Способ получения многослойного высокотемпературного сверхпроводящего материала

Изобретение относится к области технологий получения эпитаксиальных оксидных сверхпроводящих покрытий на металлической подложке, предварительно покрытой биаксиально текстурированным оксидным слоем и буферными оксидными слоями, или на биаксиально текстурированной металлической подложке, предварительно покрытой оксидными буферными слоями, и может быть использовано для получения сверхпроводящих проводников второго поколения. Способ получения многослойного высокотемпературного сверхпроводящего материала включает нанесение на гибкую металлическую текстурированную подложку или на металлическую подложку, покрытую промежуточным биаксиально текстурированным оксидным слоем, по меньшей мере одного эпитаксиального оксидного буферного слоя из прекурсора, получаемого из золя оксидных и гидроксидных наночастиц выбранных элементов в водном растворе температурно-зависимого полимера, путем нагревания при температуре, превышающей температуру фазового перехода температурно-зависимого полимера, при этом золь оксидных и гидроксидных наночастиц выбранных элементов предварительно обрабатывают в течение 100 и более секунд в переменном вращающемся магнитном поле с амплитудой напряженности не более 0,10 Тл и частотой (10-40) Гц с последующей термообработкой буферного слоя и нанесением на буферный слой по меньшей мере одного эпитаксиального слоя сверхпроводникового материала и его термообработкой. Изобретение обеспечивает получение многослойного высокотемпературного сверхпроводящего материала с улучшенной кристаллической структурой эпитаксиальных буферных слоев, полученных из прекурсоров в виде гидрозолей оксидных или гидроксидных наночастиц. 2 ил., 2 табл.

 

Изобретение относится к области технологий получения эпитаксиальных оксидных сверхпроводящих покрытий на металлической подложке, предварительно покрытой биаксиально текстурированным оксидным слоем и буферными оксидными слоями, или на биаксиально текстурированной металлической подложке, предварительно покрытой оксидными буферными слоями, и может быть использовано для получения сверхпроводящих проводников второго поколения (ВТСП-2 проводников).

Известен способ получения многослойного сверхпроводника второго поколения методом химического осаждения металлоорганических соединений из паровой фазы в трубчатом реакторе химического осаждения, который заключается в том, что сначала в трубчатом реакторе осаждают из паров металлорганических соединений буферный слой при температуре 350-850°C, а затем, в указанном реакторе, на нанесенный буферный слой осаждают из паров металлоорганических соединений сверхпроводящий слой при температуре 650-850°C, при этом нагрев трубчатого реактора осуществляют с помощью нагревательных элементов, расположенных вдоль внешней поверхности трубчатого реактора, давление в трубчатом реакторе поддерживают равным 0,1-100 Мбар, металлоорганические соединения предварительно испаряют в испарителе при температуре 150-300°C и газом-носителем подают в зону осаждения трубчатого реактора (Самойленков С.В., Кауль А.Р., Горбенко О.Ю., Корсаков И.Е., Амеличев В.А, Патент RU 2386732 С1).

Техническим результатом способа является получение многослойного сверхпроводника второго поколения.

Недостатком способа являются высокие капитальные затраты на оборудование и использование дорогостоящих органических растворителей и органических соединений-предшественников, а также недостаточное совершенство кристаллической структуры и морфологии получаемых эпитаксиальных буферных слоев.

Известен способ получения многослойного высокотемпературного сверхпроводящего материала, включающий нанесение на текстурированную металлическую подложку с помощью растворного метода MOD (metal organic decomposition), основанного на использовании металлорганических комплексов и органических растворителей, буферных покрытий для последующего нанесения сверхпроводящего слоя (Paranthaman, М.Р., Qiu, X., List, F.A., Kim, K., Applied Superconductivity, IEEE Transactions, Volume: 21, Issue: 3, Page 3059, June 2011, ISSN: 1051-8223, DOI: 10.1109/TASC.2010.2092731).

Техническим результатом является получение многослойного высокотемпературного сверхпроводящего материала.

Недостатком способа является недостаточное совершенство кристаллической структуры и морфологии получаемых эпитаксиальных буферных слоев, что снижает совершенство кристаллической структуры нанесенного сверхпроводящего покрытия и, как следствие, уменьшает плотность критического сверхпроводящего тока. К недостаткам способа относится также использование дорогостоящих органических растворителей и органических соединений-предшественников, для удаления которых из целевой оксидной пленки требуется дополнительная стадия низкотемпературного обжига.

Известен способ получения многослойного высокотемпературного сверхпроводящего материала, включающий нанесение по меньшей мере одного эпитаксиального оксидного буферного слоя на гибкую металлическую текстурированную подложку и его термообработку, нанесение на буферный слой по меньшей мере одного эпитаксиального слоя сверхпроводникового материала и его термообработку, отличающийся тем, что нанесение эпитаксиального слоя осуществляют из прекурсора, получаемого из гидрозоля оксида-гидроксида выбранного элемента или нерастворимой соли выбранного элемента в водном растворе температурно-зависимого полимера путем нагревания при температуре, превышающей температуру фазового перехода температурно-зависимого полимера на 5-30 градусов (Патент RU 2387050, H01L 39/24, В82В 3/00, опубл. 20.04.2010). Способ принят за прототип.

Техническим результатом является получение многослойного высокотемпературного сверхпроводящего материала.

Недостатком этого способа является недостаточное совершенство кристаллической структуры и морфологии получаемых эпитаксиальных буферных слоев.

Известен способ получения многослойного высокотемпературного сверхпроводникового материала, который включает нанесение на гибкую металлическую текстурированную подложку или на металлическую подложку, покрытую промежуточным биаксиально текстурированным оксидным слоем, по меньшей мере одного эпитаксиального оксидного буферного слоя из прекурсора, получаемого из золя оксида-гидроксида выбранного элемента или нерастворимой соли выбранного элемента в водном растворе температурно-зависимого полимера, путем нагревания при температуре, превышающей температуру фазового перехода температурно-зависимого полимера, нанесение на буферный слой по меньшей мере одного эпитаксиального слоя сверхпроводникового материала и его термообработку, при этом после нанесения эпитаксиального оксидного буферного слоя осуществляют его обработку в переменном магнитном поле с амплитудой напряженности не более 0,10 Тл и частотой 10-40 Гц в течение 100 и более секунд (Патент RU 2582489, H01L 39/24).

Технический результат заключается в повышении совершенства кристаллической структуры и морфологии эпитаксиального буферного слоя и, как следствие, повышении совершенства кристаллической структуры нанесенного на него сверхпроводящего покрытия и в результате повышении плотности критического сверхпроводящего тока.

Недостатком способа является необходимость включения в отработанную технологическую цепочку производства длинномерных ВТСП-2 провода нового звена, магнитной структурной обработки (МСО), что может снизить скорость нанесения буферных слоев из-за необходимости строгого соблюдения временного режима МСО и тем самым снизить производительность производства. Кроме того, существует сложность в МСО длинномерных проводов, связанная с трудностью создания однородного внешнего вращающегося магнитного поля для обработки длинномерных эпитаксиальных буферных слоев.

Техническим результатом изобретения является получение многослойного высокотемпературного сверхпроводящего материала с улучшенной кристаллической структурой эпитаксиальных буферных слоев, полученных из прекурсоров в виде гидрозолей оксидных или гидроксидных наночастиц.

Технический результат достигается тем, что в способе получения многослойного высокотемпературного сверхпроводящего материала, включающем нанесение на гибкую металлическую текстурированную подложку или на металлическую подложку, покрытую промежуточным биаксиально текстурированным оксидным слоем, по меньшей мере одного эпитаксиального оксидного буферного слоя из прекурсора, получаемого из золя оксидных и гидроксидных наночастиц выбранных элементов в водном растворе температурно-зависимого полимера, путем нагревания при температуре, превышающей температуру фазового перехода температурно-зависимого полимера, термообработку буферного слоя, нанесение на буферный слой по меньшей мере одного эпитаксиального слоя сверхпроводникового материала и его термообработку, согласно изобретению синтезированный прекурсорный золь оксидных и гидроксидных наночастиц выбранных элементов в водном растворе температурно-зависимого полимера обрабатывают в течение 100 и более секунд в переменном вращающемся магнитном поле с амплитудой напряженности не более 0,10 Тл и частотой (10-40) Гц.

Сущность предлагаемого способа заключается в следующем.

МСО прекурсорных гидрозолей оксидных и/или гидроксидных наночастиц выбранных элементов в указанных выше режимах повышает совершенство кристаллической структуры и морфологии получаемых из этих гидрозолей эпитаксиальных буферных слоев за счет повышения структурного совершенства оксидных и гидроксидных наночастиц в процессе МСО, что является следствием необратимых процессов в дефектной структуре оксидных и гидроксидных наночастиц, происходящих во внешнем магнитном поле (магнитный структурный эффект), что в дальнейшем благотворно сказывается на эпитаксиальном росте получаемых из них буферных слоев. Кроме того, по сравнению со способом, описанным в патенте РФ №2582489, МСО прекурсорных гидрозолей оксидных и/или гидроксидных наночастиц позволяет достичь повышения структурного совершенства получаемых эпитаксиальных буферных слоев и при этом исключить необходимость включения в отработанную технологическую цепочку производства длинномерных ВТСП-2 провода нового звена МСО.

Далее изобретение поясняется с помощью конкретных примеров.

Примерами, иллюстрирующими данный способ, является обработка в переменном магнитном поле прекурсорных гидрозолей оксидных СеО2 и гидроксидных La1-xZrx(OH)y (LZOH) наночастиц, из которых формируются эпитаксиальные буферные слои СеО2 и La2Zr2O7 (LZO) на биаксиально текстурированной ленте-подложке из сплава Ni-5%W.

Аналогичные результаты, свидетельствующие об улучшении кристаллической структуры и морфологии эпитаксиальных буферных слоев после магнитной обработки прекурсорных гидрозолей оксидных и гидроксидных наночастиц, были получены и на других буферных слоях, например на буферном слое STO (SrTiO3) и на буферном слое YSZ (оксид циркония, стабилизированный иттрием).

МСО прекурсорных гидрозолей оксидных наночастиц CeO2 и прекурсорных гидрозолей гидроксидных наночастиц LZOH эпитаксиальных буферных слоев CeO2 и LZO осуществляли при соблюдении заявленных режимов обработки:

Критерием эффективности магнитной обработки являлось изменение площадей рентгеновских дифракционных пиков S образцов эпитаксиальных буферных пленок CeO2 толщиной 10 нм и эпитаксиальных буферных пленок LZO толщиной 40 нм, полученных из обработанных и необработанных в магнитном поле прекурсорных гидрозолей наночастиц CeO2 и LZOH соответственно. Изменение площадей рентгеновских дифракционных пиков S буферных слоев CeO2 и буферных слоев LZO свидетельствует о влиянии на структуру этих слоев перестройки структуры наночастиц CeO2 и LZOH прекурсорных гидрозолей в результате МСО.

В табл. 1 и 2 приведены данные по результатам рентгеновских исследований образцов буферного слоя CeO2, полученных из прекурсорных гидрозолей наночастиц CeO2, прошедших МСО в разных режимах (табл. 1), и образцов буферного слоя LZO, полученных из прекурсорных гидрозолей наночастиц LZOH, прошедших МСО в разных режимах (табл. 2).

Для экспериментов по МСО прекурсорных гидрозолей были приготовлены прекурсорный гидрозоль наночастиц CeO2 и прекурсорный гидрозоль наночастиц LZOH. Каждый из прекурсорных гидрозолей наночастиц CeO2 и LZOH был разделен на 5 порций. Одна порция каждого гидрозоля наночастиц CeO2 и LZOH не обрабатывалась в МП, и из них были приготовлены образец буферного слоя CeO2 толщиной 10 нм и образец буферного слоя LZO толщиной 40 нм. Эти образцы, приготовленные из необработанных гидрозолей наночастиц CeO2 и LZOH, обозначены в табл. 1 и 2 как образец №5. Остальные 4 порции гидрозоля каждого вида были обработаны в МП при значениях частоты ω=8, 10, 30 и 50 Гц, и из них были приготовлены образцы №1-4 буферного слоя CeO2 толщиной 10 нм и образцы буферного слоя LZO толщиной 40 нм (см. табл. 1 и 2).

На фиг. 1 и 2 показаны типичные дифрактограммы и АСМ изображения образцов эпитаксиальных буферных слоев СеО2 и LZO, полученных из соответствующих гидрозолей наночастиц CeO2 и LZOH до и после их обработки в МП.

Способ получения многослойного высокотемпературного сверхпроводящего материала, включающий нанесение на гибкую металлическую текстурированную подложку или на металлическую подложку, покрытую промежуточным биаксиально текстурированным оксидным слоем, по меньшей мере одного эпитаксиального оксидного буферного слоя из прекурсора, получаемого из золя оксидных и гидроксидных наночастиц выбранных элементов в водном растворе температурно-зависимого полимера, путем нагревания при температуре, превышающей температуру фазового перехода температурно-зависимого полимера, термообработку буферного слоя, нанесение на буферный слой по меньшей мере одного эпитаксиального слоя сверхпроводникового материала и его термообработку, отличающийся тем, что золь оксидных и гидроксидных наночастиц выбранных элементов в водном растворе температурно-зависимого полимера предварительно обрабатывают в течение 100 и более секунд в переменном вращающемся магнитном поле с амплитудой напряженности не более 0,10 Тл и частотой (10-40) Гц.



 

Похожие патенты:

Использование: для осуществления гиперпроводимости и сверхтеплопроводности материалов. Сущность изобретения заключается в том, что используют невырожденный или слабовырожденный полупроводниковый материал, размещают на его поверхности или в его объеме электроды 1 и 2, образующие выпрямляющие контакты с материалом, такие как контакты металл-полупроводник, контакты Шоттки, при этом расстояние между электродами D выбирают не более 4Λ, D≤4Λ, где Λ - длина когерентности; размер площади контакта электрода с материалом а выбирают не более четверти длины упругой волны в материале а≤λ/4, λ=V/F, где V - скорость упругой волны в материале с частотой F=108 Гц; устанавливают и поддерживают согласованную электромагнитную связь части материала, примыкающей к электроду 1, или (и) части материала, примыкающей к электроду 2, или материала или части материала, расположенного между электродами 1 и 2, с высокочастотным (высокочастотными) (ВЧ) и (или) сверхвысокочастотным (сверхвысокочастотными) (СВЧ) замедляющим устройством (замедляющими устройствами), таким (такими) как коаксиальная линия, волноводная линия, полосковая линия, резонатор, колебательный контур, которые характеризуются резонансными частотами f в диапазоне от 106 Гц до 3⋅1015 Гц и добротностями Q≥10; материал нагревают до температуры Т, равной или превышающей температуру гиперпроводящего перехода Th, Th≤Т≤Т*; измеряют электрическое и (или) тепловое сопротивление материала между электродами и (или) эффект Мейснера; в результате электрическое сопротивление и тепловое сопротивление материала между электродами обращаются в ноль, то есть осуществляется гиперпроводимость и сверхтеплопроводность в материале между электродами 1 и 2, усиливается эффект Мейснера.

Использование: для поддержки удлиненного сверхпроводящего элемента. Сущность изобретения заключается в том, что способ включает предоставление слоистого сплошного элемента, причем слоистый сплошной элемент включает нижний слой (303) и верхний слой (316), причем верхний слой расположен рядом с нижним слоем и, по меньшей мере частично, закрывает нижний слой, формирование нескольких разрывных полос в верхнем слое (316), посредством чего формируют несколько открытых областей (323) нижнего слоя (303), где каждая открытая область выполнена вдоль разрывной полосы, травление открытых областей (323), чтобы сформировать подтравленные объемы (330, 332) между верхним слоем (316) и нижним слоем (303), причем каждый подтравленный объем выполнен вдоль разрывной полосы, и причем применяют травитель, у которого скорость травления нижнего слоя (303) выше, чем скорость травления верхнего слоя (316).

Использование: для создания структур высокотемпературный сверхпроводник – диэлектрик – высокотемпературный сверхпроводник. Сущность изобретения заключается в том, что на слой высокотемпературного сверхпроводника 123-типа направляют поток атомных частиц, в качестве высокотемпературного сверхпроводника берут сверхпроводник состава REBa2Cu3O7, где RE - редкоземельный металл или иттрий.

Использование: для создания сверхпроводящего объекта. Сущность изобретения заключается в том, что способ получения сверхпроводящего объекта включает: обеспечение оксида редкоземельного элемента-меди-бария, содержащего редкоземельный элемент, барий и медь, и проведение термической обработки указанного оксида редкоземельного элемента-меди-бария с образованием сверхпроводника, содержащего распределенные в нем зерна оксида редкоземельного элемента, при этом проведение указанной термической обработки включает: первую стадию термической обработки, на которой температуру повышают с обеспечением жидкой фазы указанного оксида редкоземельного элемента-меди-бария, содержащей оксид редкоземельного элемента, и вторую стадию термической обработки, на которой температуру и/или давление кислорода изменяют по сравнению с их значением на первой стадии термической обработки с получением монокристаллического оксида редкоземельного элемента-меди-бария.

Использование: для изготовления сверхпроводниковых туннельных переходов, джозефсоновских переходов. Сущность изобретения заключается в том, что наносят без разрыва вакуума трехслойную структуру сверхпроводник - изолятор - нормальный металл (СИН контакт); наносят резист, проводят экспозицию, проявление; селективное химическое или ионное травление трехслойной структуры, после стравливания трехслойной структуры проводят планаризацию поверхности напылением через маску диэлектрика толщиной, равной толщине трехслойной структуры, после чего удаляют диэлектрик вне области туннельных переходов и наносят тонкую пленку перемычки (абсорбера) из нормального металла или другого сверхпроводника, при этом этот слой перемычки наносится на планаризованную поверхность и может быть существенно тоньше предыдущих слоев, менее 10 нм.

Использование: для получения многослойного высокотемпературного сверхпроводящего материала. Сущность изобретения заключается в том, что способ получения включает нанесение на гибкую металлическую текстурированную подложку или на металлическую подложку, покрытую промежуточным биаксиально текстурированным оксидным слоем, по меньшей мере, одного эпитаксиального оксидного буферного слоя из прекурсора, получаемого из золя оксида-гидроксида выбранного элемента или нерастворимой соли выбранного элемента в водном растворе температурно-зависимого полимера, путем нагревания при температуре, превышающей температуру фазового перехода температурно-зависимого полимера, нанесение на буферный слой, по меньшей мере, одного эпитаксиального слоя сверхпроводникового материала и его термообработку, при этом после нанесения эпитаксиального оксидного буферного слоя осуществляют его обработку в переменном магнитном поле с амплитудой напряженности не более 0,10 Тл и частотой 10-40 Гц в течение 100 и более секунд.

Использование: для формирования в сверхпроводящих тонких пленках областей с требуемыми значениями плотности критического тока. Сущность изобретения заключается в том, что способ формирования областей переменной толщины сверхпроводящей тонкой пленки методом лазерного распыления мишени YBa2Cu3O7-x, в котором между мишенью и подложкой располагают затеняющую пластину, затем воздействуют на мишень лазерным излучением плотностью мощности Ρ=(1÷2)·109 Вт/см2, длиной волны λ=1,06 мкм, длительностью импульса τ=10÷20 нс и частотой следования импульсов ν=10 Гц в течение времени t=175÷185 с, при температуре мишени Тм=600÷700°С, температуре подложки Тп=800÷840°С, расстоянии между подложкой и затеняющей пластиной L=0,1÷0,2 мм, при этом вне затеняющей пластины формируется сверхпроводящая пленка толщиной D2=160÷200 нм с плотностью критического тока j>106 А/см2, а под затеняющей пластиной формируется сверхпроводящая пленка толщиной D2=40-50 нм с плотностью критического тока j=(1÷5)·103 А/см2.
Изобретение относится к текстурированной подложке для выращивания на ней эпитаксиальной пленки оксидного сверхпроводящего материала для использования в различных типах электросилового оборудования.

Изобретение относится к сверхпроводникам и технологии их получения. Оксидный сверхпроводящий провод включает лентообразный оксидный сверхпроводящий слоистый материал 1, сформированный путем нанесения промежуточного слоя 4 на стороне передней поверхности металлической лентообразной подложки 3, оксидного сверхпроводящего слоя 5 на промежуточном слое 4 и защитного слоя 6 на оксидном сверхпроводящем слое 5, и покрытие, включающее металлическую ленту 2 и слой металла с низкой точкой плавления 7, при этом ширина металлической ленты 2 больше, чем ширина оксидного сверхпроводящего слоистого материала 1, и лента 2 закрывает поверхность защитного слоя 6 оксидного сверхпроводящего слоистого материала 1, обе боковые поверхности оксидного сверхпроводящего слоистого материала 1 и оба концевых участка 3а задней поверхности подложки 3 в поперечном направлении, причем оба концевых участка металлической ленты 2 в поперечном направлении закрывают оба концевых участка 3а задней поверхности подложки 3а, слой металла с низкой точкой плавления 7 заполняет щели между оксидным сверхпроводящим слоистым материалом 1 и металлической лентой 2, окружающей оксидный сверхпроводящий слоистый материал 1, и соединяет металлическую ленту 2 и оксидный сверхпроводящий слоистый материал 1 друг с другом, а часть 7с заполняющего слоя металла с низкой точкой плавления продолжается в область углубленного участка 2d, сформированного между обоими концевыми участками металлической ленты 2 в поперечном направлении.

Изобретение относится к пленкам с чрезвычайно низким сопротивлением (ЧНС-пленки). Способ улучшения рабочих характеристик пленки с чрезвычайно низким сопротивлением, содержащей материал с чрезвычайно низким сопротивлением (ЧНС-материал), имеющий кристаллическую структуру, включает: наслаивание модифицирующего материала на грань ЧНС-материала, которая не является по существу параллельной с-плоскости кристаллической структуры ЧНС-материала ЧНС-пленки, чтобы создать модифицированную ЧНС-пленку, при этом модифицированная ЧНС-пленка обладает улучшенными рабочими характеристиками по сравнению с ЧНС-пленкой без модифицирующего материала.

Изобретение относится к криогенной технике и может быть использовано для изготовления высокотемпературных сверхпроводящих (ВТСП) проводов нового поколения. Сущность изобретения заключается в том, что способ получения высокотемпературной сверхпроводящей пленки на аморфной кварцевой подложке включает нанесение на предварительно очищенную поверхность подложки трехслойного покрытия, при этом первый слой покрытия формируют из кварца толщиной 100-400 нм методом магнетронного распыления, второй слой формируют из диоксида циркония, стабилизированного иттрием толщиной 100-300 нм, третий - из диоксида церия толщиной 150-350 нм. Технический результат: обеспечение возможности исключения растрескивания ВТСП пленки. 2 н. и 5 з.п. ф-лы, 3 ил.

Изобретение относится к области тонкопленочной сверхпроводниковой микроэлектроники, в частности к изготовлению высокочувствительных болометров, электронных охладителей, одноэлектронных транзисторов, содержащих свободно висящий микромостик нормального металла и сверхпроводниковые переходы типа сверхпроводник-изолятор-нормальный металл (СИН), сверхпроводник-изолятор-другой сверхпроводник (СИС'), а также андреевские контакты (сверхпроводник-андреевский контакт-нормальный металл) и структуры с барьером Шоттки (сверхпроводник-барьер Шоттки-полупроводник). Предложенный способ состоит из нанесения без разрыва вакуума трехслойной тонкопленочной структуры; нанесения резиста, экспозиции, проявления; селективного химического травления нижнего электрода трехслойной структуры, при этом перед напылением трехслойной структуры типа сверхпроводник-изолятор-нормальный металл (СИН) проводят фотолитографию, методом взрыва формируют топологию СИН структуры, и проводят однократное травление в щелочном проявителе, совмещенное с проявлением резиста с рисунком окон, при этом разрыв верхнего электрода образуется на ступеньке на границе подводящих проводников, существенным признаком является необходимость выполнения условия, что толщина верхнего нормального электрода меньше, а толщина нижнего алюминиевого электрода больше толщины нижней пленки электрических проводников. Предложены четыре варианта способа. Технический результат состоит в повышении воспроизводимости, снижении трудоемкости и времени изготовления структур, увеличении площади туннельных переходов более 1 мкм2 при снижении толщины верхнего электрода и перемычки абсорбера менее толщины нижнего электрода, снятии ограничения на форму переходов, устранении паразитных теней, устранении паразитных шунтирующих емкостей и сопротивлений утечки, уменьшении количества технологических ступеней литографии. 4 н.п. ф-лы, 1 ил.
Наверх