Способ забора конденсата выдыхаемого воздуха новорожденных, находящихся на искусственной вентиляции



Способ забора конденсата выдыхаемого воздуха новорожденных, находящихся на искусственной вентиляции
Способ забора конденсата выдыхаемого воздуха новорожденных, находящихся на искусственной вентиляции
Способ забора конденсата выдыхаемого воздуха новорожденных, находящихся на искусственной вентиляции
Способ забора конденсата выдыхаемого воздуха новорожденных, находящихся на искусственной вентиляции
Способ забора конденсата выдыхаемого воздуха новорожденных, находящихся на искусственной вентиляции
Способ забора конденсата выдыхаемого воздуха новорожденных, находящихся на искусственной вентиляции
Способ забора конденсата выдыхаемого воздуха новорожденных, находящихся на искусственной вентиляции
Способ забора конденсата выдыхаемого воздуха новорожденных, находящихся на искусственной вентиляции
Способ забора конденсата выдыхаемого воздуха новорожденных, находящихся на искусственной вентиляции
G01N1/40 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

Владельцы патента RU 2629388:

Федеральное государственное бюджетное учреждение "Научный центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова" Министерства здравоохранения Российской Федерации (RU)

Изобретение относится к области медицины, а именно - к неонатологии, к способам мониторинга состава конденсата выдыхаемого воздуха новорожденных, находящихся на искусственной вентиляции, с целью мониторинга состояния пациента. Способ забора конденсата выдыхаемого воздуха (КВВ) новорожденных, находящихся на искусственной вентиляции легких, заключается в том, что используют систему сбора конденсата и вспомогательный измерительный модуль для контроля параметров сбора. Система сбора конденсата содержит два соосных цилиндра, изготовленных из стекла и имеющих раздельные выходы сверху, причем данную систему термостатируют хладагентом в виде охлажденной предварительно жидкости, залитой в сосуд Дьюар типа термос. Во время процедуры сбора пробы КВВ постоянно измеряют температуру хладагента с помощью вспомогательного измерительного модуля, в качестве которого используют цифровой термометр с термопарным датчиком температуры, который обладает функцией сохранения показаний температуры с заданной периодичностью и функцией хронометра. Изобретение позволяет неинвазивно и безопасно проводить отбор проб КВВ у новорожденных, находящихся на искусственной вентиляции, для их дальнейшего анализа, не внося каких-либо изменений в режим вентиляции. 4 ил., 3 табл., 5 пр.

 

Изобретение относится к области медицины, а именно к неонатологии, к способам забора конденсата выдыхаемого воздуха новорожденных, находящихся на искусственной вентиляции с целью мониторинга состояния пациента.

В последние годы анализ летучих и нелетучих компонентов в конденсате выдыхаемого воздуха (КВВ) превратился в новое средство для неинвазивного исследования окислительных маркеров и медиаторов воспаления в дыхательных путях [1]. Этот метод успешно используется в исследованиях по изучению маркеров оксидативного стресса у детей с бронхиальной астмой [2]. Для оценки оксидативного стресса и воспаления дыхательный путей у новорожденных стандартным шагом является забор образца с помощью трахеальной аспирации. Однако это весьма инвазивная процедура для рутинного использования у новорожденных, особенно тех, кто родился преждевременно [3]. Корреляция антиоксидантного статуса между образцами, полученными с использование трахеальной аспирации, и образцами КВВ была показана только совсем недавно [4]. В настоящее время исследования по оценке состояния новорожденных с использованием КВВ только начинают проводиться и представляют большой интерес ввиду неинвазивности процедуры сбора КВВ.

В качестве прототипа предлагаемого способа проведения анализа протеомного состава конденсата выдыхаемого воздуха новорожденных, находящихся на искусственной вентиляции, взят метод, описанный в [4], согласно которому отбор проб КВВ новорожденных осуществлялся посредством включения системы сбора КВВ (Rtube, США) в выходной тракт аппарата искусственной вентиляции легких. Недостатком данного способа является необходимость адаптации стандартизированной для взрослых пациентов трубки Rtube. При этом авторы не указывают, использовали ли они в своей финальной конструкции такой стандартный компонент Rtube, как клапан на выдох, по типу «гусиный клюв». Известно, что выходной клапан - «гусиный клюв» - создает дополнительное сопротивление и требует создания избыточного давления, что в случае сбора КВВ у новорожденных, находящихся на искусственной вентиляции, является дополнительный фактором риска и требует особой оговорки. В инструкции использования Rtube для взрослых пациентов отдельно оговаривается возможная закупорка клапана «гусиный клюв» и рекомендуется каждый раз, до использования, визуально проверять свободное открытие клапана. Вторым, не столь существенным недостатком системы Rtube является полимерный материал, из которого изготовлено устройство. Данный материал привносит примеси в виде полимеров при сборе КВВ, которые затем легко видны при хромато-масс-спектрометрическом анализе пробы. Третий существенный недостаток - это одноразовый тип устройств Rtube - после сбора пробы КВВ трубка утилизируется при том, что цена ее составляет 100 долларов США. Стоит также отметить, что у авторов в самой системе сбора отсутствовало какое-либо вспомогательное измерительное оборудование для контроля параметров сбора КВВ - наиболее важный параметр это температура охлаждения конденсора.

Задачей, разрабатываемой нами системы для сбора КВВ новорожденных, было устранения вышеперечисленных недостатков. Разработанное устройство состоит из системы сбора конденсата и вспомогательного измерительного модуля для контроля параметров сбора, как показано на Фиг. 1. Система сбора конденсата в общем виде представляет собой два соосных цилиндра, имеющих раздельные выходы сверху (Фиг. 2). Снизу внешний цилиндр запаян. Конденсация выдыхаемого воздуха осуществляется на внешнем цилиндре, который соприкасается с хладагентом. Внутренний цилиндр служит для транспортировки воздуха внутрь устройства и для увеличения пути выдыхаемого воздуха, что повышает эффективность функционирования. Хладагент, как и его начальная температура, определяются исходя из поставленных задач. Для повышения стабильности системы и увеличения длительности отбора система может помещаться в теплоизолирующий сосуд.

В качестве измерительного модуля температуры был выбран цифровой термометр с термопарным датчиком температуры. Модуль обладает функциями сохранения показаний температуры с заданной периодичностью, функцией хронометра и возможностью передачи сохраненных данных на персональный компьютер через USB-порт. Это позволяет регистрировать параметры, характеризующие отбор проб КВВ, и учитывать их при дальнейшем анализе полученных образцов.

Для реализации заявляемого способа сбора КВВ можно использовать любое типовое устройство для сбора КВВ из инертного материала, например, из стекла, с соответствующей конструкцией, подходящей для адаптации к ИВЛ. Нами был выбран концентрический стеклянный сосуд типового производства (Lenz Laborglasinstrumente, Wertheim, Germany), схематичное изображение которого представлено на Фиг. 2. Стеклянный сосуд подсоединялся с использованием тефлоновых трубок к типовым соединениям ИВЛ. Во время процедуры сбора стеклянный сосуд помещался в термос с охлаждающей жидкостью (хладагентом), предварительно охлажденном до оптимальной

температуры (Табл. 1). Путем повторных экспериментов с варьированием времени сбора (12-20 мин) определялось время, необходимое для сбора достаточного количества конденсата (около 1 мл) для дальнейшего анализа с использованием метода жидкостной хромато-масс-спектрометрии.

Возможность реализации заявляемого изобретения с получением заявленного технического результата иллюстрируют нижеследующие примеры 1-5 осуществления сбора КВВ у новорожденных, находящихся на ИВЛ, при использовании различных хладагентов и варьировании времени сбора (Табл. 1).

КВВ забирался у новорожденных, находящихся на традиционной вспомогательной ИВЛ, т.е. каждое дыхательное усилие пациента поддерживалось аппаратным вдохом.

В аппарате AVEA использовали следующие виды вспомогательной ИВЛ:

- вентиляция цикличная по времени с ограничением по давлению (TCPL - time cycled pressure limited). Этот режим используется по умолчанию для новорожденных, инспираторный поток для новорожденных установлен по умолчанию 8 л/мин,

- вспомогательно-принудительный режим вентиляции по давлению (Pessure А/С), инспираторный поток подбирается самим аппаратом в диапазоне 6-10 л/мин,

- вспомогательно-принудительный режим вентиляции по объему (Volume А/С), инспираторный поток устанавливается по умолчанию 8 л/мин.

На примерах 1-5 показано, что с использованием предложенного способа и устройства забора КВВ, изображенного на Фиг. 1, возможно осуществить забор пробы конденсата выдыхаемого воздуха необходимого объема (от 0.5 мл до 1 мл) при использовании различных хладагентов и варьировании времени сбора от 10 до 20 мин. В таблице 1 приведены условия экспериментов с использованием различных хладагентов: лед с добавлением соли (NaCl), лед, этанол (-80°С). Показано, что лучше всего использовать этанол, охлажденный до низкой температуры -80°С. При изменении времени сбора пробы КВВ от 10 мин до 20 мин показано, что оптимальный является время сбора 20 мин. За период времени 20 мин удается собрать объем пробы порядка 1.2 мл, что является оптимальным для дальнейшего анализа молекулярного состава пробы КВВ с использованием, например, метода жидкостной хромато-масс-спектрометрии.

Повторные эксперименты показывают (см. Пример 4-5), что существенных изменений в объеме конденсата не наблюдается при соблюдении хорошего уплотнения в соединительных местах контура.

На примере 4 показано, что с использованием разработанных подходов может быть проведен анализ протеомного состава конденсата выдыхаемого воздуха (КВВ) у 6-ти новорожденных, находящихся на искусственной вентиляции в отделении реанимации и интенсивной терапии. Показано, что в течение 20 минут в режиме ИВЛ удается собрать необходимое количество КВВ объемом 1.2 мл для дальнейшего протеомного анализа с использованием хромато-масс-спектрометрии. Удалось идентифицировать характерные белки в составе выдыхаемого воздуха новорожденных на разных стадиях развития и с различными патологиями. В конденсате, собранном в режиме с ИВЛ, присутствовал постоянный спектр инвариантных белков кератинов 1, 10, 2, 9, которые являются экзогенными белками, как нами было показано ранее при исследовании КВВ взрослых пациентов [5]. Также в пробах КВВ новорожденных были идентифицированы некератиновые белковые компоненты, содержание которых вариабельно у разных пациентов, в зависимости от стадии развития и патологии (Табл. 2, Фиг. 3).

На примере 5 показана возможность обнаружения в собранных пробах КВВ новорожденных некоторых групп летучих альдегидов, преимущественно алканалы, 2-алкеналы, 4-гидрокси-2-алкеналы, которые могут являться метаболитами при перекис-ном окислении липидов, содержащих остатки полиненасыщенных жирных кислот (Табл. 3, Фиг. 4). Было предложено использовать их содержание в биологических жидкостях для оценки уровня окислительного стресса, т.е. эти вещества могут выступать в качестве биомаркеров окислительного стресса[7, 8].

Возможность реализации заявляемого изобретения с получением заявленного технического результата продемонстрирована на примерах 1-5. Показано, что изобретение позволяет эффективно проводить отбор пробы КВВ объемом не менее 1 мл за время 20 мин у новорожденных, находящихся на искусственной вентиляции, не внося каких-либо изменений в режим вентиляции. Показано на примерах 1-5, что систему сбора КВВ можно термостатировать хладагентом в виде охлажденной предварительно жидкости (этанол, -80°С), залитой в сосуд Дьюар. На примерах 1-5 показано, что данный способ может быть реализован в условиях неонатальных отделений, занимающихся интенсивной реанимацией, выхаживанием и лечением недоношенных новорожденных. На примерах 4-5 показано, что данный способ позволяет неинвазивно получать биоматериал от пациента и проводить протеомный и метаболомный анализ проб для получения дополнительной информации о состоянии пациентов с целью уточнения диагноза и тактики лечения.

Таким образом, изобретение позволяет неинвазивным и безопасным способом собрать необходимый объем конденсата выдыхаемого воздуха у новорожденных, находящихся на искусственной вентиляции, для дальнейшего анализа молекулярного состава КВВ с целью получения дополнительной информации о состоянии пациентов с целью уточнения диагноза и тактики лечения.

На Фиг. 1 показана схема установки по сбору КВВ в системе с подключение к аппарату с искусственной вентиляцией легких (ИВЛ).

На Фиг. 2 показано схематичное изображение концентрического стеклянного сосуда для сбора КВВ.

На Фиг. 3 показан пример автоматизированного хромато-масс-спектрометрического анализа КВВ пробы. Вверху - хроматограмма. В центре - масс-спектра в момент времени, выделенный на хроматограмме. Внизу: масс-спектр столкновительно фрагментация (CID) пика, выделенного в масс-спектре.

На Фиг. 4 показан пример масс-спектра конденсата выдыхаемого воздуха, (а) - обзорный масс-спектр, (б)-(ж) увеличенные области масс, соответствующие отдельным (б), (в) 2-алкеналам, (г)-(ж) 4-гидрокси-2-алкеналам.

СПИСОК ЛИТЕРАТУРЫ

1. Filippone М, Bonetto G, Corradi M, et al. Evidence of unexpected oxidative stress in airways of adolescents born very pre-term. Eur Respir J. 2012. 40 (5). pp. 1253-9.

2. Ahsman M.J., Tibboel D., Mathot R.A.A., et al. Sample collection, biobanking, and analysis. Handbook of Experimental Pharmacology. 2011. 205. pp. 203-217.

3. Marraro GA, Chen C, Piga MA, et al. Acute respiratory distress syndrome in the pediatric age: an update on advanced treatment. Zhongguo Dang Dai Er Ke Za Zhi. 2014. 16 (5). pp. 437-47.

4. Rosso MI, Roark S, Taylor E, et al. Exhaled breath condensate in intubated neonates-a window into the lung’s glutathione status. Respiratory Research. 2014. 15:1.

5. В.С. Курова, А.С. Кононихин, И.А. Попов и др. Экзогенные белки в конденсате выдыхаемого человеком воздуха. Биоорганическая химия. 2011. Т. 37. №1. с. 48-52.

6. Hakim, М.; Broza, Y. Y.; Barash, О.; Peled, N.; Phillips, M.; Amann, A.; Haick, H. Chem. Rev. 2012, 112, 5949-5966.

7. Gueraud, F.; Atalay, M.; Bresgen, N.; Cipak, A.; Eckl, P. M.; Huc, L.; Jouanin, I.; Siems, W.; Uchida, K. Free Radical Res. 2010, 44, 1098-1124.

Способ забора конденсата выдыхаемого воздуха новорожденных, находящихся на искусственной вентиляции легких, отличающийся тем, что используют систему сбора конденсата и вспомогательный измерительный модуль для контроля параметров сбора, причем система сбора конденсата содержит два соосных цилиндра, изготовленных из стекла и имеющих раздельные выходы сверху, данную систему термостатируют хладагентом в виде охлажденной предварительно жидкости, залитой в сосуд Дьюар типа термос, при этом во время процедуры сбора пробы КВВ постоянно измеряют температуру хладагента с помощью вспомогательного измерительного модуля, в качестве которого используют цифровой термометр с термопарным датчиком температуры, который обладает функцией сохранения показаний температуры с заданной периодичностью и функцией хронометра.



 

Похожие патенты:

Изобретение относится к области оптических измерений и касается способа и устройства для динамического контроля газовых сред. Устройство включает в себя монохроматические пары, представляющих собой твердотельный монохроматический излучатель на базе диодного лазера и твердотельный монохроматический приемник.
Изобретение относится к области медицины и касается способа диагностики микробного фактора при хроническом неспецифическом эндометрите. Сущность способа заключается в том, что у больной на 7-9-й день менструального цикла берут бактериологический посев из полости матки и цервикального канала с помощью внутриматочной цитощетки.

Группа изобретений относится к обнаружению анализируемого газа. Представлен способ испытания системы для обнаружения анализируемого газа, имеющей по меньшей мере один электрохимический датчик для обнаружения анализируемого газа в корпусе системы, имеющем входное отверстие, вторичный датчик внутри корпуса, чувствительный к изменению концентрации газа, отличного от анализируемого газа, и один или боле пористых диффузных элементов, через которые диффундирует газ, но через которые перенос жидкости ограничен, и согласно способу: выдыхают около входного отверстия корпуса системы для изменения концентрации газа, отличного от анализируемого газа, внутри корпуса и измеряют изменение концентрации газа, отличного от анализируемого газа, в ответ на выдыхаемый воздух для испытания по меньшей мере одного транспортного пути системы, включая путь через один или боле диффузных элементов, выполняют электронную имитацию присутствия анализируемого газа путем приложения электронного сигнала запроса к электрохимическому датчику и измеряют отклик электрохимического датчика на указанный электронный сигнал запроса.

Изобретение относится к диагностике, а именно к способу определения тканевой гипоксии скелетных мышц и миокарда при гиподинамии. Способ определения тканевой гипоксии скелетных мышц и миокарда при гиподинамии, включающий определение ацетола (гидрооксиацетона C3H6O2 GAS116-09-6) в выдыхаемом воздухе испытуемого методом хроматомасс-спектрометрии, до начала гиподинами и в процессе её воздействия и при достоверном уменьшении ацетола в выдыхаемом воздухе диагностируют тканевую гипоксию скелетных мышц и миокарда при гиподинамии.

Изобретение относится к медицине, а именно к медицинской диагностике наличия ацетона в выдыхаемом воздухе пациента. Способ измерения концентрации ацетона в выдыхаемом воздухе основан на измерении уровня содержания ацетона по эмиссионным линиям разряда при пониженном давлении пробы выдыхаемого воздуха пациента с нормировкой на концентрацию паров воды, определенную по параметрам тлеющего разряда.

Группа изобретений относится к области медицины и может быть использована для диагностики наличия инфекции Helicobacter pylori у пациента по выдыхаемому воздуху. Для этого у пациента проводят определение содержания аммиака с сопутствующими органическими аминами в воздухе ротовой полости в период активного гидролиза мочевины в интервале с 1 до 9-й мин после приема мочевины.

Изобретение относится к области диагностики и может быть использовано для тестирования и корректировки работы алкометра. Портативный картридж со стандартным спиртовым газом для алкометра содержит стандартный спиртовой газ с предварительно заданной концентрацией и выполнен с возможностью отображения значения указанной концентрации на внешней поверхности картриджа (1) или его сохранения на запоминающем носителе, предусмотренном на картридже (1).

Группа изобретений относится к медицине. Способ контроля дыхания субъекта реализуют с помощью устройства для контроля дыхания.

Изобретение относится к области медицины, в частности пульмонологии, и предназначено для скрининговой диагностики хронической обструктивной болезни легких (ХОБЛ) и бронхиальной астмы.

Изобретение относится к области медицины, а именно к неонатологии, реаниматологии и респираторной терапии, и описывает способ прогнозирования эффективности неинвазивной вентиляции легких у недоношенных новорожденных.

Группа изобретений относится к технической физике применительно к изучению образцов двухкомпонентных металлических сплавов, а именно исследованиям термозависимостей физических свойств расплавов образцов химически активных сплавов.

Изобретение относится к области обработки металлов давлением и может быть использовано для определения сопротивления деформации металлических материалов путем испытания образцов на сжатие, для построения кривой упрочения, для определения математической зависимости между сопротивлением деформации и степенью деформации при различных температурах.

Изобретение относится к области аналитической химии и может найти применение в области экологии и охраны окружающей среды при контроле загрязнения атмосферы. Производят отбор пробы при протягивании через фильтр атмосферного воздуха.

Группа изобретений относится к контролю загрязняющих атмосферу аэрозолей и газов, а именно к методам и устройствам отбора проб из атмосферного воздуха, обеспечивающих изокинетические условия отбора проб воздуха с борта самолета для определения аэрозольных примесей и/или газообразных примесей.

Изобретение относится к оперативному контролю скрытой и явной зараженности насекомыми зерновой насыпи и может быть использовано при исследовании качества партий продовольственного зерна, предназначенных для хранения в зерноперерабатывающей промышленности и семеноводстве.

Изобретение относится к технике океанографических и гидролого-геологических исследований прибрежных районов шельфа, предназначено для отбора проб минеральной взвеси с различных горизонтов придонного слоя моря в зоне больших скоростей турбулентного потока для получения репрезентативных данных о составе и концентрации взвеси и ее распределении по вертикали.

Изобретение относится к медицинской микробиологии, а именно к области получения и подготовки образцов проб с водных поверхностей водоемов для проведения бактериологических исследований.

Изобретение относится к устройствам для взятия проб в жидком или текучем состоянии и может быть использовано в ядерных реакторах с жидкометаллическим теплоносителем для отбора проб расплавленного теплоносителя.

Изобретение относится к технике отбора образцов воздуха мотогондол двигателей летательных аппаратов для исследования достаточности содержания паров пожаротушащих агентов (хладоны, углекислый газ, элегаз и другие) в воздухе мотогондолы при срабатывании системы пожаротушения и повышения точности их определения.

Группа изобретений относится к прозрачному мерзлому грунту, способу его получения и применению. Прозрачный мерзлый грунт получают из фторсодержащего полимера, кубикового льда и бесцветной поровой жидкости.

Изобретение относится к медицинской технике, в частности к устройствам для выполнения прицельной биопсии внутренних органов, мягких тканей, костей и различных опухолей под контролем магнитно-резонансной томографии с целью диагностики различных заболеваний.
Наверх