Способ и система рентгеновского сканирования



Способ и система рентгеновского сканирования
Способ и система рентгеновского сканирования
Способ и система рентгеновского сканирования
Способ и система рентгеновского сканирования
Способ и система рентгеновского сканирования
A61B6/00 - Приборы для радиодиагностики, например комбинированные с оборудованием для радиотерапии (рентгеноконтрастные препараты A61K 49/04; препараты, содержащие радиоактивные вещества A61K 51/00; радиотерапия как таковая A61N 5/00; приборы для измерения интенсивности излучения, применяемые в ядерной медицине, например измерение радиоактивности живого организма G01T 1/161; аппараты для получения рентгеновских снимков G03B 42/02; способы фотографирования в рентгеновских лучах G03C 5/16; облучающие приборы G21K; рентгеновские приборы и их схемы H05G 1/00)

Владельцы патента RU 2629059:

НАКТЕХ КОМПАНИ ЛИМИТЕД (CN)

Группа изобретений относится к медицинской технике, а именно к средствам рентгеновского сканирования. Способ, включающий сбор данных фона без испускания рентгеновских лучей, сбор данных воздушной среды при испускании рентгеновских лучей и без сканируемого объекта в исследуемом канале, сканирование объекта для сбора исходных данных сканирования, и предварительную обработку исходных данных сканирования на основании данных фона и данных воздушной среды с тем, чтобы получить данные сканированного изображения, где стадия предварительной обработки исходных данных сканирования на основании данных фона и данных воздушной среды с тем, чтобы получить данные сканированного изображения, дополнительно включает сегментирование области сканирования на занимаемую объектом область, внутри которой находится объект, и занимаемую воздушной средой область без объекта на основании исходных данных сканирования, и поиск данных воздушной среды для конкретных данных воздушной среды, ближайших к значению исходных данных сканирования для занимаемой воздушной средой области, и осуществление коррекции усиления для исходных данных сканирования на основании данных фона и ближайших данных воздушной среды с тем, чтобы получить данные сканированного изображения. Система содержит генератор рентгеновского излучения, адаптированный для испускания рентгеновских лучей, детектор, который остается неподвижным относительно генератора рентгеновского излучения и адаптирован для сбора детекторных сигналов рентгеновских лучей, и процессор, связанный с детектором и адаптированный для обработки детекторных сигналов рентгеновских лучей, собранных детектором, при этом указанная обработка включает применение детекторных сигналов, собранных детектором, когда генератор рентгеновского излучения не испускает рентгеновских лучей, в качестве данных фона, применение детекторных сигналов, когда генератор рентгеновского излучения испускает рентгеновские лучи и сканируемый объект отсутствует в исследуемом канале, в качестве данных воздушной среды, применение детекторных сигналов, собранных детектором, когда генератор рентгеновского излучения испускает рентгеновские лучи для сканирования объекта, в качестве исходных данных сканирования, и предварительную обработку исходных данных сканирования на основании данных фона и данных воздушной среды с тем, чтобы получить данные сканированного изображения. Использование изобретений позволяет снизить влияние шума, вызванного механической вибрацией на получение изображения. 2 н. и 10 з.п. ф-лы, 8 ил.

 

Область техники

Настоящее изобретение относится к области обнаружения излучения и, более конкретно, к способу и системе рентгеновского сканирования.

Уровень техники

Технология рентгеновского сканирования и отображения широко используется в различных отраслях, таких как осуществляемый службой безопасности контроль, техническая рентгенография, медицинское обследование и т.п. В частности, применяемое службой безопасности оборудование рентгеновского контроля широко используется в различных местах, таких как автостанции, порты, аэропорты, конференц-центры и т.п. В большинстве систем рентгеновского сканирования процесс сканирования осуществляют таким образом, что плоскость испускаемых пучков рентгеновских лучей остается неподвижной, и система доставки перемещает проверяемый объект через плоскость испускаемых пучков рентгеновских лучей. Однако в некоторых случаях перемещение проверяемого объекта может быть невозможно. Например, проверяемый объект может представлять собой неподвижно установленное промышленное устройство; или, когда осуществляют проверку человеческого тела, подвергаемый проверке человек может столкнуться с трудностями сохранения равновесия во время перемещения. В этом случае для осуществления процесса сканирования система сканирования должна осуществить перемещение плоскости испускаемых пучков рентгеновских лучей. Таким образом, существует потребность в создании системы отображения, в которой при неподвижном проверяемом объекте устройство рентгеновского сканирования может перемещать плоскость испускаемых пучков рентгеновских лучей таким образом, чтобы мог быть осуществлен процесс сканирования.

Когда проверяемый объект остается неподвижным, и происходит перемещение плоскости испускаемых пучков рентгеновских лучей, из-за неизбежной вибрации, возникающей при движении некоторых компонентов, генератор рентгеновского излучения не может оставаться неподвижным относительно детектора во время процесса сканирования. Это может привести к нестабильной интенсивности рентгеновских лучей, принимаемых детектором. В этом случае, если для обработки полученного изображения применяют традиционные способы коррекции (такие как, например, простая передача данных, а также анализ и обработку для снижения шумов), на изображении будут неизбежно возникать полосовые шумы, как показано на фиг. 1.

Сущность изобретения

Настоящее изобретение предоставляет способ и систему рентгеновского сканирования для решения известной из уровня техники проблемы шума, который вызван механической вибрацией, возникающей в ходе существующего процесса рентгеновского сканирования статического объекта.

Для решения указанных выше проблем настоящее изобретение предоставляет способ рентгеновского сканирования, включающий:

сбор данных фона без испускания рентгеновских лучей;

сбор данных воздушной среды при испускании рентгеновских лучей и без сканируемого объекта в исследуемом канале;

сканирование объекта для сбора исходных данных сканирования; и

предварительную обработку исходных данных сканирования на основании данных фона и данных воздушной среды с тем, чтобы получить данные сканированного изображения.

Предпочтительно, стадия сбора данных фона может дополнительно включать:

усреднение данных фона для получения усредненных данных фона.

Предпочтительно, стадия сбора данных воздушной среды может дополнительно включать:

усреднение данных воздушной среды для получения усредненных данных воздушной среды.

Предпочтительно, стадия предварительной обработки исходных данных сканирования на основании данных фона и данных воздушной среды с тем, чтобы получить данные сканированного изображения, может дополнительно включать:

сегментирование области сканирования на занимаемую объектом область, внутри которой находится объект, и занимаемую воздушной средой область без объекта на основании исходных данных сканирования; и

поиск данных воздушной среды для конкретных данных воздушной среды, ближайших к значению исходных данных сканирования для занимаемой воздушной средой области, и осуществление коррекции усиления для исходных данных сканирования на основании данных фона и ближайших данных воздушной среды с тем, чтобы получить данные сканированного изображения.

Предпочтительно, стадия сегментирования области сканирования на занимаемую объектом область, внутри которой находится объект, и занимаемую воздушной средой область без объекта на основании исходных данных сканирования может включать: сегментирование области сканирования на занимаемую объектом область, внутри которой находится объект, и занимаемую воздушной средой область без объекта посредством использования заранее заданного порога.

Предпочтительно, стадия сегментирования области сканирования на занимаемую объектом область, внутри которой находится объект, и занимаемую воздушной средой область без объекта на основании исходных данных сканирования может также включать: сегментирование области сканирования на занимаемую объектом область, внутри которой находится объект, и занимаемую воздушной средой область без объекта посредством использования способа разделения по порогу, способа обнаружения краев или способа наращивания областей.

Предпочтительно, стадия предварительной обработки исходных данных сканирования на основании данных фона и данных воздушной среды с тем, чтобы получить данные сканированного изображения, может дополнительно включать:

определение некоторой подобласти из области сканирования, в которой не включается наличие объекта, в качестве занимаемой воздушной средой области, и определение остальной части области сканирования в качестве занимаемой объектом области; и

поиск данных воздушной среды для конкретных данных воздушной среды, ближайших к значению исходных данных сканирования для занимаемой воздушной средой области, и осуществление коррекции усиления для исходных данных сканирования на основании данных фона и ближайших данных воздушной среды с тем, чтобы получить данные сканированного изображения.

Согласно другому аспекту настоящее изобретение также предоставляет систему рентгеновского сканирования, содержащую:

генератор рентгеновского излучения, адаптированный для испускания рентгеновских лучей;

детектор, который остается неподвижным относительно генератора рентгеновского излучения и адаптирован для сбора детекторных сигналов рентгеновских лучей; и

процессор, связанный с детектором и адаптированный для обработки детекторных сигналов рентгеновских лучей, собранных детектором, при этом указанная обработка включает:

применение детекторных сигналов, собранных детектором, когда генератор рентгеновского излучения не испускает рентгеновских лучей, в качестве данных фона;

применение детекторных сигналов, собранных детектором, когда генератор рентгеновского излучения испускает рентгеновские лучи и сканируемый объект отсутствует в исследуемом канале, в качестве данных воздушной среды;

применение детекторных сигналов, собранных детектором, когда генератор рентгеновского излучения испускает рентгеновские лучи для сканирования объекта, в качестве исходных данных сканирования; и

предварительную обработку исходных данных сканирования на основании данных фона и данных воздушной среды с тем, чтобы получить данные сканированного изображения.

Предпочтительно, процессор дополнительно адаптирован для следующего:

усреднение данных фона для получения усредненных данных фона; и/или

усреднение данных воздушной среды для получения усредненных данных воздушной среды.

Предпочтительно, система может также содержать:

коллиматор, который закреплен на оптическом пути между генератором рентгеновского излучения и детектором, при этом коллиматор остается неподвижным относительно генератора рентгеновского излучения и детектора и адаптирован для придания параллельности рентгеновским лучам, испускаемым генератором рентгеновского излучения.

Предпочтительно, процессор дополнительно адаптирован для следующего:

сегментирование области сканирования на занимаемую объектом область, внутри которой находится объект, и занимаемую воздушной средой область без объекта на основании исходных данных сканирования; и

поиск данных воздушной среды для конкретных данных воздушной среды, ближайших к значению исходных данных сканирования для занимаемой воздушной средой области, и осуществление коррекции усиления для исходных данных сканирования на основании данных фона и ближайших данных воздушной среды с тем, чтобы получить данные сканированного изображения.

Предпочтительно, процессор дополнительно адаптирован для следующего:

сегментирование области сканирования на занимаемую объектом область, внутри которой находится объект, и занимаемую воздушной средой область без объекта при помощи заранее заданного порога.

Предпочтительно, процессор дополнительно адаптирован для следующего: сегментирование области сканирования на занимаемую объектом область, внутри которой находится объект, и занимаемую воздушной средой область без объекта при помощи способа разделения по порогу, способа обнаружения краев или способа наращивания областей.

Предпочтительно, процессор дополнительно адаптирован для следующего:

определение некоторой подобласти из области сканирования, в которой не включается наличие объекта, в качестве занимаемой воздушной средой, области, и определение остальной части области сканирования в качестве занимаемой объектом области; и

поиск данных воздушной среды для конкретных данных воздушной среды, ближайших к значению исходных данных сканирования для занимаемой воздушной средой области, и осуществление коррекции усиления для исходных данных сканирования на основании данных фона и ближайших данных воздушной среды с тем, чтобы получить данные сканированного изображения.

Таким образом, при осуществлении рентгеновского сканирования неподвижного объекта, способ рентгеновского сканирования и система сканирования в соответствии с вариантами осуществления настоящего изобретения осуществляют измерение данных фона и данных воздушной среды и обработку данных сканирования, решая проблему шума, вызванного механической вибрацией, и улучшая точность измерения.

Краткое описание чертежей

С целью более ясной иллюстрации технических решений, раскрытых в вариантах осуществления настоящего изобретения или уровне техники, ниже приведено краткое описание прилагаемых фигур, необходимых для описания вариантов осуществления настоящего изобретения или уровня техники. Очевидно, что описанные ниже прилагаемые фигуры иллюстрируют лишь некоторые варианты осуществления настоящего изобретения, и специалисты в данной области техники могут легко получить другие фигуры после ознакомления с этими фигурами.

На фиг. 1 изображено иллюстративное графическое представление полосового шума, генерируемого в известных системах;

На фиг. 2 изображена структурная схема, иллюстрирующая охранную систему контроля человеческого тела;

На фиг. 3 изображена основная схема последовательности операций, иллюстрирующая способ рентгеновского сканирования в соответствии с вариантами осуществления настоящего изобретения;

На фиг. 4 изображена схема последовательности операций, иллюстрирующая способ рентгеновского сканирования человеческого тела в соответствии с примером 1 настоящего изобретения;

На фиг. 5 изображено графическое представление, иллюстрирующее сегментирование занимаемой объектом области и занимаемой воздушной средой области в соответствии с примером 1 настоящего изобретения;

На фиг. 6 изображено графическое представление, иллюстрирующее способ ограничения области сканирования в соответствии с примером 1 настоящего изобретения;

На фиг. 7 изображена структурная схема системы рентгеновского сканирования в соответствии с примером 2 настоящего изобретения; и

на фиг. 8 изображено иллюстративное графическое представление сканированного изображения в соответствии с вариантами осуществления настоящего изобретения.

Подробное описание изобретения

Для того чтобы сделать объекты, технические решения и преимущества вариантов осуществления настоящего изобретения более очевидными, технические решения вариантов осуществления настоящего изобретения будут описаны ясно и максимально доступно со ссылками на фигуры, связанные с вариантами осуществления настоящего изобретения. Очевидно, что описанные варианты осуществления являются лишь частью, но не всеми вариантами осуществления настоящего изобретения. Исходя из описанных в настоящем документе вариантов осуществления, специалисты в данной области техники, не осуществляя изобретательской деятельности, могут получить другие варианты осуществления, которые будут находиться в пределах объема настоящего изобретения.

На фиг. 2 изображена охранная система контроля человеческого тела, в которой предусмотрена возможность перемещения плоскости испускаемых пучков рентгеновских лучей, при этом проверяемый объект остается неподвижным. Указанная система содержит: основание 1, стойку 2, установленную на основании 1, поверхность 3 для установки коллиматора, зубчатый ремень 4, зубчатые шкивы 5, подшипниковый узел 6, цельное плечо 7, гайку 25, ползун 26, направляющую штангу 27, электродвигатель 28, устройство 29 для регулировки коллиматора и устройство 150 сканирования и отображения, которое выполнено с возможностью перемещения и присоединено к стойке 2. Охранная система контроля человеческого тела может содержать приводное устройство 100 для перемещения устройства 150 сканирования и отображения вдоль заданного направления (такого как вертикальное направление, как изображено на фиг. 2) таким образом, чтобы осуществлять процесс сканирования. На фиг. 2 источник рентгеновского излучения, коллиматор и детектор устройства 150 сканирования и отображения неподвижно соединены друг с другом при помощи цельного плеча 7 с образованием цельной конструкции.

Рассмотрим фиг. 3, на которой представлен способ рентгеновского сканирования в соответствии с вариантами осуществления настоящего изобретения, который включает следующие стадии:

стадия 301: сбор данных фона без испускания рентгеновских лучей;

стадия 302: сбор данных воздушной среды при испускании рентгеновских лучей и без сканируемого объекта в исследуемом канале;

стадия 303: сканирование объекта для сбора исходных данных сканирования; и

стадия 304: предварительная обработка исходных данных сканирования на основании данных фона и данных воздушной среды с тем, чтобы получить данные сканированного изображения.

Кроме того, на стадии сбора данных воздушной среды, когда осуществляют испускание рентгеновских лучей и сканируемый объект отсутствует в исследуемом канале, генератор рентгеновского излучения, детектор и плоскость пучка рентгеновских лучей, испускаемых из генератора рентгеновского излучения, перемещают во время процесса сканирования.

Для того чтобы получить более точные измерения, собранные данные фона и/или данные воздушной среды могут быть усреднены. Предпочтительно, способ может включать: усреднение данных фона для получения усредненных данных фона или усреднение данных воздушной среды для получения усредненных данных воздушной среды.

Предпочтительно, стадия предварительной обработки исходных данных сканирования на основании данных фона и данных воздушной среды с тем, чтобы получить данные сканированного изображения, может дополнительно включать:

сегментирование области сканирования на занимаемую объектом область, внутри которой находится объект, и занимаемую воздушной средой область без объекта на основании исходных данных сканирования; и

поиск данных воздушной среды для конкретных данных воздушной среды, ближайших к значению исходных данных сканирования для занимаемой воздушной средой области, и осуществление коррекции усиления для исходных данных сканирования на основании данных фона и ближайших данных воздушной среды с тем, чтобы получить данные сканированного изображения.

Предпочтительно, стадия сегментирования области сканирования на занимаемую объектом область, внутри которой находится объект, и занимаемую воздушной средой область без объекта на основании исходных данных сканирования может включать: сегментирование области сканирования на занимаемую объектом область, внутри которой находится объект, и занимаемую воздушной средой область без объекта посредством использования заранее заданного порога.

Предпочтительно, стадия сегментирования области сканирования на занимаемую объектом область, внутри которой находится объект, и занимаемую воздушной средой область без объекта на основании исходных данных сканирования может также включать: сегментирование области сканирования на занимаемую объектом область, внутри которой находится объект, и занимаемую воздушной средой область без объекта посредством использования способа разделения по порогу, способа обнаружения краев или способа наращивания областей.

Кроме того, способ разделения по порогу может быть использован для проведения различия между порогами уровней серого цели (т.е. занимаемой объектом области) и фона (т.е. занимаемой воздушной средой области). Если изображение содержит только цель и фон, то способ может выбрать единый порог, что также известно в качестве сегментирования на основе единого порога. Сегментирование при помощи заранее заданного порога является одним из видов сегментирования на основе единого порога. Способ обнаружения краев является наиболее популярным способом обнаружения нарушения непрерывности уровня серого. Этот способ основан на исходных данных сканирования и использует производную первого порядка и/или производную второго порядка для обнаружения нарушения непрерывности уровня серого на изображении, в результате чего могут быть сегментированы занимаемая объектом область и занимаемая воздушной средой область изображения. Основной принцип способа наращивания областей заключается в сборе пикселей с подобными свойствами для формирования некоторой области. Указанный способ начинают с выбора исходной точки (т.е. исходного пикселя), после чего осуществляют объединение подобных пикселей вокруг исходного пикселя с образованием области, содержащей исходный пиксель. В результате этого могут быть получены занимаемая объектом область и занимаемая воздушной средой область исходных данных сканирования.

Предпочтительно, стадия предварительной обработки исходных данных сканирования на основании данных фона и данных воздушной среды с тем, чтобы получить данные сканированного изображения, может дополнительно включать:

определение некоторой подобласти из области сканирования, в которой не включается наличие объекта, в качестве занимаемой воздушной средой области, и определение остальной части области сканирования в качестве занимаемой объектом области; и

поиск данных воздушной среды для конкретных данных воздушной среды, ближайших к значению исходных данных сканирования для занимаемой воздушной средой области, и осуществление коррекции усиления для исходных данных сканирования на основании данных фона и ближайших данных воздушной среды с тем, чтобы получить данные сканированного изображения.

Пример 1

В примере 1 настоящего изобретения представлен способ рентгеновского сканирования, который адаптирован для осуществления сканирования человеческого тела. Если плоскость испускаемых пучков рентгеновских лучей является фиксированной, а проверяемый человек проходит через плоскость испускаемых пучков рентгеновских лучей, стоя на транспортерной ленте, движения тела будут отрицательно влиять на результат проверки, так как человеку нелегко сохранять равновесие при перемещении. Следовательно, в процессе сканирования согласно примеру 1 проверяемый человек стоит в заданном фиксированном положении, и процесс сканирования осуществляют посредством перемещения генератора рентгеновского излучения и детектора (при этом их относительное положение зафиксировано) в вертикальном направлении относительно плоскости испускания пучков рентгеновских лучей. Во время этого процесса сканирования единственное требование к проверяемому человеку заключается в том, чтобы он стоял неподвижно.

Рассмотрим, в частности, фиг. 4, для того чтобы осуществить коррекцию полосового шума (который обусловлен механической вибрацией, возникающей во время процесса сканирования) на изображениях, способ сканирования согласно примеру 1 настоящего изобретения может включать наличие следующих стадий:

Стадия 401: сбор данных фона без испускания рентгеновских лучей, и усреднение данных фона.

На этой стадии данные фона собирают без испускания рентгеновских лучей. Поскольку во время сбора данных фона испускание рентгеновских лучей будет отсутствовать, отсутствует проблема, заключающаяся в том, что полученные детектором рентгеновские лучи имеют нестабильную интенсивность из-за механической вибрации, возникающей во время процесса сканирования.

Сбор данных фона может происходить в течение некоторого периода времени, и затем осуществляют их усреднение. Усредненные данные фона обозначают через Z(j), где j=1, …, n и j представляет собой порядковый номер канала детектора.

Стадия 402: сбор данных воздушной среды при испускании рентгеновских лучей и без сканируемого объекта в исследуемом канале, и усреднение данных воздушной среды.

На этой стадии данные воздушной среды собирают при испускании рентгеновских лучей и без сканируемого объекта в исследуемом канале. Данные воздушной среды, полученные путем сканирования, будут использованы при коррекции усиления для детектора. Поскольку во время процесса сканирования возникает механическая вибрация, данные воздушной среды будут иметь большие отклонения. Во время этого сбора генератор рентгеновского излучения и детектор перемещают в вертикальном направлении относительно плоскости испускаемых пучков рентгеновских лучей для осуществления сканирования без объекта, т.е. без объекта в канале сканирования. Вследствие этого будет получен набор данных воздушной среды F(i, j), где i=1, …, m, и j=1, …, n. Кроме того, «i» представляет собой порядковый номер периода дискретизации, при этом имеется т рядов данных, полученных во время процесса сканирования; и «j» представляет собой порядковый номер канала детектора, при этом всего имеется n каналов детектора. Более того, m и n могут также представлять собой соответственно высоту и ширину сканированного изображения.

После этого полученные данные воздушной среды F(i, j) могут быть усреднены по всем рядам, в результате чего получают усредненные данные воздушной среды .

Стадия 403: сканирование человеческого тела для сбора исходных данных сканирования.

На этой стадии исходные данные сканирования собирают посредством перемещения генератора рентгеновского излучения и детектора с тем, чтобы осуществить нормальное сканирование человеческого тела, которое остается неподвижным. Исходные данные, полученные во время процесса сканирования человеческого тела, обозначают через R(i, j), где i=1, …, m, и j=1, …, n.

Стадия 404: предварительная обработка исходных данных сканирования на основании данных фона и данных воздушной среды с тем, чтобы получить данные сканированного изображения.

Коррекция с учетом фона и коррекция усиления (т.е. предварительная обработка данных) будут осуществлены над полученными исходными данными сканирования на основании усредненных данных фона и усредненных данных воздушной среды. Предварительно обработанное изображение обозначают через N(i, j). Расчет N(i, j) будет подробно пояснен ниже.

Вначале исходные данные сканирования предварительно обрабатывают на основании усредненных данных фона и усредненных данных воздушной среды. В частности, для каждого периода дискретизации i, T(i, j) будет рассчитано в соответствии со следующим уравнением:

;

где GMAX является максимальным уровнем серого, который может быть представлен на сканированном изображении, a и b представляют собой конфигурируемые константы, которые зависят от фактических случаев сканирования. Фактически, это является стандартным способом предварительной обработки исходных данных, при этом на получаемом сканированном изображении T(i, j) могут явно просматриваться поперечные полосы.

На основании T(i, j) для исходных данных сканирования, полученных в каждый период дискретизации, полученное сканированное изображение может быть сегментировано на занимаемую объектом область, в которой находится человеческое тело, и занимаемую воздушной средой область без человеческого тела (см. фиг. 5).

Во время сегментирования на области может быть использован заранее заданный порог t. В частности, области, которым присуще значение более t, относят к занимаемой воздушной средой области, а области, которым присуще значение менее t, относят к занимаемой объектом области. Альтернативно, могут быть использованы любые другие способы сегментирования изображения, такие как способ разделения по порогу, способ обнаружения краев, способ наращивания областей и т.п. Для каждого ряда i набор координат столбцов соответствующей занимаемой воздушной средой области может быть обозначен через Ai. То есть, во время сканирования i-го ряда исходных данных сканирования, в этих столбцах в наборе Ai не будет объекта, поглощающего рентгеновские лучи. Таким образом, соответствующие данные сканирования для этих столбцов должны рассматриваться в качестве данных воздушной среды, полученных в результате сканирования воздушной среды. Для этих столбцов в наборе Ai ряд ki, который является ближайшим к значению исходных данных сканирования, отыскивают из данных воздушной среды F(i, j):

.

В случае набора Ai столбцов данных воздушной среды, значение i-го ряда исходных данных сканирования является ближайшим к значению ki-го ряда данных воздушной среды. Согласно настоящим вариантам осуществления расстояние между векторами измеряют с использованием евклидового расстояния. Альтернативно, в зависимости от конкретных ситуаций, расстояние между векторами может быть измерено другими способами, такими как расстояние городских кварталов, расстояние Чебышева и т.п. Здесь можно допустить, что, несмотря на механическую вибрацию и колебания данных, состояние всей системы при сканировании i-го ряда исходных данных сканирования является наиболее близким к состоянию при сканировании ki-го ряда данных воздушной среды. Таким образом, ki-го ряд данных воздушной среды может быть использован при коррекции i-го ряда исходных данных сканирования следующим образом:

.

Описанный выше способ коррекции является более приемлемым, чем способ коррекции с использованием усредненных данных воздушной среды F(j), и способен удалить полосовые шумы, возникающие в результате применения последнего.

Следует отметить, что размер набора Ai является фактором, который влияет на эффект коррекции. Для того чтобы убедиться в том, что Ai содержит достаточное количество столбцов, ширина обнаруживаемого диапазона детектора может быть надлежащим образом увеличена или область сканирования может быть задана для обеспечения достаточного размера занимаемой воздушной средой области. Например, определенные области могут быть помечены либо на одной из сторон, либо на обеих сторонах туннелей сканирования. Эти области также находятся в пределах сканируемого и отображаемого объема, при этом в этих областях не предполагается наличие сканируемого объекта или других объектов (как показано на фиг. 6). Таким образом, сегментирование изображения может быть опущено, и часть изображения, соответствующая этим областям, в которых не включается наличие объекта, может непосредственно рассматриваться в качестве занимаемой воздушной средой области.

Пример 2

Рассмотрим фиг. 7, на которой изображен пример 2 настоящего изобретения, представляющий систему рентгеновского сканирования, которая содержит:

генератор 71 рентгеновского излучения, адаптированный для испускания рентгеновских лучей;

детектор 72, который остается неподвижным относительно генератора рентгеновского излучения и адаптирован для сбора детекторных сигналов рентгеновских лучей; и

процессор 73, связанный с детектором 72 и адаптированный для обработки детекторных сигналов рентгеновских лучей, собранных детектором 72, при этом указанная обработка включает:

применение детекторных сигналов, собранных детектором, когда генератор рентгеновского излучения не испускает рентгеновских лучей, в качестве данных фона;

применение детекторных сигналов, собранных детектором, когда генератор рентгеновского излучения испускает рентгеновские лучи и сканируемый объект отсутствует в исследуемом канале, в качестве данных воздушной среды;

применение детекторных сигналов, собранных детектором, когда генератор рентгеновского излучения испускает рентгеновские лучи для сканирования объекта, в качестве исходных данных сканирования; и

предварительную обработку исходных данных сканирования на основании данных фона и данных воздушной среды с тем, чтобы получить данные сканированного изображения.

Кроме того, для того чтобы отсканировать проверяемый объект, остающийся относительно стационарным, как генератор 71 рентгеновского излучения, так и детектор 72 могут быть установлены на фиксированной опоре 74 и перемещены при помощи приводного устройства. Следовательно, в процессе сканирования генератор 71 рентгеновского излучения и детектор 72 могут быть перемещены вдоль вертикального направления относительно плоскости испускаемых пучков, при этом генератор 71 рентгеновского излучения остается неподвижным относительно детектора 72.

Предпочтительно, процессор 73 дополнительно адаптирован для следующего:

усреднение данных фона для получения усредненных данных фона; и/или

усреднение данных воздушной среды для получения усредненных данных воздушной среды.

Предпочтительно, указанная система может также содержать коллиматор 75, который закреплен на оптическом пути между генератором 71 рентгеновского излучения и детектором 72, при этом коллиматор 75 остается неподвижным относительно генератора 71 рентгеновского излучения и детектора 72 и адаптирован для придания параллельности рентгеновским лучам, испускаемым генератором 71 рентгеновского излучения.

Предпочтительно, процессор 73 дополнительно адаптирован для следующего:

сегментирование области сканирования на занимаемую объектом область, внутри которой находится объект, и занимаемую воздушной средой область без объекта на основании исходных данных сканирования; и

поиск данных воздушной среды для конкретных данных воздушной среды, ближайших к значению исходных данных сканирования для занимаемой воздушной средой области, и осуществление коррекции усиления для исходных данных сканирования на основании данных фона и ближайших данных воздушной среды с тем, чтобы получить данные сканированного изображения.

Предпочтительно, процессор 73 дополнительно адаптирован для следующего:

сегментирование области сканирования на занимаемую объектом область, внутри которой находится объект, и занимаемую воздушной средой область без объекта при помощи заранее заданного порога.

Предпочтительно, процессор 73 дополнительно адаптирован для следующего: сегментирование области сканирования на занимаемую объектом область, внутри которой находится объект, и занимаемую воздушной средой область без объекта при помощи способа разделения по порогу, способа обнаружения краев или способа наращивания областей.

Предпочтительно, процессор 73 дополнительно адаптирован для следующего: определение некоторой подобласти из области сканирования, в которой не включается наличие объекта, в качестве занимаемой воздушной средой области, и определение остальной части области сканирования в качестве занимаемой объектом области; и

поиск данных воздушной среды для конкретных данных воздушной среды, ближайших к значению исходных данных сканирования для занимаемой воздушной средой области, и осуществление коррекции усиления для исходных данных сканирования на основании данных фона и ближайших данных воздушной среды с тем, чтобы получить данные сканированного изображения.

На фиг. 8 изображено сканированное изображения, полученное после рентгеновского сканирования и обработки данных для статического объекта с использованием способа рентгеновского сканирования и системы сканирования в соответствии с вариантами осуществления настоящего изобретения. При сравнении изображений, представленных на фиг. 8 и фиг. 1, очевидно, что полосовой шум, появляющийся в пустой области с левой стороны, а также в занимаемой сканированным объектом области с правой стороны изображения на фиг. 1, был эффективно ослаблен и устранен из изображения на фиг. 8.

Таким образом, при осуществлении рентгеновского сканирования неподвижного объекта, способ рентгеновского сканирования и система сканирования в соответствии с вариантами осуществления настоящего изобретения осуществляют измерение данных фона и данных воздушной среды, а также обработку данных сканирования, решая проблему шума, вызванного механической вибрацией, и улучшая точность измерения.

Следует отметить, что приведенные выше варианты осуществления представлены исключительно для иллюстрации технических решений согласно настоящему изобретению, и они не предназначены для ограничения объема настоящего изобретения. Специалисту в данной области техники будет понятно, что, хотя настоящее изобретение было подробно описано со ссылками на приведенные выше варианты осуществления, модификации технических решений, описанных в приведенных выше вариантах осуществления, или эквивалентные изменения некоторых технических признаков в указанных решениях могут быть выполнены без отступления от сути и объема технических решений согласно настоящему изобретению.

1. Способ рентгеновского сканирования, включающий:

сбор данных фона без испускания рентгеновских лучей;

сбор данных воздушной среды при испускании рентгеновских лучей и без сканируемого объекта в исследуемом канале;

сканирование объекта для сбора исходных данных сканирования; и

предварительную обработку исходных данных сканирования на основании данных фона и данных воздушной среды с тем, чтобы получить данные сканированного изображения, где

стадия предварительной обработки исходных данных сканирования на основании данных фона и данных воздушной среды с тем, чтобы получить данные сканированного изображения, дополнительно включает:

сегментирование области сканирования на занимаемую объектом область, внутри которой находится объект, и занимаемую воздушной средой область без объекта на основании исходных данных сканирования; и

поиск данных воздушной среды для конкретных данных воздушной среды, ближайших к значению исходных данных сканирования для занимаемой воздушной средой области, и осуществление коррекции усиления для исходных данных сканирования на основании данных фона и ближайших данных воздушной среды с тем, чтобы получить данные сканированного изображения.

2. Способ рентгеновского сканирования по п. 1, где стадия сбора данных фона дополнительно включает:

усреднение данных фона для получения усредненных данных фона.

3. Способ рентгеновского сканирования по п. 1, где стадия сбора данных воздушной среды дополнительно включает:

усреднение данных воздушной среды для получения усредненных данных воздушной среды.

4. Способ рентгеновского сканирования по п. 1, где стадия сегментирования области сканирования на занимаемую объектом область, внутри которой находится объект, и занимаемую воздушной средой область без объекта на основании исходных данных сканирования включает:

сегментирование области сканирования на занимаемую объектом область, внутри которой находится объект, и занимаемую воздушной средой область без объекта посредством использования заранее заданного порога.

5. Способ рентгеновского сканирования по п. 1, где стадия сегментирования области сканирования на занимаемую объектом область, внутри которой находится объект, и занимаемую воздушной средой область без объекта на основании исходных данных сканирования включает:

сегментирование области сканирования на занимаемую объектом область, внутри которой находится объект, и занимаемую воздушной средой область без объекта посредством использования способа разделения по порогу, способа обнаружения краев или способа наращивания областей.

6. Способ рентгеновского сканирования по любому из пп. 1-3, где стадия предварительной обработки исходных данных сканирования на основании данных фона и данных воздушной среды с тем, чтобы получить данные сканированного изображения, дополнительно включает:

определение подобласти из области сканирования, в которой не допускается размещение объекта, в качестве занимаемой воздушной средой области, и определение остальной части области сканирования в качестве занимаемой объектом области; и

поиск данных воздушной среды для конкретных данных воздушной среды, ближайших к значению исходных данных сканирования для занимаемой воздушной средой области, и осуществление коррекции усиления для исходных данных сканирования на основании данных фона и ближайших данных воздушной среды с тем, чтобы получить данные сканированного изображения.

7. Система рентгеновского сканирования, содержащая:

генератор рентгеновского излучения, адаптированный для испускания рентгеновских лучей;

детектор, который остается неподвижным относительно генератора рентгеновского излучения и адаптирован для сбора детекторных сигналов рентгеновских лучей; и

процессор, связанный с детектором и адаптированный для обработки детекторных сигналов рентгеновских лучей, собранных детектором, при этом указанная обработка включает:

применение детекторных сигналов, собранных детектором, когда генератор рентгеновского излучения не испускает рентгеновских лучей, в качестве данных фона;

применение детекторных сигналов, собранных детектором, когда генератор рентгеновского излучения испускает рентгеновские лучи и сканируемый объект отсутствует в исследуемом канале, в качестве данных воздушной среды;

применение детекторных сигналов, собранных детектором, когда генератор рентгеновского излучения испускает рентгеновские лучи для сканирования объекта, в качестве исходных данных сканирования; и

предварительную обработку исходных данных сканирования на основании данных фона и данных воздушной среды с тем, чтобы получить данные сканированного изображения, где

процессор дополнительно адаптирован для следующего:

сегментирование области сканирования на занимаемую объектом область, внутри которой находится объект, и занимаемую воздушной средой область без объекта на основании исходных данных сканирования; и

поиск данных воздушной среды для конкретных данных воздушной среды, ближайших к значению исходных данных сканирования для занимаемой воздушной средой области, и осуществление коррекции усиления для исходных данных сканирования на основании данных фона и ближайших данных воздушной среды с тем, чтобы получить данные сканированного изображения.

8. Система рентгеновского сканирования по п. 7, где процессор дополнительно адаптирован для следующего:

усреднение данных фона для получения усредненных данных фона; и/или

усреднение данных воздушной среды для получения усредненных данных воздушной среды.

9. Система рентгеновского сканирования по п. 7, дополнительно содержащая:

коллиматор, который закреплен на оптическом пути между генератором рентгеновского излучения и детектором, при этом коллиматор остается неподвижным относительно генератора рентгеновского излучения и детектора и адаптирован для придания параллельности рентгеновским лучам, испускаемым генератором рентгеновского излучения.

10. Система рентгеновского сканирования по п. 7, где процессор дополнительно адаптирован для следующего:

сегментирование области сканирования на занимаемую объектом область, внутри которой находится объект, и занимаемую воздушной средой область без объекта при помощи заранее заданного порога.

11. Система рентгеновского сканирования по п. 7, где процессор дополнительно адаптирован для следующего:

сегментирование области сканирования на занимаемую объектом область, внутри которой находится объект, и занимаемую воздушной средой область без объекта при помощи способа разделения по порогу, способа обнаружения краев или способа наращивания областей.

12. Система рентгеновского сканирования по любому из пп. 7-9, где процессор дополнительно адаптирован для следующего:

определение подобласти из области сканирования, в которой не допускается размещение объекта, в качестве занимаемой воздушной средой области, и определение остальной части области сканирования в качестве занимаемой объектом области; и

поиск данных воздушной среды для конкретных данных воздушной среды, ближайших к значению исходных данных сканирования для занимаемой воздушной средой области, и осуществление коррекции усиления для исходных данных сканирования на основании данных фона и ближайших данных воздушной среды с тем, чтобы получить данные сканированного изображения.



 

Похожие патенты:

Изобретение относится к области техники досмотра на основе рентгеновского излучения. Система досмотра выполнена с возможностью установки на транспортном средстве и содержит складываемое плечевое крепление на транспортном средстве, источник рентгеновского излучения, выполненный с возможностью обеспечения регулируемой дозы излучения, приемник, расположенный на складываемом плечевом креплении и выполненный с возможностью приема информации о рентгеновском излучении, проходящем через инспектируемое транспортное средство, блок управления, выполненный с возможностью управления источником рентгеновского излучения для облучения разных участков инспектируемого транспортного средства разными дозами; датчик, выполненный с возможностью восприятия того, приближается или нет транспортное средство к нему, и направления сигнала на устанавливаемую на транспортном средстве систему быстрого досмотра для приведения ее в состояние готовности к досмотру.

Использование: для проверки транспортного средства. Сущность изобретения заключается в том, что осуществляют следующие этапы: получение уникального идентификационного номера проверяемого транспортного средства; осуществление рентгеновского сканирования проверяемого транспортного средства, чтобы получить рентгеновское изображение проверяемого транспортного средства; извлечение по меньшей мере одного архивного проверенного изображения, относящегося к уникальному идентификационному номеру, из архивной базы данных проверок; определение на основании одного алгоритма выбора шаблонного изображения, выбранного из множественных алгоритмов выбора шаблонного изображения, одного из упомянутого по меньшей мере одного архивного проверенного изображения в качестве шаблонного изображения; определение области различий между рентгеновским изображением и шаблонным изображением и представление области различий пользователю.

Использование: для определения плотности горных пород. Сущность изобретения заключается в том, что устройство определения плотности горных пород, пересекаемых буровой скважиной, содержит корпус прибора, в котором установлены блок привода и электроники и шарнирно связанный с ним зондовый детекторный блок с размещенными в нем источником и детекторами гамма-излучений, отклоняющий рычаг, предназначенный для прижима зондового детекторного блока к стенке скважины, отклоняющий рычаг установлен с возможностью вращения на оси, закрепленной на корпусе прибора, а прибор дополнительно содержит силовую пружину и тросик, который служит для сжатия силовой пружины, один конец которой жестко закреплен на корпусе зондового детекторного блока, а второй конец связан с коротким плечом отклоняющего рычага, при этом между длинным плечом отклоняющего рычага и корпусом зондового детекторного блока установлена упорная планка, жестко связанная с корпусом прибора.

Группа изобретений относится к нефтяной промышленности и может быть применена для доставки скважинных приборов. Способ доставки скважинных приборов к забоям бурящихся скважин сложного профиля и проведения геофизических исследований характеризуется тем, что каротажные приборы подсоединяют к приборному мосту, в верхнюю часть которого ввинчивают нижнюю трубу бурильной колонны и, посредством их наращивания, приборы опускают на заданную глубину.

Изобретение относится к способу детектирования ядерного вещества посредством нейтронного исследования. Способ детектирования ядерного вещества в объекте, исследуемом посредством нейтронного исследования при помощи трубки связанных частиц, содержит этапы детектирования импульсов совпадения при помощи пикселей-детекторов по меньшей мере одной пиксельной детекторной матрицы, при этом этап детектирования приводит к возникновению события, которое отражает деление, происходящее в ядерном веществе, при этом способ содержит выявление соседних пикселей среди пикселей, обнаруживших импульсы совпадения, перегруппировку соседних пикселей на группы соседних пикселей, подсчет пикселей и/или групп соседних пикселей, обнаруживших импульсы совпадения, и подтверждение наступления события, как только подсчитаны по меньшей мере три соседних пикселя и/или группы пикселей.

Изобретение относится к области определения состава скрытых опасных веществ, в том числе находящихся под водой. Устройство для обнаружения скрытых опасных веществ под водой содержит досмотровый модуль, в котором размещены источник меченых монохроматических нейтронов и сопутствующих им монохроматических α-частиц, детектор α-частиц, заключенные в вакуумную камеру, детектор γ-излучения и регистрирующую электронику, при этом устройство выполнено в виде автономного модуля с нулевой плавучестью, с возможностью его перемещения оператором; содержит снабженный дугообразной ручкой торпедообразный блок, выполняющий функции герметичного контейнера для подводных работ, в котором размещены источник меченых монохроматических нейтронов, расположенный таким образом, что ось центрального меченого пучка нейтронов совпадает с продольной осью торпедообразного блока, источник питания, регистрирующая электроника; к торпедообразному блоку в передней его части прикреплены два γ-детектора, расположенные симметрично относительно центральной оси меченого пучка нейтронов и на расстоянии от корпуса торпедообразного блока, достаточном для обеспечения защиты слоем воды сцинтилляционных кристаллов γ-детекторов от прямого потока нейтронов, испущенных нейтронным генератором в телесный угол 4π; монитор интерфейса оператора и пульт управления расположены снаружи торпедообразного блока, как правило, на самой ручке; на торпедообразном блоке снаружи установлена световая индикация наличия-отсутствия нейтронного излучения, генерируемого нейтронным генератором.

Использование: для рентгеновского контроля багажа. Сущность изобретения заключается в том, что выполняют укладку багажного места в транспортировочный лоток, имеющий средство маркировки, прочно связанное с лотком и имеющее запоминающее устройство, в котором с возможностью считывания записан специфический для лотка и уникальный в мировом масштабе идентификационный код, получают и оценивают рентгеновский снимок багажного места на месте первичного контроля, определяют идентификационный код транспортировочного лотка, автоматически соотносят рентгеновский снимок с транспортировочным лотком, перемещают транспортировочный лоток к месту дополнительного контроля, определяют идентификационный код транспортировочного лотка, отображают соотнесенный с транспортировочным лотком рентгеновский снимок на месте дополнительного контроля.

Использование: для обнаружения опасных скрытых веществ. Сущность изобретения заключается в том, что контейнер досмотрового модуля выполнен герметичным, снабжен устройством нагрева внутреннего объема, при этом канал передачи данных между досмотровым модулем и модулем управления обнаружителем опасных веществ выполнен беспроводным, модуль досмотра снабжен аккумулятором для питания нейтронного генератора, альфа и гамма-детекторов, регистрирующей электроники с использованием соответствующих блоков преобразования напряжения, регистрирующая электроника в корпусе досмотрового модуля снабжена защитой от прямого потока монохроматических нейтронов, испускаемых нейтронным генератором; досмотровый модуль снабжен световым индикатором, включенное состояние которого свидетельствует о наличии нейтронного излучения, создаваемого нейтронным генератором.

Использование: для каротажа скважин гамма и нейтронным излучением. Сущность изобретения заключается в том, что при формировании излучения источник заряженных частиц - ускоритель - располагают вне скважины, излучатель располагают в скважине и пучок подводят к излучателю по трубе, выведенной из скважины и подсоединенной к ускорителю.

Использование: для обнаружения наличия в грузе подозрительных предметов. Сущность изобретения заключается в том, что груз (2) просвечивают по меньшей мере первым рентгеновским излучением с первым спектром и определяют класс атомного номера, к которому принадлежат материалы, входящие в состав груза, просвечиваемого рентгеновским излучением, путем дифференцирования по высокой энергии.

Изобретение относится к датчикам для измерения тока электронного пучка и может найти применение в исследовательских и промышленных установках. Позиционно-чувствительный датчик для измерения амплитудно-временных параметров и профиля плотности тока импульсного электронного пучка содержит нижнюю коллекторную пластину, трансформаторы тока, надетые на стержневые тоководы, нижние концы которых соединены с нижней коллекторной пластиной, верхнюю коллекторную пластину с отверстиями, соосными с верхними концами тоководов, расположенными компланарно верхней коллекторной пластине, при этом в качестве преобразователей измеряемого тока в напряжение используются миниатюрные трансформаторы тока, изолированные от силовой (первичной) электрической цепи и подключенные к регистрирующей аппаратуре по симметричной схеме.

Изобретение относится к области ядерной физики и может быть использовано в ускорительной технике для измерения распределения ионизирующих частиц в поперечном сечении импульсных пучков.

Изобретение относится к способам определения «жесткости геомагнитного обрезания» (ЖГО) - одного из геофизических параметров, который используется для мониторинга радиационной обстановки и распространения коротких радиоволн в магнитосфере и ионосфере высоких авроральных широт после мощных солнечных вспышек в период повышенного аномального поглощения радиоволн в полярных районах (в период так называемого «Поглощения типа Полярной Шапки» - ППШ).

Использование: для позитронно-эмиссионной томографии (ПЭТ). Сущность изобретения заключается в том, что устройство ПЭТ включает в себя детекторную матрицу, включающую в себя отдельные детекторы, которые принимают события излучения из области визуализации.

Изобретение относится к формированию спектральных изображений. Сущность изобретения заключается в том, что система формирования изображений содержит источник излучения, который испускает излучение, которое проходит область обследования и часть субъекта в ней; детекторную матрицу, которая обнаруживает излучение, которое проходит через область обследования и часть субъекта в ней, и генерирует сигнал, указывающий на это; дающее рекомендации по параметрам объемного сканирования устройство, которое рекомендует, по меньшей мере, одно значение параметра спектрального сканирования для объемного сканирования части субъекта на основе спектрального разложения первой и второй 2D проекций, полученных с помощью источника излучения и детекторной матрицы, причем первая и вторая 2D проекции имеют разные спектральные характеристики; и консоль, которая использует рекомендованное, по меньшей мере, одно значение параметра спектрального сканирования для выполнения объемного сканирования части субъекта.

Изобретение относится к области регистрации излучения. Способ детектирования излучения содержит этапы, на которых регистрируют событие; генерируют инициирующий сигнал, ассоциированный с регистрацией события; генерируют первую метку (TS1) времени для инициирующего сигнала с использованием первого аналого-цифрового преобразователя времени (TDC); генерируют вторую метку (TS2) времени для инициирующего сигнала с использованием второго TDC, имеющего фиксированное смещение по времени относительно первого TDC; и связывают метку времени с событием на основе первой метки времени, второй метки времени и сравнения разницы по времени между второй меткой времени и первой меткой времени и фиксированного смещения по времени.

Изобретение относится к системам позитронной эмиссионной томографии (PET), в частности с использованием калибровки сканера PET. При калибровке сканера позитронной эмиссионной томографии (PET) радиоактивный калибровочный фантом сканируют в течение периода нескольких времен полураспада, чтобы получить множество кадров данных сканирования.

Изобретение относится к позитронной эмиссионной томографии (PET) и, в частности, к обнаружению совпадающих событий в процессе времяпролетной (TOF) PET. Сущность изобретения заключается в том, что детектор первого сигнала генерирует первый выходной сигнал, если сигнал фотоприемника удовлетворяет первому критерию сигнала; причем критерий первого сигнала распознает сигнал фотоприемника как показывающий первоначальные во времени сцинтилляционные фотоны, генерируемые сцинтиллятором в ответ на полученные фотоны излучения; детектор второго сигнала генерирует второй выходной сигнал, если сигнал фотоприемника альтернативно удовлетворяет критерию второго сигнала, причем критерий второго сигнала распознает сигнал фотоприемника как показывающий последующие во времени сцинтилляционные фотоны, генерируемые сцинтиллятором в ответ на полученные фотоны излучения; и детектор сигнала излучения оценивает первый и второй выходные сигналы для определения того, получен ли второй выходной сигнал в пределах временного окна приема, причем полученный первый выходной сигнал определяет начальную точку временного окна приема, и если второй выходной сигнал получен в пределах временного окна приема, детектор сигнала излучения распознает сигналы фотоприемника, показывающие излучение, полученное сцинтиллятором; и если второй выходной сигнал не получен в пределах временного окна приема, детектор сигнала излучения не распознает сигналы фотоприемника, показывающие излучение, полученное сцинтилятором.

Использование: для патрульной инспекции и локализации радиоактивного вещества. Сущность изобретения заключается в том, что способ патрульной инспекции и локализации радиоактивного вещества содержит этапы: обеспечение значения фоновой радиоактивной интенсивности среды; сбор значений радиоактивной интенсивности с инспектируемой области посредством детектора во множестве точек пробоотбора на маршруте патрульной инспекции; вычисление распределения радиоактивной интенсивности в инспектируемой области на основе собранных значений радиоактивной интенсивности и значения фоновой радиоактивной интенсивности; и определение позиции радиоактивного вещества на основе распределения радиоактивной интенсивности; разделение инспектируемой области на множество подобластей.

Изобретение относится к средствам поиска и обнаружения источников гамма-излучения и предназначается для оснащения беспилотных летательных аппаратов. Блок детектирования гамма-излучения в составе двух счетчиков сцинтилляционных, контроллера с установленным модулем GPS, аккумуляторной батареи, при этом для связи между блоком детектирования и пультом дистанционного управления используется GSM-канал, образованный размещенным в блоке детектирования модулем GSM и установленным в пульте управления GSM-модемом, а сцинтилляторы выполнены в виде круглых прямых цилиндров с высотой больше диаметра основания, причем сцинтилляторы ориентированы основанием перпендикулярно направлению полета беспилотного летательного аппарата.

Изобретение относится к медицине, а именно к ортопедии и травматологии, и может быть использовано для ранней диагностики асептического некроза головки бедра при транзиторном синовите тазобедренного сустава у детей.
Наверх