Способ очистки непроточных водоёмов в условиях непрерывного поступления нефтепродуктов



Способ очистки непроточных водоёмов в условиях непрерывного поступления нефтепродуктов
Способ очистки непроточных водоёмов в условиях непрерывного поступления нефтепродуктов
Способ очистки непроточных водоёмов в условиях непрерывного поступления нефтепродуктов
Способ очистки непроточных водоёмов в условиях непрерывного поступления нефтепродуктов
Способ очистки непроточных водоёмов в условиях непрерывного поступления нефтепродуктов

Владельцы патента RU 2629786:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный нефтяной технический университет" (RU)

Изобретение относится к способу очистки непроточных водоемов от нефтепродуктов и тяжелых металлов, загрязненных техногенными потоками водонефтяных эмульсий, поступающих от действующих многие годы предприятий нефтехимии и нефтепереработки. Способ осуществляется путем использования сорбента, коагулянта и грубодисперсного минерального вещества. Извлеченную из водоема воду очищают последовательно фильтрованием сквозь слой углеводородной жидкости, сорбцией в углеродсодержащем волокнистом материале, фильтрованием в геохимическом барьере, заполненном минеральным зернистым материалом, в котором размещены электрохимические источники тока, генерирующие коагулянт. Очищенную воду возвращают в водоем, в котором ограничивают перемешивание очищенной и неочищенной воды. При этом производят перехват поступающих в водоем грунтовых водонефтяных эмульсий и их очистку жидкостным фильтрованием в слое углеводородной жидкости с доочисткой совместно с извлеченной из водоема водой. Извлеченные донные осадки компостируют совместно с носителями микроорганизмов, структурообразователями и биогенными элементами. Технический результат, обеспечиваемый изобретением, заключается в повышении эффективности очистки воды и донных отложений водоема. 1 ил., 4 пр., 4 табл.

 

Изобретение относится к способам очистки непроточных водоемов от нефтепродуктов и тяжелых металлов, загрязненных техногенными потоками водонефтяных эмульсий, поступающих от действующих многие годы предприятий нефтехимии и нефтепереработки.

Известен способ очистки водоемов от нефти, включающий распыление раствора нефтеокисляющего препарата и минеральных удобрений, проведение аэрации для увеличения содержания кислорода в воде (Патент РФ №2322400).

Недостатком предложенного способа является невозможность очистки воды от тяжелых металлов.

Наиболее близким по технической сути и достигаемому результату является способ очистки загрязненных вод поверхностных водоемов от нефтепродуктов и тяжелых металлов путем внесения сорбента, флокулянта, коагулянта и минерального замутнителя [Патент РФ №2143403]. В качестве сорбента и минерального замутнителя используют смесь гидролизованных дисперсных алюмосиликатов, в качестве флокулянта - алюмосиликаты в коллоидном состоянии, в качестве коагулянта - композицию гидроксидов различных металлов (алюминий, железо, титан, кальций и магний).

Сущность способа заключается в том, чтобы внесенными реагентами сорбировать нефтепродукты и тяжелые металлы, находящиеся в водоеме, и их осадить. Однако нефтепродукты и тяжелые металлы, извлеченные из воды, переходят в донные отложения и там депонируются. Более того, все перечисленные металлы в виде гидроксидов тоже будут депонироваться в донных отложениях, ухудшая экологическую ситуацию водоема.

Недостатком способа является невысокий эффект очистки водного объекта, включающего воду и донные отложения.

Задачей изобретения является повышение эффективности очистки воды и донных отложений водоема.

Технический результат совпадает с задачей изобретения.

Сущность способа очистки непроточных водоемов заключается в использовании сорбента, коагулянта и грубодисперсного минерального вещества. Согласно изобретению извлеченную из водоема воду очищают последовательно фильтрованием сквозь слой углеводородной жидкости, сорбцией в углеродсодержащем волокнистом материале, фильтрованием в геохимическом барьере, заполненном минеральным зернистым материалом, в котором размещены электрохимические источники тока, генерирующие коагулянт, а очищенную воду возвращают в водоем, в котором ограничивают перемешивание очищенной и неочищенной воды, при этом производят перехват поступающих в водоем грунтовых водонефтяных эмульсий и их очистку жидкостным фильтрованием в слое углеводородной жидкости с доочисткой совместно с извлеченной из водоема водой, а извлеченные донные осадки компостируются совместно с носителями микроорганизмов, структурообразователями, биогенными элементами.

На фигуре представлена технологическая схема процесса очистки воды в непроточном водоеме.

В водоеме 1 размещены щелевые водозаборные трубы 2, соединенные с насосной станцией 3, имеющей выпуск в жидкостный гидрофобный фильтр 4, последовательно соединенный с сорбционным фильтром 5 и геохимическим барьером 6. В геохимическом барьере 6 размещены электроотрицательные стержневые электроды из алюминия 7 и электроположительные стержневые электроды из меди 8. Электроды образуют чередующиеся ряды, расположенные перпендикулярно потоку воды. Гидрофобный фильтр 4 соединен с накопителем 9 нефтепродуктов.

Выход геохимического барьера 6 соединен со щелевой водораспределительной трубой 10. В водоеме между трубами 2 и 10 расположена плавающая полупогружная перегородка 11.

В береговой зоне водоема размещена компостная площадка 12, соединенная трубопроводом с насосной станцией 13 перекачки донного осадка, размещенной на плавсредствах на водоеме 1. Компостная площадка 12, оборудованная гидроизоляционным экраном и системой аэрации (на фигуре не показано). К дренажной системе компостной площадки 12 подсоединен дренажный насос 14, соединенный со щелевой водораспределительной трубой 15.

Бункеры-накопители 16 компонентов компостной смеси соединены со смесителем 17, имеющим выпуск на компостную площадку 12.

Геохимический барьер 6 оборудован системой обратной промывки, состоящей из щелевой водозаборной трубы 18, насосной станции 19, рассредоточенного выпуска 20 геохимического барьера 6 и трубы сброса промывной воды 21 на компостную площадку 12.

На высоком берегу водоема со стороны поступления техногенных нефтесодержащих водных потоков размещен коллектор 22 перехвата нефтесодержащих вод в виде траншеи, на дне которой уложена щелевая труба 23, соединенная с насосной станцией 24 перекачки уловленной водонефтяной эмульсии на гидрофобный фильтр 25, связанный трубопроводами с накопителем 9 нефти и сорбционным фильтром 5.

Способ осуществляется следующим образом.

В последние годы установлены многочисленные факты загрязнения грунтов и водных объектов нефтепродуктами предприятиями нефтехимии и нефтепереработки в процессе многолетней деятельности этих предприятий в штатном режиме. Установлены факты пропитки грунтов нефтяными углеводородами на глубину до 30 м. В грунтах образовались техногенные потоки водонефтяных эмульсий, направленные по уклону местности в сторону водных объектов, в результате чего обнаружены высокие концентрации углеводородов, как в воде водных объектов, так и в донных осадках.

Реанимацию непроточных водоемов в таких случаях реализовать очень сложно, т.к. происходит постоянная подпитка водоемов новыми дозами углеводородов.

Прежде всего, необходимо предотвратить поступление углеводородов со стороны промышленных предприятий, расположенных на возвышенных местах. Для этого ведут перехват водонефтяных эмульсий с помощью коллектора 22, заглубленного на всю глубину пропитки грунта. Уловленную эмульсию с помощью щелевой трубы 23 и насосной станции 24 откачивают на гидрофобный фильтр 25 для разделения нефти и воды путем жидкостного фильтрования сквозь слой углеводородной жидкости. Отделившиеся нефтепродукты отводят в накопитель 9, а воду направляют на доочистку от оставшихся нефтепродуктов и от тяжелых металлов, которые переходят из нефтепродуктов в воду, на сорбционный фильтр 5.

Наиболее загрязненную воду из водоема 1 с помощью водозаборной трубы 2 и насосной станции 3 подают в жидкостный гидрофобный фильтр 4.

Один из вариантов эффективно работающего гидрофобного фильтра известен из патента РФ на ПМ №139209. В процессе фильтрования нефтесодержащей воды в жидкостном гидрофобном фильтре образуется 2 потока: поток очищенной от нефтепродуктов воды, направляемый на дальнейшую очистку, и поток обезвоженных углеводородов, направляемых в накопитель 9 нефтепродуктов.

Поток воды далее поступает в сорбционный фильтр 5, заполненный кассетами с природным сорбентом, в качестве которого использован углеродсодержащий волокнистый материал - солома злаковых культур - обладающий высокой сорбционной емкостью порядка 4 г нефти на 1 г сорбента.

Очистка воды от высокодисперсных взвешенных веществ и углеводородов, оставшихся в воде после предварительной очистки жидкостным фильтрованием и сорбцией, а также от тяжелых металлов происходит в геохимическом барьере 6. Геохимический барьер представляет собой протяженный фильтр длиной до 16 м, заполненный активным фильтрующим материалом - силицированным кальцитом (Патент РФ №2086510). В теле фильтрующего материала размещены рядами электрохимические источники тока, образованные гальваническими парами «алюминий-медь». При заполнении фильтра водой электрохимические источники тока создают электродвижущую силу, под действием которой растворяются алюминиевые электроды с образованием гидроксида Аl(ОН)3. Гидроксид алюминия является эффективным коагулянтом, широко применяемым в практике очистки воды от тяжелых металлов. Силицированный кальцит, обладающий щелочными свойствами, ускоряет процесс хлопьеобразования.

Очищенная вода сбрасывается самотечно в водоем с помощью водораспределительной трубы 10. Плавающая полупогружная перегородка 11 затрудняет водообмен в водоеме, разделяя зону чистой и грязной воды.

Гидрофобный фильтр 4 не требует регенерации. Сорбционный фильтр 5 при исчерпании его емкости восстанавливается путем замены кассет с сорбционным материалом. Геохимический барьер 6 имеет высокую грузоемкость за счет большой пористости (фракция силицированного кальцита 2-5 мм) и протяженности до 16 м, но, тем не менее, требуется проводить его регенерацию, учитывая длительность восстановления качества воды в водоеме.

Обратную промывку фильтра проводят водой, забираемой из водоема 1 щелевой водозаборной трубой 18 и насосной станцией 19, подающей воду на рассредоточенный выпуск 20 геохимического барьера 6. Промывную воду, содержащую извлеченные тяжелые металлы и нефтепродукты, подают на компостную площадку 12.

На компостную площадку 12, кроме того, подают донные осадки, откачиваемые насосной станцией 13, а также носители микроорганизмов, структурообразователи, биогенные элементы с помощью бункеров-накопителей 16 и смесителей 17.

Оптимальный состав смеси %:

- осадки биологических очистных сооружений нефтеперерабатывающих заводов (НПЗ) - 1;

- птичий помет - 1;

- солома, опилки, торф, бумага - 8;

- осадки биологических очистных сооружений канализации населенных пунктов - 20;

- осадки очистных сооружений водоснабжения населенных пунктов - 10;

- минеральный зернистый материал - силицированный кальцит - 10;

- катализатор окислительных процессов - 5;

- донные осадки водоема - остальное.

Длительность компостирования зависит от концентрации загрязняющих веществ и составляет от 3 до 12 месяцев. Полученный компост используют для рекультивации береговой зоны водоема.

Пример 1

Проводили опыты по очистке модели природной воды, содержащей ионы железа, геохимическим барьером длиной 16 м при скорости фильтрования в диапазоне 0,1-1 Ом/ч. Результаты приведены в таблице 1.

Из таблицы следует, что для получения воды с концентрацией железа 0,3 мг/л (ПДКхоз.пит. - предельно допустимая концентрация водоемов хозяйственно питьевого назначения) необходимый эффект очистки воды составляет 90%, т.е. возможна скорость фильтрования 5,0 м/ч при длине геохимического барьера 12 м.

Пример 2

Проводили опыты по очистке модели природной воды, содержащей ионы марганца геохимическим барьером длиной 16 м при скорости фильтрования в диапазоне 0,1-10 м/ч. Результаты приведены в таблице 2.

Из таблицы следует, что для получения воды с концентрацией марганца ОД мг/л (ПДКхоз.пит.) необходимый эффект очистки воды составляет 90,0%, то есть возможна скорость фильтрования 5,0 м/ч при длине геохимического барьера 12 м.

Пример 3

Проводили опыты по очистке модели природной воды, содержащей ионы меди геохимическим барьером длиной 16 м при скорости фильтрования в диапазоне 0,1-10 м/ч.

Результаты приведены в таблице 3.

Из таблицы следует, что для получения воды с концентрацией меди 1,0 мг/л (ПДКхоз.пит) необходимый эффект очистки воды составляет 99,00%, т.е. возможна скорость фильтрования 5,0 м/ч при длине геохимического барьера 8 м.

Пример 4

Проводили опыты по очистке модели природной воды, содержащей бензол геохимическим барьером длиной 16 м при скорости фильтрования в диапазоне 0,1-10 м/ч. Результаты приведены в таблице 4.

Из таблицы следует, что для получения воды с концентрацией бензола 0,1 мг/л (ПДКхоз.пит.) необходимый эффект очистки воды составляет 90,00%, то есть возможна скорость фильтрования 5,0 м/ч при длине геохимического барьера 16 м.

Технический результат заключается в том, что достигнута очистка донного осадка до качества почвогрунтов и очистка воды водоема до предельно допустимых концентраций тяжелых металлов и нефтепродуктов.

Способ очистки непроточных водоемов в условиях непрерывного поступления нефтепродуктов от тяжелых металлов и нефтепродуктов путем использования сорбента, коагулянта и грубодисперсного минерального вещества, отличающийся тем, что извлеченную из водоема воду очищают последовательно фильтрованием сквозь слой углеводородной жидкости, сорбцией в углеродсодержащем волокнистом материале, фильтрованием в геохимическом барьере, заполненном минеральным зернистым материалом, в котором размещены электрохимические источники тока, генерирующие коагулянт, а очищенную воду возвращают в водоем, в котором ограничивают перемешивание очищенной и неочищенной воды, при этом производят перехват поступающих в водоем грунтовых водонефтяных эмульсий и их очистку жидкостным фильтрованием в слое углеводородной жидкости с доочисткой совместно с извлеченной из водоема водой, а извлеченные донные осадки компостируют совместно с носителями микроорганизмов, структурообразователями и биогенными элементами.



 

Похожие патенты:

Изобретение относится к сельскохозяйственному машиностроению, а именно к созданию устройств, обеспечивающих экологически чистую среду пляжных мест и водозаборов.

Изобретение относится к охране окружающей среды при технической эксплуатации нефтяных подводных источников, например из скважин нефти и нефтепродуктов для локализации нефтяных утечек на открытых акваториях морей.
Изобретение относится к охране окружающей среды и рациональному использованию природных ресурсов. Болото, загрязненное нефтью и нефтепродуктами, в направлении движения устройства для сбора нефти и нефтепродуктов ограничивают по длине и ширине с образованием замкнутого участка.

Изобретение относится к области охраны окружающей среды и может быть использовано для очистки подземных горизонтов от загрязнения нефтепродуктами. Устройство для сбора и откачки нефтепродуктов из подземного горизонта включает цилиндрическую камеру, выполненную в виде поплавка 1, погружной насос 2 с напорным трубопроводом 3 и приводом 4, а также полую монтажную штангу 5, внутри которой расположен напорный трубопровод 3.

Изобретение относится к нефтяной промышленности и может быть использовано на нефтепромысле. Устройство для разделения нефтяной эмульсии включает цилиндрический корпус 1 с системой ввода эмульсии в виде трубчатого перфорированного коллектора 7 и патрубками вывода продуктов ее разделения 5, 6, установленный в продольном сечении корпуса 1 V-образный коалесцирующий пакет 15, систему сбора и вывода воды 3, 4, 21, датчики контроля уровня воды, систему контроля и управления открытием и закрытием системы вывода воды, перфорированную неполную перегородку 9, патрубок вывода газа 6, верхнюю сплошную наклонную поперечную перегородку 11, одинарный коалесцирующий пакет 10, нижнюю сплошную вертикальную перегородку 12, нижнюю вертикальную перфорированную в нижней части перегородку 13, нижнюю неполную перегородку 18, верхнюю вертикальную неполную перегородку 14, параллельные перегородки 16 со щелями 17 в нижней части от V-образного коалесцирующего пакета 15 до низа корпуса 1.

Изобретение относится к области охраны окружающей среды и может быть использовано для локализации и сбора пятна нефти или нефтепродуктов, в том числе мощного его потока на любой водной поверхности.

Изобретение относится к устройству отбора более легкой фракции плавучей жидкости от более тяжелой фракции жидкости, такой как более легкой фракции плавучей нефти от более тяжелой фракции воды, при этом устройство включает в себя: плавучий отбирающий контейнер и крышку, расположенную над отбирающим контейнером, оставляя непрерывный паз свободным, причем открытие паза регулируют кольцом регулировки входного отверстия.
Изобретение относится к области охраны окружающей среды и может быть использовано для упреждающей – профилактической защиты водного объекта от загрязнения жидкими углеводородами, а также при проведении сезонных защитных мероприятий.

Изобретение относится к технологиям очистки поверхности воды проточных водоемов, покрытых льдом, от нефтепродуктов. Способ установки бонового заграждения подо льдом проточного водоема для сбора нефтепродуктов включает вырезание во льду водоема прорезей и береговых майн, установку в одной береговой майне троса-утяжелителя с боновым заграждением и последующее натяжение троса под углом к динамической оси водного потока.

Изобретение относится к области охраны окружающей среды и может быть использовано при разливе нефти (нефтепродуктов) под ледяным покровом преимущественно арктических водоемов.

Изобретение относится к биотехнологии, а именно к экологическим препаратам, обеспечивающим очистку почвы и водной поверхности, загрязненных нефтью и нефтепродуктами.
Изобретение относится к биотехнологии и может быть использовано для очистки водных поверхностей от нефтяного загрязнения. Способ предусматривает внесение в водный объект микробного препарата на основе консорциума микроорганизмов Acinetobacter sp.
Изобретение относится к биохимии. Штамм бактерий Tsukamurella tyrosinosolvens PS2 обладает способностью утилизировать алифатические углеводороды и продуцировать биологически поверхностно-активные вещества.

Изобретение относится к области биохимии. Предложен способ оценки пригодности водорослей и цианобактерий для формирования активного ила очистных сооружений.
Изобретение относится к области биотехнологии, микробиологии, экологии, охраны окружающей среды. Штамм бактерий Salinibacterium amurskyense ARC 14 обладает способностью к деструкции нефти и нефтепродуктов в водной среде.

Изобретение относится к области биотехнологии. Штамм Nocardia coeliaca ARC 12 обладает нефтеокисляющей способностью.

Изобретение относится к области биотехнологии. Штамм Psychrobacter cibarius ARC 13, обладающий способностью к деструкции нефти и нефтепродуктов, депонирован под регистрационным номером ВКПМ В-12351.

Изобретение относится к области биотехнологии, микробиологии, экологии, охране окружающей среды. Штамм бактерий Arthrobacter rhombi ARC 16 обладает способностью к деструкции нефти и нефтепродуктов.

Изобретение относится к области биотехнологии, микробиологии, экологии, охране окружающей среды. Штамм бактерий Arthrobacter rhombi ARC 15 обладает способностью к деструкции нефти и нефтепродуктов.

Изобретение относится к области биотехнологии. Штамм Cobetia marina ARC 11 обладает нефтеокисляющей способностью.

Изобретение относится к устройствам для очистки воды и может быть использовано в системах очистки хозяйственно-бытовых сточных вод, в медицине, пищевой промышленности, сельском хозяйстве и для получения питьевой воды.
Наверх