Амперометрический способ измерения концентрации закиси азота в газовых смесях

Изобретение направлено на возможность амперометрически измерять концентрацию закиси азота в газовой смеси с помощью простого в изготовлении и эксплуатации измерительного устройства, созданного на основе кислородопроводящего твердого электролита состава 0,9 ZrO2 + 0,1Y2O3. Способ заключается в том, что электрохимическую ячейку с полостью, образованной двумя дисками из кислородопроводящего твердого электролита состава 0,9 ZrO2+0,1Y2O3, на противоположных поверхностях одного из которых расположены электроды, помещают в поток анализируемой газовой смеси, на электроды подают напряжение постоянного тока в пределах от 1 до 2 В с подключением положительного полюса на электрод, находящийся на внешней стороне диска, а отрицательного полюса – на внутренней, посредством чего осуществляют откачку свободного кислорода и кислорода, полученного после разложения закиси азота из полости ячейки, в поток анализируемой газовой смеси при рабочей температуре ячейки, и при достижении стационарного состояния, когда количество кислорода, откачанного из полости ячейки, станет равным количеству кислорода, поступающего в нее, измеряют протекающий через ячейку предельный ток, по величине изменения предельного тока от количества кислорода, откачанного из полости электрохимической ячейки, определяют концентрацию закиси азота в анализируемой газовой смеси. 6 ил.

 

Изобретение относится к области газового анализа, в частности к измерениям концентрации закиси азота в кислородосодержащих и инертных газовых средах, содержащих смесь из кислорода, азота и закиси азота, в частности, к измерениям содержания закиси азота в воздушной атмосфере.

Закись азота находит достаточно широкое практическое применение. В частности, она используется как средство для ингаляционного наркоза. Это соединение можно назвать самым безопасным средством для наркоза, так как после его применения не наблюдается осложнений. Также закись азота используется для улучшения технических характеристик двигателей внутреннего сгорания. Горючее, насыщенное закисью азота, впрыскивают во впускной коллектор двигателя. Это снижает температуру всасываемого в двигатель воздуха, увеличивает содержание кислорода в поступающей топливной смеси и повышает скорость сгорания в цилиндрах двигателя. Для пищевой промышленности закись азота зарегистрирована в качестве пищевой добавки E942, как пропеллент и упаковочный газ, предотвращающий порчу продукта. Закись азота используется также в качестве окислителя в однокомпонентном топливе с этаном, этиленом или ацетиленом в качестве топлива.

Существует относительно немного способов определения закиси азота в газовых средах. Так, например, известен способ дистанционного контроля содержания закиси азота в газовой среде (BY 6757, опубл. 30.03.2005) [1]. Данный способ включает облучение газовой среды импульсным лазерным излучением молекулярного газового лазера мощностью 1 МВт в спектральном диапазоне 4,51-4,54 мкм на двух частотах, одна из которых не совпадает с линией поглощения закиси азота, а другая не совпадает, причем длины волн, соответствующие этим двум частотам, отличаются на значение 0,01мкм.

Концентрацию закиси азота в этом способе определяют по отношению интенсивностей прошедшего через среду или рассеянного назад излучения на указанных частотах. Этот способ непосредственно предназначен для определения малых, т.е. фоновых концентраций закиси азота, как одного из газов–разрушителей защитного озонового слоя земной атмосферы и касается больше качественного, нежели количественного анализа, что возможно оправдывает его аппаратурную сложность.

Наиболее применимыми для определения концентрации закиси азота в газовых средах являются газохроматографические способы. Известен газохроматографический способ определения концентрации закиси азота в газах (RU 2226688, опубл.10.04.2004) [2]. В соответствии с этим способом анализируемую смесь разделяют на закись азота и сопутствующие газы в потоке газа-носителя на хроматографической колонке, заполненной сорбентом, в качестве которого используют цеолит СаХ с содержанием влаги 13–17 мас.%, модифицированным полиэтиленгликолем–1000, взятым в количестве 0,5–1,0% от массы цеолита. Этим способом достигается селективность и высокая чувствительность определения закиси азота – 2 мг/м3, что соответствует 0,5 ПДК.

Как следует из описания RU 2226688, для реализации данного способа необходим специализированный цеолит, для получения которого исходный цеолит СаХ дробят, отбирают нужную фракцию, нагревают до температуры 100°С в муфельной печи и выдерживают под вакуумом в течение 1,5 ч, после чего охлаждают до комнатной температуры с напуском гелия в закрытую колбу, в которой проводили термообработку. Полиэтиленгликоль–1000, взятый в количестве 0,5–1,0% от массы цеолита, растворяют в хлороформе, этим раствором заливают охлажденный цеолит СаХ с содержанием влаги 13–17 мас.% и испаряют растворитель в вытяжном шкафу на водяной бане, затем сушат в сушильном шкафу при температуре 100°С до постоянного веса. Таким образом, данный способ требует изготовления специализированного продукта, а потому сложен, трудоемок и требует квалифицированного обслуживания.

Задача настоящего изобретения заключается в создании способа, позволяющего достаточно просто и надежно измерять содержание закиси азота в газовых смесях и, в частности, в воздушной атмосфере.

Для решения поставленной задачи предложен амперометрический способ измерения концентрации закиси азота в газовых смесях, заключающийся в том, что электрохимическую ячейку с полостью, образованной двумя дисками из кислородопроводящего твердого электролита состава 0,9 ZrO2 + 0,1Y2O3, на противоположных поверхностях одного из которых расположены электроды, помещают в поток анализируемой газовой смеси, на электроды подают напряжение постоянного тока в пределах от 1 до 2 В, с подключением положительного полюса на электрод, находящийся на внешней стороне диска, а отрицательного полюса – на внутренней, посредством чего осуществляют откачку свободного кислорода и кислорода, полученного после разложения закиси азота из полости ячейки, в поток анализируемой газовой смеси при рабочей температуре ячейки, и при достижении стационарного состояния, когда количество кислорода, откачанного из полости ячейки станет равным количеству кислорода, поступающего в нее, измеряют протекающий через ячейку предельный ток, по величине изменения предельного тока от количества кислорода, откачанного из полости электрохимической ячейки, определяют концентрацию закиси азота в анализируемой газовой смеси.

Таким образом, в предложенном способе, концентрацию закиси азота в анализируемой газовой смеси определяют по величине изменения предельного тока, протекающего через ячейку, от количества кислорода, откачанного из ее полости, которое соответствует содержанию суммарного кислорода, и, что обусловлено следующим. Величина предельного тока будет зависеть от количества кислорода, образовавшегося от диссоциации закиси азота на азот и кислород при рабочей температуре анализа, и далее откачанного из полости ячейки. Когда на электроды, расположенные на противоположных поверхностях одного из дисков электрохимической ячейки с полостью, образованной двумя дисками из кислородопроводящего твердого электролита состава 0,9 ZrO2 + 0,1Y2O3, помещенной в поток анализируемой газовой смеси, подают напряжение постоянного тока в пределах от 1 до 2В с подачей положительного полюса на электрод, находящийся на внешней стороне диска, а отрицательного полюса – на внутренней, при рабочей температуре анализа выше 400оС начинается разложение закиси азота, находящейся в анализируемой газовой смеси в соответствии с уравнением (1)

N2O = 1/2O2 + N2. (1)

При температуре 800оС происходит полное разложение закиси азота на азот и кислород. При подаче напряжения постоянного тока на первый диск происходит откачка кислорода из газовой смеси, находящейся в полости ячейки, в поток анализируемой газовой смеси, омывающей ячейку. По мере увеличения подаваемого на электроды напряжения, ток будет расти, пока не достигнет стабильного значения – предельного тока ячейки. Достижение предельного тока говорит о том, что количество кислорода, откачиваемого из полости ячейки, равно количеству кислорода, поступающего в полость ячейки через капилляр. По величине предельного тока, соответствующего количеству откачанного из полости ячейки кислорода, определяют концентрацию кислорода в анализируемой газовой смеси в соответствии с уравнением (2) (Иванов-Шиц, И.Мурин, Ионика твердого тела, том 2, С.-Петербург (2010) СС. 964-965) [3]:

IL(О2) = - ; (2)

где D(О2) – коэффициент диффузии кислорода в азоте (если анализируемая газовая смесь состоит из O2 + N2 +N2O);

X (O2) – мольная доля кислорода в азоте;

S – площадь сечения капилляра, мм2;

P – общее давление газовой смеси, Па;

T – температура анализа, К;

L - длина капилляра, мм.

При этом образовавшийся от разложения закиси азота кислород также откачивается из полости ячейки. Зная исходное содержание кислорода в анализируемой газовой смеси, (например, содержание кислорода в воздухе составляет 20,5% об.), по измеренной величине предельного тока можно однозначно определить количество кислорода, образовавшегося от разложения закиси азота и соответственно количество закиси азота в анализируемой газовой смеси.

Новый технический результат, достигаемый заявленным способом, заключается в возможности амперометрически измерять концентрацию закиси азота в газовой смеси с помощью простого в изготовлении и эксплуатации измерительного устройства, созданного на основе хорошо изученного кислородопроводящего твердого электролита состава 0,9 ZrO2 + 0,1Y2O3.

Изобретение иллюстрируется рисунками, где на фиг. 1 изображена электрохимическая ячейка для реализации способа; на фиг. 2 – зависимость изменения предельного тока ячейки от напряжения, подаваемого на ее электроды для азота, воздуха и газовой смеси состава О2-20%, N2-50% и N2O-30%; на фиг.3 – зависимость предельного тока ячейки от напряжения, подаваемого на ее электроды для смесей N2O-20% + N2, N2O-50% + N2, N2O-80% + N2; на фиг.4 – зависимость предельного тока ячейки от концентрации кислорода в смеси О2 м N2; на фиг.5 - зависимость предельного тока от концентрации N2O в N2, на фиг.6 – зависимость предельного тока ячейки от концентрации N2O в О2.

Электрохимическая ячейка состоит из двух дисков 1 и 2, выполненных из кислородпроводящего твердого электролита (0,9 ZrO2 + 0,1Y2O3). На противоположных поверхностях диска 1 расположены два электрода 3 и 4. Диски 1 и 2 соединены между собой с образованием полости 5, между дисками находится капилляр 6. Диски 1 и 2 соединены между собой газоплотным герметиком 7. Подачу напряжения на электроды 3 и 4 осуществляют от источника напряжения постоянного тока, причем на внутренний электрод 4 подают минус. Электрохимическую ячейку помещают в поток анализируемой газовой смеси, который омывает ее наружную поверхность и по капилляру 6 поступает в полость 5. Под действием напряжения постоянного тока (ИПТ), через твердый кислородопроводящий электролит происходит откачка кислорода из газовой смеси, находящейся в полости ячейки, в поток анализируемой газовой смеси. При установившемся режиме предельного тока ячейки, количество кислорода, поступившего в полость ячейки, и количество кислорода, откачанного из нее, уравновешиваются. При этом закись азота при рабочей температуре ячейки диссоциирует с образованием кислорода, который также откачивается из полости ячейки. Таким образом, из полости ячейки откачивается как находившийся в газовой смеси свободный кислород, так и кислород, образовавшийся от разложения закиси азота. При этом капилляр 6 является диффузионным барьером, лимитирующим этот газовый поток обмена. Этому потоку обмена будет соответствовать и ток ячейки. При приложении напряжения от 1 до 2В, газообмен между полостью ячейки и анализируемой средой стабилизируется и в цепи устанавливается предельный диффузионный ток - IL(О2), который измеряют с помощью амперметра (А). Посредством уравнения (2) по величине измеренного IL(О2) можно определить величину Х (О2), т.е. суммарную концентрацию кислорода в анализируемой газовой смеси. Зная концентрацию свободного кислорода в газовой смеси и вычтя ее из измеренного значения суммарного кислорода можно определить содержание закиси азота в анализируемой газовой смеси.

При приготовлении газовых смесей состава О2+N2О, N2О+N2 или О2+ N2 +N2O из отдельных компонентов контроль содержания в них закиси азота можно выполнить по измеренному значению суммарного кислорода ХО2 в соответствии с уравнениями (3-5). Так, для газовой смеси, содержащей кислород и закись азота, суммарное количество кислорода после полного разложения закиси азота будет составлять

XO2 = (3),

для смеси, содержащей кроме кислорода, закиси азота еще и азот, суммарное количество кислорода будет

XO2 = (4),

а для смеси состава азот и закись азота содержание кислорода будет определяться уравнением

ХО2 = (5)

Графики, представленные на фиг. 2–6 для рабочей температуры ячейки 800оС, также иллюстрируют возможности заявленного способа. Так, на фиг. 2 представлена зависимость предельного тока ячейки для смеси воздуха, закиси азота и тройной смеси из кислорода, закиси азота и азота. Этот график позволяет судить о значениях предельных токов для каждой из рассматриваемых газовых смесей. График, изображенный на фиг. 3, представляет изменения тока ячейки от напряжения, подаваемого на ее электроды, и от концентрации N2O в N2. На основании данных графика (фиг. 3) построен график (фиг. 4), который позволяет определять содержание N2O по величине предельного тока. Аналогично графику фиг. 4 получена зависимость изменения предельного тока ячейки от концентрации закиси азота для смеси закиси азота в кислороде (фиг. 5). Полученные линейные зависимости предельных токов ячейки от концентрации закиси азота в смеси с азотом (фиг.5) и кислородом (фиг.6) позволяет оперативно и просто определять содержание закиси азота в газовых смесях.

Таким образом, заявленный способ позволяет просто и надежно измерять концентрацию закиси азота в газовой смеси посредством амперометрической ячейки с хорошо изученным кислородопроводящим твердым электролитом. Посредством уравнения (2) по величине измеренного IL(О2) можно определить величину Х (О2), т.е. суммарную концентрацию кислорода в анализируемой газовой смеси, а по ней рассчитывать содержание закиси азота.

Амперометрический способ измерения концентрации закиси азота в газовых смесях, заключающийся в том, что электрохимическую ячейку с полостью, образованной двумя дисками из кислородопроводящего твердого электролита состава 0,9 ZrO2 + 0,1Y2O3, на противоположных поверхностях одного из которых расположены электроды, помещают в поток анализируемой газовой смеси, на электроды подают напряжение постоянного тока в пределах от 1 до 2 В с подключением положительного полюса на электрод, находящийся на внешней стороне диска, а отрицательного полюса – на внутренней, посредством чего осуществляют откачку свободного кислорода и кислорода, полученного после разложения закиси азота из полости ячейки, в поток анализируемой газовой смеси при рабочей температуре ячейки, и при достижении стационарного состояния, когда количество кислорода, откачанного из полости ячейки, станет равным количеству кислорода, поступающего в нее, измеряют протекающий через ячейку предельный ток, по величине изменения предельного тока от количества кислорода, откачанного из полости электрохимической ячейки, определяют концентрацию закиси азота в анализируемой газовой смеси.



 

Похожие патенты:

Изобретение относится к аналитической химии. Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления висмута из интерметаллического соединения RhxBiy заключается в том, что родий (III) в растворе переводят в хлоридный комплекс, в растворе 1 M НСl проводят электровосстановление родия (III) совместно с висмутом (III) в режиме «in situ» на поверхность композитного графитового электрода, модифицированного висмутом, приготовленного по методике «литье под давлением» в перемешиваемом растворе при потенциале электролиза минус 0,8 В в течение 120 секунд с последующей регистрацией анодных пиков селективного электроокисления висмута из интерметаллического соединения RhxBiy в дифференциально-импульсном режиме при скорости развертки потенциала 80 мВ/с.

Изобретение может быть использовано в различных отраслях народного хозяйства для определения содержания родия в растворах. Способ определения родия(III) в водных растворах методом инверсионной вольтамперометрии по пикам селективного электроокисления свинца(II) из интерметаллических соединений Rh3Pb2 и Rh5Pb7 заключается в том, что родий осаждают на поверхность графитового электрода совместно со свинцом, образуя сплав в присутствии ионов платины(IV, II), палладия(II) и золота(III) в соотношениях Rh:Pt=1:1, Rh:Pd=1:10, Rh:Au=1:10, накопление ионов родия на графитовом электроде в перемешивающемся растворе в присутствии ионов свинца проводят в течение 180-240 секунд при потенциале электролиза минус 1,5 В из фонового электролита 1 М HCl с последующей регистрацией анодных пиков селективного электроокисления свинца из сплава с родием при скорости развертки потенциала 0,05-0,06 В/с, а концентрацию ионов родия определяют по площади под пиками селективного электроокисления свинца в диапазоне потенциалов от -0,5 до -0,2 В отн.

Изобретение относится к области аналитической химии, электрохимии и биохимии Задачей настоящего изобретения является разработка способа электрохимического анализа аминокислотных замен и модификаций пептида Aβ без и в присутствие ионов Zn(II), который основан на измерении сигнала окисления единственного остатка Тир-10 Аβ.

Изобретение относится к аналитической. Способ определения метионина в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами золота, заключается в том, что проводят модифицирование графитовых электродов коллоидными частицами золота из золя золота (мольное соотношение HAuCl4:Na3C6H5O7:NaBH4 = 1:15:5) в течение 300 с при потенциале накопления -1,0 B, с последующей регистрацией обратных пиков электроокисления метионина на катодной кривой при скорости развертки потенциала 100 мВ/с на фоне 0,1 М раствора NaNO3 в диапазоне потенциалов от -1,0 B до 1,0 B.

Изобретение относится к области измерения значений гидрохимикофизических параметров водной среды и может быть использовано отдельно или в составе многоканального преобразователя гидрохимикофизических параметров водной среды, для измерения содержания растворенного кислорода в водной среде, в частности пресной и морской воды при проведении экологических исследований.

Изобретение относится к области аналитической химии, в частности к вольтамперометрическому способу определения лекарственного препарата триазавирина. Способ может быть использован для количественного определения указанного соединения в порошке и его лекарственных формах.

Изобретение относится к области аналитической химии и может быть использовано в медицине, сельском хозяйстве, мониторинге окружающей среды. Способ определения тиолов согласно изобретению проводят инверсионной вольтамперометрией в 3М растворе NaOH в присутствии ионов серебра с концентрацией в растворе 4⋅10-5…8⋅10-5 М, вводят пробу, содержащую от 3⋅10-8 до n⋅10-5 М тиолов, перемешивают раствор в течение 10-30 с, подают потенциал электролиза +0,05 В в течение 60 с на серебряный электрод.

Изобретение относится к аналитической химии и касается способа определения молочной кислоты на платиновом электроде. Сущность способа заключается в том, что определяют молочную кислоту на платиновом электроде в фоновом электролите - боратный буфер (рН 9.18), при потенциале предельного тока восстановления Е=-0,7 В с помощью хлоридсеребряного электрода сравнения.

Изобретение относится к аналитической химии. Способ заключается в том, что в течение 150 с проводят электрохимическое концентрирование глицирризиновой кислоты на поверхности ртутно-пленочного электрода при потенциале электролиза (-1,8) В на фоне 0,01 М калия хлорида с последующей регистрацией вольтамперных кривых при линейной скорости развертки потенциала 50 В/с, а концентрацию глицирризиновой кислоты определяют по высоте пика в диапазоне потенциалов (-0,2) до (-0,3) В относительно хлорид-серебряного электрода.

Изобретение относится к аналитической химии и может быть использовано для анализа пищевых продуктов, кормов и кормовых добавок, сельскохозяйственной продукции растительного происхождения, а также в медицине.

Изобретение относится к области медицины и представляет собой вольтамперометрический способ определения содержания общего холестерина в биологических объектах, включающий подготовку индикаторного электрода и вольтамперометрическое определение содержания холестерина, отличающийся тем, что проводят анодную вольтамперометрию на индикаторном углеродсодержащем электроде, предварительно модифицированном 2,6-диацетил-N-2,4,6,8-тетраазабицикло[3.3.0]октан-3,7-дион-дифосфоновой кислотой, в диапазоне потенциалов от +0.32 В до +1.52 В относительно насыщенных хлорид-серебряных вспомогательного электрода и электрода сравнения при ступенчатой форме развертки потенциала со скоростью 0.05 В/с. Осуществление изобретения обеспечивает упрощение подготовки рабочего электрода и возможность получения сигнала непосредственно от холестерина. 1 пр., 1 табл., 2 ил.
Изобретение относится к электроаналитической химии, направлено на определение анилина - одного из приоритетных токсичных загрязнителей, и может быть использовано для анализа питьевой, поверхностной воды и других водных объектов. Способ вольтамперометрического определения анилина в воде и водных объектах с помощью трехэлектродной системы включает предварительную модифицирующую электрохимическую обработку стеклоуглеродного индикаторного электрода системы, электрохимическое осаждение анилина на модифицированную поверхность индикаторного электрода из анализируемой воды, последующее электроокисление анилина при изменении потенциала индикаторного электрода, регистрацию на вольтамперной кривой аналитического сигнала, идентификацию пика анилина на вольтамперной кривой и определение концентрации анилина по величине пика анилина. Предварительную модифицирующую электрохимическую обработку индикаторного электрода проводят в водном растворе 0,1 М сульфата натрия с добавлением бутанола в соотношении объемных частей 19:1 соответственно. Изобретение обеспечивает экспрессный способ, позволяющий определять анилин в воде и водных объектах на уровне и ниже ПДК с возможностью регистрации и однозначного измерения аналитического сигнала анилина.

Изобретение относится к способам автоматического измерения скорости коррозии металлических и иных электропроводящих материалов электрохимическим методом. Способ определения скорости коррозии металлических материалов, помещенных в электролит, содержит стадии автоматического определения зависимости тока коррозии от потенциала электрода, и автоматической линейной аппроксимации полученной зависимости Тафеля в логарифмических координатах при наличии экспериментальных погрешностей, при этом участки для линейной аппроксимации выбирают с помощью варьирования длины и положения отрезков на экспериментальных зависимостях тока от напряжения до достижения максимального произведения достоверностей аппроксимации анодного и катодного участков прямыми при условии, что точка пересечения этих прямых по потенциалу отклоняется не более чем на заданную экспериментатором величину от потенциала минимума тока на вольтамперной кривой. Технический результат - автоматизация процесса определения фарадеевского тока как тока коррозии. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области аналитической химии. Способ определения йодид-ионов катодной вольтамперометрией проводят на серебряном электроде в фоновом растворе 0,1 М ацетата натрия, выдерживая потенциал электролиза в диапазоне потенциалов (-0,15±0,05) В при скорости развертки 20 мВ/с - 50 мВ/с от 1 мин до 3 мин. Иодид-ион восстанавливается на поверхности электрода в виде малорастворимого соединения с серебром. Аналитический сигнал регистрируют и оценивают методом добавок. Cпособ согласно изобретению позволяет снизить нижнюю границу определяемых содержаний и использовать экологически чистый серебряный электрод. 4 ил., 1 табл.
Наверх