Способ сухой электронно-лучевой литографии

Использование: для формирования резистных масок. Сущность изобретения заключается в том, что наносят слой резиста, в качестве которого выбирают низкомолекулярный полистирол, на подложку методом термического вакуумного напыления, при этом температура подложки во время напыления не более 30°C; формируют на подложке скрытое изображение путем локального экспонирования высокоэнергетичным пучком электронов с дозой засветки 2000-20000 мкКл/см2; проявляют резист при подогреве подложки в вакууме до температуры 600-800 К и при давлении не более 10-1 мбар и плазменное травление для переноса рисунка резистной маски в подложку для формирования микро- и наноструктуры на подложке. Технический результат: обеспечение возможности повышения разрешающей способности готовой структуры формирования наноструктур на поверхностях неровной сложной формы, таких как микроэлектромеханические системы, оптоволокно, кантилеверы и пр.; и создания очень тонких пленок резиста (в некоторых определенных случаях менее 20 нм). 7 з.п. ф-лы, 6 ил.

 

Область техники

Изобретение относится к области микро- и нанолитографии, в частности к способу сухой электронно-лучевой литографии, и предназначено для формирования резистных масок.

Уровень техники

Известен способ литографии, включающий нанесение на подложку, например с помощью центрифуги, слоя растворенного в жидкости электронного резиста, в частности РММА, локальное экспонирование резиста пучком электронов, жидкостное проявление маски путем селективного растворения экспонированных и неэкспонированных областей резиста в жидком проявителе (Electron beam lithography: resolution limits and applications. Applied Surface Science Volume 164, Issues 1-4, 1 September 2000, Pages 111-117 [1]). Достоинствами этого способа являются высокая производительность на стадии экспонирования, хорошая разрешающая способность (20 нм) и достаточная плазмостойкость резиста, а его недостатком - использование жидкостей на стадиях нанесения и проявления резиста, т.к. при последующей сушке пленки резиста в ней образуются проколы, и, кроме того, оседание микрочастиц-пылинок на влажную поверхность резиста также приводит к возникновению дефектов в изготавливаемой структуре. Также влияние краевых эффектов вблизи края подложки сказывается на неравномерности толщины наносимой пленки. Для устранения этих нежелательных последствий приходится проводить такие литографические процессы в технологических помещениях особо высокой чистоты, что требует значительных капитальных и эксплуатационных затрат. Также существенным недостатком является возможность проведения данного метода только на плоских подложках вдали от их краев в силу краевых эффектов, связанных с использованием способа нанесения растворенного резиста методом центрифугирования.

Наиболее близким аналогом заявляемого метода нанесения резиста является способ литографии, включающий нанесение негативного резиста (Vinyl Т8) на подложку методом вакуумного термического напыления, экспонирование резиста с помощью электронного луча, проявление резистной пленки методом нагрева в вакууме и удаление экспонированного резиста методом ионного травления (All-dry vacuum submicron lithography. V.P. Korchkov, T.N. Martynova, V.S. Danilovich. Thin Solid Films. Volume 101, Issue 4, 25 March 1983, Pages 369-372 [2]). Данный способ имеет схожие признаки с описанным выше решением на этапе экспонирования резистной пленки, однако метод нанесения и удаления резиста существенно отличается тем, что протекает в вакууме без использования жидкости. Так же, как и способ литографии, описанный выше, данный метод был продемонстрирован только для подложек плоской формы.

Также недостатками данного способа являются относительно низкая разрешающая способность используемого резиста Vinyl Т8 около 200 нм; невозможность формирования наноструктур на поверхностях неровной/сложной формы; низкая разрешающая способность готовой структуры, большая получаемая толщина резистной пленки (более 150 нм).

Раскрытие изобретения

Задачей изобретения является усовершенствование способа сухой электронно-лучевой литографии с использованием негативного резиста.

Техническим результатом заявляемого изобретения является повышение разрешающей способности готовой структуры (в некоторых определенных случаях до 10 нм); возможность формирования наноструктур на поверхностях неровной сложной формы, таких как микроэлектромеханические системы, оптоволокно, кантилеверы и пр., и создание очень тонких пленок резиста (в некоторых определенных случаях менее 20 нм).

Технический результат достигается за счет способа создания микро- и наноструктур на подложке, включающего: нанесение слоя резиста, в качестве которого выбирают низкомолекулярный полистирол, на подложку методом термического вакуумного напыления, при этом температура подложки во время напыления не более 30°C; формирование на подложке скрытого изображения путем локального экспонирования высокоэнергетичным пучком электронов с дозой засветки 2000-20000 мкКл/см2; проявление резиста при подогреве подложки в вакууме до температуры 600-800 К и при давлении не более 10-1 мбар и последующее плазменное травление для переноса рисунка резистной маски в подложку для формирования микро- и наноструктуры на подложке.

Предпочтительно молекулярная масса полистирола составляет не более 2 кг/моль.

Экспонирование высокоэнергетичным пучком электронов производят с дозой засветки предпочтительно 8000 мкКл/см2.

Перед нанесением слоя низкомолекулярного полистирола на подложку возможно провести предварительную чистку подложки в плазме кислорода или аргона.

Температура подложки во время напыления составляет предпочтительно 15°C.

После плазменного травления при переносе рисунка резистной маски в подложку возможно осуществить травление в плазме кислорода для удаления экспонированного полистирола.

Термическое вакуумное напыление проводят предпочтительно при температуре около 600 К.

Термическое вакуумное напыление проводят со скоростью напыления не более 5 А/с, предпочтительно 1 А/с.

Краткое описание чертежей

На фиг. 1 представлена схема создания микро- и наноструктур на подложке.

На фиг. 2А-2D схематично изображены различные этапы способа создания микро- и наноструктур на подложке.

На фиг. 3 изображена готовая микро- и наноструктура на подложке в результате последовательно осуществленных этапов из фиг. 2А-2D.

Осуществление изобретения

Способ создания микро- и наноструктур на подложке осуществляют следующим образом.

Сначала, как показано на фиг. 2А, на подложку 1 наносят слой 2 негативного резиста - низкомолекулярного полистирола. В данной заявке под подложкой понимается совокупность слоев из одного и более материалов, в которой будут сформированы микро- и наноструктуры (на всех фигурах изображена подложка 1 с верхним слоем подложки 1', однако подложка 1 может быть и без такого слоя). Предпочтительно молекулярная масса полистирола составляет не более 2 кг/моль. При молекулярной массе полистирола более 2 кг/моль процесс напыления становится нестабильным, и резистная пленка получается недостаточно однородной. Нанесение чувствительного слоя 2 резиста осуществляют без жидкости. Данный метод предполагает нанесение резиста методом термического вакуумного напыления, не требующего жидкого раствора полимера. Термическое вакуумное напыление проводят при диапазоне температур 575-700 К, предпочтительно при температуре около 600 К, и со скоростью напыления не более 5 А/с, предпочтительно 1 А/с. При более высокой скорости (более 5 А/с) пленка получается неоднородной по толщине. Высокое значение скорости соответствует перегреву полистирола, который становится не применим для дальнейшего экспонирования.

При этом температура подложки 1 во время напыления составляет не более 30°C. Выбор данной температуры обусловлен тем, что при температурах выше 30°C ухудшается адгезия полистирола, и резистная пленка получается неоднородной.

Также перед нанесением слоя резиста возможно осуществить предварительную чистку подложки 1 в плазме кислорода или аргона. Предварительная чистка подложки 1 в плазменном разряде улучшает адгезию и качество пленки.

Далее, как показано на фиг. 2В, формируют на подложке 1 скрытое изображение путем локального экспонирования высокоэнергетичным пучком электронов с дозой засветки 2000-20000 мкКл/см2, предпочтительно 8000 мкКл/см2. В результате происходит химическое соединение молекул чувствительного слоя и образуется засвеченная структура 23 на подложке 1.

Проявление засвеченной структуры 23 осуществляется без использования жидкого проявителя, как схематично показано на фиг. 2С. А именно проявление происходит путем подогрева подложки 1 с засвеченной структурой 23 в вакууме до температуры 600-800 К и более, и при давлении не более 10-1 мбар. При других параметрах температуры и давления становится невозможно проявить засвеченную структуру.

Таким образом, резист проявляют, формируя на подложке 1 резистную маску.

Далее, как показано на фиг. 2D, производят плазменное травление для переноса рисунка резистной маски в подложку 1. Травление осуществляется в плазме аргона, фторсодержащей плазме и т.п., внутри вакуумной камеры. После вышеуказанного травления возможно произвести травление в плазме кислорода для удаления остатков резистной маски.

В результате осуществления вышеуказанного способа происходит повышение разрешающей способности готовой структуры - фиг. 3 (до менее чем 10 нм); имеется возможность формирования наноструктур на поверхностях неровной сложной формы, таких как микроэлектромеханические системы, оптоволокно, кантилеверы и пр.; и возможность создания очень тонких пленок резиста (менее 20 нм).

В общем виде этапы заявляемого способа: метод термического вакуумного напыления, формирование на подложке скрытого изображения, проявление засвеченной структуры и плазменное травление широко известны из уровня техники и реализованы, например, в источнике [2].

Примеры

Пример 1. Создание золотых структур на игле кантилевера. В качестве напыляемого резиста использовался полистирол с молекулярной массой 1.2 кг/моль. В качестве подложки использовался кантилевер атомно-силового микроскопа с 20 нм слоем золота. Затем на золотую поверхность подложки методом термического вакуумного напыления наносилось 30 нм полистирола. Температура подложки во время напыления была 15°C. После этого осуществлялось экспонирование напыленной резистной пленки электронным пучком с дозой засветки 6000 мкКл/см2, электронами с энергией - 5 кэВ. Затем образец нагревался в вакууме при давлении 10-4 мбар до температуры 700 К. Нагрев осуществлялся в течение 5 минут. Таким образом, происходило формирование резистной маски для травления золота. Травление осуществлялось в плазме аргона при давлении 5⋅10-3 мбар в течение 60 с. Затем в течение 30 с осуществлялось травление в плазме кислорода при давлении 5⋅10-3 мбар для удаления экспонированного резиста. Конечным результатом являлись золотые наноструктуры, как на кантилевере, так и на его игле, с разрешающей способностью готовой структуры 10 нм.

Пример 2. Формирование кремниевых наноструктур вблизи края подложки. На подложку из монокристаллического кремния наносился полистирол толщиной 70 нм описанным в примере 1 способом. Далее осуществлялось экспонирование резиста электронным пучком с дозой засветки 6000 мкКл/см2 и электронами с энергией - 5 кэВ. Затем образец нагревался до температуры 700 К и при давлении 10-4 мбар, нагрев осуществлялся в течение 10 мин. В результате формировалась резистная маска для травления во фторсодержащей плазме с формированием кремниевых монокристаллических наноструктур вблизи края подложки, имеющей разрешающую способность до 30 нм.

Пример 3 (наилучший вариант осуществления изобретения). На пластину из монокристаллического кремния наносилось 20 нм золота для формирования верхнего слоя подложки. Затем на золотую поверхность подложки методом термического вакуумного напыления наносилось 20 нм полистирола. Температура подложки во время напыления была 15°C. После этого осуществлялось экспонирование напыленной резистной пленки электронным пучком с дозой засветки 8000 мкКл/см2, электронами с энергией - 10 кэВ. Затем образец нагревался в вакууме при давлении 10-4 мбар до температуры 700 К. Нагрев осуществлялся в течение 5 минут. После формирования резистной маски осуществлялось травление в плазме аргона при давлении 5⋅10-3 мбар в течение 60 с. Затем в течение 30 с осуществлялось травление в плазме кислорода при давлении 5⋅10-3 мбар для удаления экспонированного резиста. Конечным результатом являлись золотые наноструктуры на плоской подложке шириной менее 20 нм, с разрешением менее 10 нм.

1. Способ создания микро- и наноструктур на подложке, включающий

- нанесение слоя резиста, в качестве которого выбирают низкомолекулярный полистирол, на подложку методом термического вакуумного напыления, при этом температура подложки во время напыления не более 30°С;

- формирование на подложке скрытого изображения путем локального экспонирования высокоэнергетичным пучком электронов с дозой засветки 2000-20000 мкКл/см2;

- проявление резиста при подогреве подложки в вакууме до температуры 600-800 К и при давлении не более 10-1 мбар;

- последующее плазменное травление для переноса рисунка резистной маски в подложку для формирования микро- и наноструктуры на подложке.

2. Способ по п. 1, отличающийся тем, что молекулярная масса полистирола составляет предпочтительно не более 2 кг/моль.

3. Способ по п. 1, отличающийся тем, что экспонирование высокоэнергетичным пучком электронов производят с дозой засветки предпочтительно 8000 мкКл/см2.

4. Способ по п. 1, отличающийся тем, что перед нанесением слоя низкомолекулярного полистирола на подложку осуществляют предварительную чистку подложки в плазме кислорода или аргона.

5. Способ по п. 1, отличающийся тем, что температура подложки во время напыления предпочтительно 15°С.

6. Способ по п. 1, отличающийся тем, что после плазменного травления при переносе рисунка резистной маски в подложку производят травление в плазме кислорода для удаления экспонированного полистирола.

7. Способ по п. 1, отличающийся тем, что термическое вакуумное напыление проводят предпочтительно при температуре около 600 К.

8. Способ по п. 1, отличающийся тем, что термическое вакуумное напыление проводят со скоростью напыления не более 5 А/с, предпочтительно 1 А/с.



 

Похожие патенты:
Изобретение относится к аналитической химии, в частности к методам создания стандартных образцов химического состава наноматериалов. .

Изобретение относится к композиции для удаления так называемых "отложений на стенках" с металлических поверхностей, в особенности с алюминия или алюминийсодержащих поверхностей, в частности в процессе производства полупроводниковых элементов.

Использование: для изготовления микромеханических устройств, содержащих упругие гибкие деформируемые исполнительные элементы. Сущность изобретения заключается в том, что микромеханический актюатор выполнен в виде сформированной в меза-структуре упруго-шарнирной консольной балки, состоящей из параллельных трапециевидных вставок из монокристаллической кремниевой подложки p-типа с ориентацией [100], расположенных перпендикулярно основной оси консольной балки и соединённых полиимидными прослойками, образованными полиимидной пленкой, нагревателя и электропроводящих шин, образующих омический контакт с кремнием, трапециевидные вставки выполнены на противоположных сторонах упруго-шарнирной консольной балки и образуют, по меньшей мере, две зоны деформации.

Изобретение относится к теплотехнике и может быть использовано в теплообменниках, применяемых в различных областях техники. Вихревой теплообменный элемент содержит соосно расположенные одна в другой теплообменные цилиндрические трубы большего диаметра и внутреннюю трубу с цилиндрическими поверхностями, при этом труба большего диаметра разделена на участки, внутри каждой из труб установлены, по крайней мере, два завихрителя одинакового или разного типов, при этом каждый завихритель выполнен в виде суживающегося сопла, а внутренняя поверхность его покрыта нанообразной стеклоподобной пленкой из оксида тантала.

Изобретение относится к микро- и наноструктурированным покрытиям, применяемым, в частности, в области оптически прозрачных проводящих покрытий. Технический результат - эффективное формирование проводящей структуры сетчатой формы, обеспечивающей функцию прозрачных проводящих покрытий, на поверхности обрабатываемой подложки на этапе формирования отсоединяемого проводящего слоя, а также посредством перенесения указанного проводящего слоя на обрабатываемую подложку, являющуюся итоговым носителем сетчатой проводящей структуры.

Изобретение относится к способу изготовления микромеханической детали (11, 31, 41) из цельного куска материала. Способ включает следующие этапы: a) формирование подложки, которая включает в себя негативную полость для упомянутой изготовляемой микромеханической детали; b) формирование временного слоя на одной из частей подложки; c) осаждение частиц на подложке, которые должны стать точками проращивания; d) удаление временного слоя таким образом, чтобы на одной из частей подложки были выборочно удалены все частицы; e) осаждение слоя материала при помощи химического парофазного осаждения таким образом, чтобы материал осаждался только в тех местах, где остались частицы; f) удаление подложки для освобождения микромеханической детали, образованной в упомянутой негативной полости.

Изобретение относится к области электронной техники и может быть использовано при изготовлении приборов микроэлектромеханических систем, в частности интегральных микромеханических реле и устройств на их основе.
Группа изобретений относится к способу получения формованных изделий с покрытием с полностью или частично структурированными поверхностями, установке для осуществления этого способа и формованному изделию, изготовленному этим способом.

Использование: для изготовления микроэлектромеханических структур. Сущность изобретения заключается в том, что способ защиты углов трехмерных микромеханических структур на кремниевой пластине с кристаллографической ориентацией (100) при глубинном анизотропном травлении в водном растворе гидрооксида калия КОН включает формирование масочного рисунка с элементами защиты углов, элементы защиты углов, имеющие диагональную форму на топологической маске, располагают под углом 45° к контурам жесткого центра, причем размеры изготовляемых трехмерных микромеханических структур определяются из определенных условий.

Изобретение относится к изготовлению герметичных конструкций, образующих микроэлектромеханические системы. Способ создания герметичного уплотнения внутри первой композитной пластины типа кремний-изолятор, используемой для изготовления герметичной конструкции, включает следующие операции: структурирование первой кремниевой пластины для формирования одного или более углублений, проходящих по меньшей мере на часть толщины первой кремниевой пластины, заполнение единственного или каждого углубления материалом-изолятором, пригодным для прикрепления к кремнию посредством анодного соединения с формированием первой композитной пластины, имеющей множество интерфейсов кремний-изолятор и первую контактную поверхность, состоящую из материала-изолятора, и применение к первой и второй контактным поверхностям технологии анодного соединения для создания герметичного уплотнения в интерфейсах кремний-изолятор первой композитной пластины, причем вторая контактная поверхность состоит из кремния.

Изобретение относится к измерительной технике. С его помощью представляется возможным расширить температурный диапазон работы датчика на основе тонкопленочной нано- и микроэлектромеханической системы, повысить воспроизводимость таких параметров тензорезисторов, как электрическое сопротивление и температурный коэффициент сопротивления, снизить температурную чувствительность датчиков.

Изобретение относится к области инерциальных микроэлектромеханических систем, используемых в качестве датчиков перегрузок, таких как, например, акселерометры или гироскопы.

Использование: для производства микроносителей. Сущность изобретения заключается в том, что способ включает следующие шаги: получение пластины, имеющей структуру сэндвича, состоящего из нижнего слоя, верхнего слоя и изолирующего слоя, расположенного между упомянутым нижним и верхним слоями, стравливание верхнего слоя с целью разграничения боковых стенок тел микроносителей, нанесение первого активного слоя как минимум на верхнюю поверхность тел, нанесение сплошного полимерного слоя поверх первого активного слоя, стравливание нижнего слоя и изолирующего слоя, удаление полимерного слоя для освобождения микроносителей. Технический результат: обеспечение возможности получения точной количественной информации. 2 н. и 10 з.п. ф-лы, 18 ил.

Использование: для изготовления конструктивного элемента. Сущность изобретения заключается в том, что создают композит первого слоя, содержащий первую подложку, выполненную из проводящего материала, и по меньшей мере одну канавку, сформированную в нем и заполненную изолирующим материалом, причем первая область первой подложки электрически изолирована в боковом направлении от других областей первой подложки посредством канавки, создают композит второго слоя, содержащий композит первого слоя и структурный слой, который содержит активную структуру конструктивного элемента и выполнен электропроводящим по меньшей мере в первой области, причем активная структура примыкает к первой поверхности первой подложки в первой области первой подложки и соединена с ней электропроводящим образом, на второй поверхности первой подложки, расположенной противоположно первой поверхности первой подложки, затем создают первую контактную площадку в первой области первой подложки, причем первая область первой подложки электрически изолирована в боковом направлении от других областей первой подложки посредством канавки на второй поверхности первой подложки. Технический результат: обеспечение возможности создания конструктивного элемента, посредством которого может быть реализован электрический контакт с частями конструктивного элемента. 2 н. и 12 з.п. ф-лы, 6 ил.

Изобретение относится к области микротехники и касается способа изготовления устройства микротехники в объеме пластины фоточувствительного стекла (ФС). Способ включает в себя формирование прообразов локальных областей путем перемещения сфокусированного пучка лазерного излучения в плоскости создания прообразов локальных областей, выявление прообразов локальных областей с дефектами, аморфизацию всех выявленных прообразов локальных областей с дефектами, повторное формирование прообразов локальных областей в каждой из аморфизированных областей, проведение термической обработки до появления локальных областей кристаллической фазы в прообразах локальных областей и травление пластины ФС. Аморфизацию осуществляют сходящимся пучком излучения СО2 лазера с плотностью средней мощности в перетяжке пучка не менее 7 Вт/см2 и не более 18 Вт/см2 с длительностью воздействия от 5 до 10 с и размером перетяжки от 25 до 50 мкм. Термическую обработку осуществляют сходящимся пучком излучения СО2 лазера с плотностью средней мощности в перетяжке пучка не менее 1.5 Вт/см2 и не более 3.0 Вт/см2 с длительностью воздействия от 15 до 400 с и размером перетяжки от 25 до 500 мкм. Технический результат заключается в сокращении длительности процесса и повышении выхода годных изделий. 16 ил.
Наверх