Способ разработки аквальной залежи газогидратов

Изобретение относится к получению газа, метана и его гомологов из приповерхностных скоплений твердых газовых гидратов донных отложений. В процессе разработки аквальной залежи газогидратов, газ аккумулируется и проходит первичную обработку на платформе (или на судне), снабженной насосно-компрессорной трубой, трубопроводом со специальными баками для распределения и подачи воды, узлом подготовки вод, измерительными приборами для контроля за подачей воды и разрушающими залежь частицами, сборным колоколом, трубопроводом для отбора образующейся газовой смеси, приборами для контроля системы откачки образующегося продукта (газовой смеси), далее транспортируется в береговой накопитель метана. В качестве рабочего инструмента, разрушающего газогидраты, используются сферические наночастицы. Технический результат заключается в повышении эффективности добычи аквальных газовых гидратов. 1 ил.

 

Изобретение относится к получению газа, метана и его гомологов из приповерхностных скоплений твердых газовых гидратов донных отложений.

Известен способ добычи газов (метана, его гомологов и др.) из твердых газогидратов в донных отложениях морей, океанов, при котором в пробуренную до его подошвы скважину выявленного пласта газогидратов погружают две колонны труб - закачивающую и откачивающую [Заявка 2005139956, РФ, МПК Е21В 43/28]. Согласно способу природную воду с естественной температурой или подогретую подают по закачивающей трубе и разлагают газогидраты на систему «газ - вода», аккумулирующуюся в образующейся в подошве пласта газогидратов сферической ловушке. По другой колонне труб осуществляют откачку из этой ловушки выделяющихся газов (в том числе горючих газов - метана и др.).

Недостатком данного способа являются значительные затраты и угроза нарушений в сложившейся подводной среде акваторий.

Наиболее близким по существенным признакам и технической сущности к предлагаемому изобретению является способ добычи газа из газовых гидратов донных отложений (патент РФ №2412337, дата публикации: 20 февраля, 2011), характеризующийся тем, что проводят постепенное растворение верхнего слоя скоплений газовых гидратов водой, имеющей естественную температуру водоема и не являющейся насыщенным раствором газа, с подачей ее в колокол, спущенный на дно, с образованием в нем водно-газовой смеси с метаном и его гомологами, откачивают смесь метана и его гомологов на поверхность вначале принудительно, затем за счет эффекта газлифта, подаваемую в колокол воду распределяют по внутренней поверхности его стенки при помощи тонких труб, снабженных на конце в нижней части колокола гидрантами-форсунками для силовой подачи воды в разных направлениях для размыва донных отложений газовых гидратов.

Недостатком данного способа является его низкая эффективность, обусловленная нерегулируемой проработкой аквальной залежи газогидратов.

Техническим результатом предлагаемого изобретения является увеличение эффективности способа за счет более последовательной и контролируемой разработки пласта аквальных газогидратов.

Технический результат достигается тем, что производят постепенное растворение верхнего слоя скоплений газовых гидратов водой водоема, насыщенной сферическими наночастицами. При перемещении сферической частицы вдоль поверхности кристаллической ячейки (клатрата) газогидратов происходит ее разрушение и высвобождение молекулы метана, таким образом, образуется раствор метана и его гомологов, подачу которого на поверхность осуществляют вначале принудительно, затем за счет эффекта газлифта.

Способ осуществляют с использованием устройства с системами подготовки, подачи воды и подъема образующейся водно-газовой смеси на поверхность водоема.

Вышеуказанное устройство выполнено в виде колокола, к закрытому торцу которого подведены трубы для подачи природной воды и для откачки образующейся водно-газовой смеси. Подаваемую воду распределяют по поверхности залежи аквальных газогидратов при помощи тонких труб, снабженных на конце в нижней части специальными гидрантами-форсунками для подачи воды в разных направлениях (не обозначены).

Подготовку воды осуществляют при помощи специального узла подготовки вод насыщением сферическими наночастицами, установленного на плавучей платформе или судне.

Подачу воды в трубы осуществляют при помощи оборудования, снабженного измерительными приборами, установленного на плавучей платформе или судне.

Подачу воды в трубы осуществляют также при помощи погружного оборудования.

Сбор образующейся водно-газовой смеси осуществляют посредством колокола.

Откачку образующейся водно-газовой смеси газовых гидратов осуществляют через систему труб, соединенных с баком-хранилищем, установленным на береговой поверхности (плавучей платформе или судне).

Растворение верхнего слоя скоплений газовых гидратов проводят под действием наночастиц. Для чего подают воду, насыщенную сферическими наночастицами, равномерно по поверхности залежи газогидратов, через гидранты-форсунки. В результате во внутреннем пространстве колокола образуются осколки газовых гидратов, газ и раствор метана в воде.

Через систему труб для откачки образующаяся водно-газовая смесь поступает вверх самостоятельно (эффект эрлифта) и направляется в специальный бак-хранилище, откуда по трубопроводу поступает к месту назначения.

Сущность предлагаемого способа поясняется чертежом, на котором показана общая схема разработки аквальной газогидратной залежи.

Способ разработки аквальной залежи газогидратов, включающий платформу или судно, где аккумулируется и проходит первичную обработку извлекаемый из залежи газ, насосно-компрессорную трубу, трубопровод со специальными баками для распределения и подачи воды, узел подготовки вод, измерительные приборы для контроля за подачей воды и разрушающих залежь частиц, сборный колокол, трубопровод для отбора образующейся газовой смеси, приборы для контроля за системой откачки образующегося продукта - газовой смеси, береговой накопитель метана, отличающийся тем, что в качестве рабочего инструмента, разрушающего газогидраты, используются сферические наночастицы.



 

Похожие патенты:

Изобретение относится к горной промышленности и может быть применено для загрузки и подъема полезных ископаемых со дна акватории с наименьшим расходом энергии. Автономное устройство для подъема полезных ископаемых со дна акватории включает грейферный ковш, выполненный из эластичного материала, гибкие звенья, взаимосвязанные с ковшом, механизм закрытия ковша, датчик запуска гибкой полости, расположенной в подъемной секции.

Изобретение относится к разработке месторождений углеводородов и может быть применено для добычи природного газа в открытом море. Способ включает тепловое воздействие на газогидратную залежь с последующим сбором газа куполообразным сборником и передачей его в аккумулирующие емкости.

Изобретение относится к морской добыче полезных ископаемых и позволяет разрабатывать россыпные месторождения со дна континентального шельфа в условиях отрицательных температур.

Изобретение относится к горному делу, в частности к устройствам для подводной добычи твердых полезных ископаемых. Устройство может быть использовано также для геологоразведочных изысканий, прокладки газо- и нефтепроводов, освоения торфяных месторождений.

Группа изобретений относится к горному делу и может быть применена для шельфового бурения. Установка для шельфового бурения содержит платформу, такую как судно, понтон, самоподъемная буровая установка, и бурильную колонну, соединенную с указанной платформой с возможностью передачи приводного усилия и дополнительно снабженную компенсатором вертикальной качки.

Изобретение относится к горной промышленности и может быть использовано при разработке прочных высокоглинистых песков россыпных месторождений благородных металлов в подводных забоях.

Группа изобретений относится к области подъема твердого материала со дна глубоководного бассейна, такого как море, озеро или река, выше поверхности воды. В пузырьковой газлифтной системе (10) у верхнего концевого участка подъемного трубопровода (11) размещена находящаяся под давлением камера (21).

Группа изобретений относится к способу и устройству для подводной добычи железомарганцевых конкреций из илистых донных отложений. Технический результат заключается в повышении эффективности использования трала за счет уменьшения количества холостых ходов, повышении полноты выемки полезного компонента и снижении зависимости времени проведения работ от погодных условий.

Изобретение относится к получению приповерхностных скоплений твердых газовых гидратов донных отложений. Технический результат - снижение материальных и эксплуатационных затрат, а также снижение экологической нагрузки на территорию добычи газовых гидратов.

Группа изобретений относится к подводной добыче газовых гидратов и их доставке потребителю. Технический результат - повышение эффективности добычи и транспортировки газовых гидратов за счет снижения энергетических, капитальных и текущих затрат.

Изобретение относится к способу получения нанокапсул циклофосфана-ЛЭНС. Указанный способ характеризуется тем, что 0,5 г циклофосфана-ЛЭНС медленно добавляют в суспензию 0,1 г альгината натрия в бутаноле в присутствии 50 мг препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают 5 мл серного эфира, выпавший осадок отфильтровывают и сушат при комнатной температуре.

Изобретение относится к способу получения нанокапсул веро-ифосфамида в альгинате натрия. Указанный способ характеризуется тем, что веро-ифосфамид медленно добавляют в суспензию альгината натрия в петролейном эфире в присутствии препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают метиленхлорид, выпавший осадок отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка в нанокапсулах составляет 5:1 или 1:1.

Изобретение относится к способу получения нанокапсул хлоральгидрата в каппа-каррагинане. Указанный способ характеризуется тем, что в суспензию каппа-каррагинана в бутаноле и 0,01 г препарата Е472с, используемого в качестве поверхностно-активного вещества, добавляют порошок хлоральгидрата, затем добавляют 10 мл метиленхлорида, полученную суспензию нанокапсул отфильтровывают и сушат, при этом массовое соотношение ядро:оболочка в нанокапсулах составляет 1:1 или 1:3.

Изобретение относится к способу синтеза керамического материала на основе корунда, модифицированного углеродом. Материал может быть использован для изготовления пластин для бронежилетов, а также различных компонент изделий, требующих повышенной твердости.

Изобретение может быть использовано при изготовлении осветительных устройств. Сначала смешивают люминесцентные наночастицы, наружная поверхность которых покрыта двумя типами защитных молекул, с предшественником твердого полимера.

Изобретение относится к оптико-механической и электронной промышленности, а точнее к технологии получения композиционных материалов, содержащих полупроводниковые частицы, для оптических и электронных приборов и комплексов.

Изобретение относится к области молочной промышленности и нанотехнологии. В процессе заквашивания в получаемый продукт вводят наноструктурированную добавку, включающую сульфат железа в каррагинане или в конжаковой камеди.

Изобретение относится к получению порошка карбида титана. Металлический титан помещают в печь, разогревают печь до 700÷850°C и подают на поверхность металлического титана углеводородный компонент в газообразном виде совместно с аргоном в течение 90÷180 минут.

Изобретение относится к области металлургии и может быть использовано для получения модифицированной лигатуры неодим-железо для постоянных магнитов неодим-железо-бор.

Изобретение относится в области нанотехнологии, медицины и ветеринарии. Предложен способ получения нанокапсул смеси биопага-Д с бриллиантовой зеленью.

Использование: для создания массива упорядоченных ферромагнитных нанопроволок на ступенчатой поверхности Cu2Si с буферным слоем меди. Сущность изобретения заключается в том, что в условиях сверхвысокого вакуума на предварительно сформированной ступенчатой поверхности силицида меди формируют ровные монокристаллические нанопроволоки заданной ширины осаждением металла под малыми углами наклона в интервале 10°÷30° к плоскости подложки при толщине покрытия металла, равной 20 нм. Технический результат: обеспечение возможности создания массива упорядоченных металлических нанопроволок с заданной геометрией и блочной монокристаллической структурой. 4 з.п. ф-лы, 3 ил.
Наверх