью до величины второго порядка малости, обусловленной вычислительными погрешностями и точностью выполнения условия .

В блоке 18 вычисляется разность выходных кодов Nout1 и Nout2

,

которая также представляет собой величину второго порядка малости по сравнению с . Величина в компараторе 19 сравнивается по модулю с установленным допуском ε, и на выходе компаратора при вырабатывается признак S достоверности выходного кода. Если по каким-либо причинам (изменение условий эксплуатации, старение элементов и материалов и т.п.) погрешности датчиков изменяются и величина становится больше чем допуск ε, признак S перестает вырабатываться, что сигнализирует о необходимости повторения калибровки преобразователя, проведенной перед началом преобразования.

Предлагаемое техническое решение в настоящее время уже используется при калибровке цифровых преобразователей угла, изготавливаемых предприятием. Таким образом, заявленный технический результат достигнут.

Способ преобразования угла поворота вала в код, основанный на том, что вал первого и второго датчиков поворачивают в пределах диапазона, не меньшего 360°(1/p1+1/p2), где p1 и р2 - число периодов погрешности соответственно первого и второго датчика на обороте вала, преобразуют угол поворота вала в сигналы первого и второго датчиков с различными спектрами пространственной погрешности, выходные сигналы первого и второго датчиков преобразуют в первый и второй коды угла, определяют амплитуды и фазы пространственных гармоник погрешности первого и второго датчиков, формируют первую поправку как сумму пространственных гармоник погрешности первого датчика для угла, соответствующего первому коду угла, формируют выходной код, прибавляя первую поправку к первому коду угла, формируют вторую поправку как сумму пространственных гармоник погрешности второго датчика для угла, соответствующего второму коду угла, формируют второй выходной код, прибавляя вторую поправку к второму коду угла, формируют разность выходного и второго выходного кодов, по которой контролируют точность преобразования, отличающийся тем, что вал датчиков устанавливают с шагом 360°/(р1⋅р2) в расчетные положения по значениям второго кода угла, в этих положениях фиксируют значения первого кода угла, находят приращения первого кода угла при повороте на р2 шагов, определяют амплитуды и фазы i-х пространственных гармоник погрешности первого датчика, умножая амплитуды спектральных составляющих приращений первого кода угла при повороте на p2 шагов на и сдвигая их фазу на угол π/2-π⋅i/р2, находят приращения первого кода угла при повороте вала на p1 шагов, а амплитуды и фазы j-х пространственных гармоник погрешности второго датчика определяют, умножая амплитуды спектральных составляющих приращений первого кода угла при повороте на p1 шагов на и сдвигая их фазы на угол π/2+π⋅j/р1.



 

Похожие патенты:

Изобретение относится к области цифроаналогового преобразования и может быть использовано в устройствах преобразования цифрового кода в аналоговое напряжение. Техническим результатом является повышение точности цифроаналогового преобразования, уменьшение количества слагаемых опорных напряжений, уменьшение диапазона значений опорных напряжений.

Изобретение относится к измерительной технике, в частности к следящим АЦП многоразрядных приращений, и может быть использовано для непрерывного преобразования напряжения в цифровой код для преобразователей сигналов сельсин-код, резольвер-код и магниточувствительных датчиков угла поворота и положения на основе магниторезистивных сенсоров и датчиков Холла.

Изобретение относится к области измерительной техники и может быть использовано для преобразования аналоговых электрических сигналов эквивалентно позиционному или модулярному представлению.

Группа изобретений относится к вычислительной технике и может быть использована для калибровки АЦП. Техническим результатом является обеспечение автоматической калибровки АЦП.

Изобретение относится к вычислительной и измерительной технике и может быть использовано в информационно-измерительных системах и приборах с цифровой обработкой информации.

Изобретение относится к автоматике и вычислительной технике и может быть использовано в системе контроля энергонасыщенных объектов. Техническим результатом является уменьшение погрешности за счет повышения линейности формируемых сигналов, увеличения их амплитуды и соотношения сигнал/шум.

Изобретение относится к технике связи и может быть использовано для определения неизвестной структуры сверточного кодера со скоростью кодирования, равной , и кодовым ограничением, равным K, на основе анализа принимаемой кодовой последовательности.

Изобретение относится к радиолокации и может использоваться в качестве цифрового приемника для преобразования аналогового сигнала на промежуточной частоте (ПЧ) с понижением в цифровой квадратурный код.

Изобретение относится к измерительной технике, в частности к аналого-цифровому преобразованию, и может быть использовано в цифровых преобразователях угла. Техническим результатом является упрощение кодовой шкалы.

Изобретение относится к радиотехнике, служит для преобразования аналоговых знакопеременных сигналов в прямоугольные импульсы и может быть использовано при построении цифровых средств обработки сигналов и измерении их параметров.

Группа изобретений относится к измерительной технике. Технический результат - обеспечение заданной точности аналого-цифрового преобразования за счет обеспечения контролируемого уменьшения или исключения погрешности дискретного представления сигнала путем управления частотой дискретизации. Для этого предложен способ аналого-цифрового преобразования с управлением частотой дискретизации аналогового сигнала по контролю изменчивости цифрового сигнала, который заключается в том, что сигналы управления на повышение и понижение частоты дискретизации устанавливают после сравнения с заданным допустимым значением амплитуды гармоники на частоте Найквиста, полученной цифровой фильтрацией одной гармоники из последовательности N цифровых отсчетов сигнала с выхода аналого-цифрового преобразователя. Причем задаваемые извне число N отсчетов цифрового фильтра и допустимое значение амплитуды гармоники на частоте Найквиста устанавливают априорно при рациональном выборе значения допустимой погрешности от элиайзинга и значения интенсивности потока отсчетов на основании данных о модели спектра типовых преобразуемых сигналов, а также предложено устройство для осуществления указанного способа. 2 н.п. ф-лы, 5 ил.

Изобретение относится к области радиотехники, электросвязи, информационно-измерительной техники и может применяться для нелинейного цифроаналогового преобразования сигналов разной точности и сложности. Технический результат - оптимизация построения нелинейного гибридного цифроаналогового преобразователя с улучшенными метрологическими и техническими характеристиками. Достигается за счет применения сплайновой аппроксимации n-го порядка с разбиением на i количество интервалов, позволяющего получить наиболее точный гибридный функциональный ЦАП с повышенным быстродействием. Гибридный функциональный ЦАП содержит n последовательно соединенных линейных умножающих ЦАП для задания n-го порядка сплайна, к цифровым входам которых подключен кодопреобразователь, и параллельно им n+1 линейных умножающих ЦАП, соединенных по цифровым линиям с кодопреобразователем для задания переменных коэффициентов сплайна с учетом знаков. Коэффициенты сплайна рассчитываются по общеизвестным математическим методикам в зависимости от количества интервалов аппроксимации. 2 з.п. ф-лы, 2 ил., 3 табл.

Изобретение относится к автоматике, телемеханике и вычислительной технике и может быть использовано в телеметрических системах с времяимпульсной модуляцией (ВИМ). Технический результат заключается в повышении надежности работы цифрового преобразователя. Технический результат достигается за счет цифрового преобразователя код-временной интервал, который содержит первое запоминающее устройство, первый счетчик временных интервалов, первый и второй логические элементы И, первый триггер, второй, третий, четвертый, пятый, шестой триггеры, первый, второй, третий логические элементы ИЛИ, первый и второй счетчики адреса, счетчик защитного интервала времени, первый, второй, третий, четвертый, пятый, шестой, седьмой элементы НЕ, первый, второй, третий, четвертый, пятый, шестой буферные элементы, третий, четвертый, пятый, шестой, седьмой, восьмой логические элементы И, второе запоминающее устройство, первый и второй резисторы, второй счетчик временного интервала, первый, второй, третий, четвертый логические элементы ИЛИ-НЕ и логический элемент И-НЕ. 5 ил.

Изобретение относится к области вычислительной техники и может быть использовано для преобразования аналоговых сигналов в цифровой код и регистрации полученного кода в памяти. Техническим результатом изобретения является повышение точности привязки оцифрованных данных к реальному времени и уменьшение нагрузки на центральный процессор. Этот результат достигается тем, что в состав аналого-цифрового преобразователя введены локальные часы реального времени, которые периодически синхронизируются с внешними часами. Запись оцифрованных данных в память сопровождается записью момента времени регистрации этих данных. 1 з.п. ф-лы, 1 ил.

Изобретение относится к средствам обработки информации и может быть использовано при создании высокоскоростных функциональных цифроаналоговых и аналого-цифровых преобразователей и преобразователей частоты. Технический результат заключается в расширении арсенала средств того же назначения. В заявленном цифроаналоговом преобразователе, содержащем весовые двоично-взвешенные сопротивления 1 и аналоговые ключи 2, причем управляющие входы аналоговых ключей 2 соединены с соответствующими цифровыми управляющими выходами цифрового регистра 5, к точке объединения весовых двоично-взвешенных сопротивлений 1 подключены источник опорного тока Io 6 и вход повторителя напряжения 7, при этом аналоговые выходы аналоговых ключей 2 соединены с общей шиной схемы. 2 ил.

Изобретение относится к измерительной электронной технике и может использоваться для преобразования нескольких аналоговых сигналов в цифровые. Предложенный двухканальный аналого-цифровой преобразователь содержит ключ, одноканальный аналого-цифровой преобразователь, мультиплексор с двумя регистрами на своих выходах, а также формирователь импульсов коммутации, выход которого соединен с управляющим входом ключа и мультиплексора, при этом входами этого двухканального аналого-цифрового преобразователя являются входы каналов ключа, его выходами являются выходы регистров, выход одноканального аналого-цифрового преобразователя соединен с входом мультиплексора. В указанный преобразователь введен формирователь коротких импульсов и дополнительный ключ, включенный между выходом первого ключа и входом одноканального аналого-цифрового преобразователя, при этом второй вход дополнительного ключа закорочен, а управляющий вход этого дополнительного ключа соединен с выходом формирователя коротких импульсов коммутации, вход которого подключен к выходу формирователя импульсов коммутации. Изобретение решает задачу снижения погрешности. 1 з.п. ф-лы, 2 ил.

Изобретение относится к цифровой вычислительной технике и может найти применение для аппаратной реализации вычисления функций. Технический результат заключается в расширении арсенала средств для вычисления функциональных зависимостей. Цифровой функциональный преобразователь содержит четыре сумматора, два сдвигающих регистра, блок анализа, блок хранения констант, блок управления, четыре входа и четыре выхода, причем сдвигающие регистры связаны с сумматорами-вычитателями, выходы которых связаны с блоком анализа, а его выходы - с блоком управления и всеми сумматорами-вычитателями. 1 ил.

Изобретение относится к электронным информационным техническим решениям общего назначения. Технический результат заключается в обеспечении устранения взаимовлияния прямого тракта и обратной связи, а также устранение апериодического эффекта от обратной связи. Предлагаемый способ состоит в том, что последовательность импульсов с входа устройства подвергается инверси знака для каждого четного импульса, посредством сохранения в памяти состояния входа на предыдущем шаге с помощью вспомогательного триггера, если на предыдущем шаге уровень сигнала был зафиксирован, то текущий шаг вычислений рассматривается в качестве четного. Последовательность импульсов на входе подвергается инверсии, чтобы обеспечить срабатывание триггера детектора сигнала на предыдущем шаге в противофазе по отношению к основному триггеру, на который и поступает полученная промежуточная последовательность импульсов с инверсией знака для каждого четного импульса, которая перед этим подвергается дополнительной коррекции. 2 н.п. ф-лы, 13 ил.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения положения вала электродвигателя. Абсолютный оптический однооборотный угловой энкодер содержит n оптопар, где n - разрядность энкодера, растровый диск с одной кодирующей дорожкой, состоящей из последовательно расположенных прозрачных и непрозрачных секторов, причем оптопары располагают с одинаковым шагом a, где a, равное 360/2n, - разрешающая способность энкодера, а кодирующую дорожку формируют в соответствии с двоичной последовательностью длиной m=2n, при этом каждой цифре последовательности соответствует угловой размер a, нулю ставится в соответствии непрозрачный сектор, единице прозрачный - или наоборот. Технический результат - максимальное разрешение для разрядности n энкодера. 2 ил., 2 табл.

Изобретение относится к измерительной технике, в частности к аналого-цифровым преобразователям, и может быть использовано в цифровых системах для измерения и контроля аналоговых величин. Технический результат заключается в расширении функциональных возможностей, повышении точности и быстродействия и снижении сложности схемы. Расширение функциональных возможностей заключается в обеспечении возможности аналого-цифрового преобразования не только однополярных положительных, но также однополярных отрицательных и двуполярных сигналов. Устройство содержит: делитель опорного напряжения; М мультиплексоров; М компараторов напряжения; регистр; генератор тактовых импульсов; триггер; формирователь кодов, блок определения знака и инвертирования отрицательных напряжений, в состав которого входят аналоговый инвертор, компаратор, два аналоговых ключа. 5 ил., 1 табл.
Наверх