Способ подготовки углеводородного газа к транспорту

Изобретение относится к нефтегазодобывающему сектору производства для использования при промысловой подготовке углеводородного газа, включая сопутствующий нефтяной и природный газ, к транспорту. Сущность изобретения заключается в предупреждении гидратообразования на молекулярном уровне при транспортировании по трубопроводу (шлейфам) и снижении фактической концентрации влаги в потоке углеводородного газа. Подготовка (переработка) исходного углеводородного газа включает прямое воздействие на присутствующие в нем водосодержащие молекулы введением в поток газа предлагаемого углеводородного фракционного состава (УФС), выкипающего в интервале 25-360°С, с потенциалом водонерастворимого ингибитора гидратообразования, в пределах 2-90/98-10 по массе к присутствующим водосодержащим молекулам в потоке углеводородного газа и выведение из него жидкости для разделения на углеводородную и водную фазы, с направлением последней в промстоки, а углеводородной фазы на вторичное использование. Изобретение позволяет снизить расход используемого водорастворимого летучего органического ингибитора гидратообразования. 2 з.п. ф-лы, 1 ил., 1 табл.

 

Изобретение относится к процессам подготовки углеводородного газа к транспорту, включая попутный нефтяной и природный газ, и может найти применение в нефтегазовом секторе производства.

Область изобретения

Данное изобретение связано со способом ингибирования гидратообразований в газовом потоке. Более конкретно, данное изобретение относится к способу ингибирования образования гидратов газа и его составляющих в газовом потоке при подготовке его к транспорту, включая процесс сбора газа из скважин по шлейфам и коллектору на сепарацию.

Основание изобретения

В углеводородном газе присутствуют двуокись углерода, сероводород и разнообразные углеводороды, такие как метан, этан, пропан, нормальный бутан и изобутан. Кроме того, с такими углеводородами водосодержащие молекулы обычно образуют смеси разнообразных составов. В условиях повышенного давления и/или пониженной температуры, в смеси таких составов могут образовываться клатрат-гидраты или другие гидраты, которые представляют собой водные кристаллы, образующие клетеобразную структуру вокруг способных ее образовать молекул, таких как гидратообразующие углеводороды или газы. Примеры некоторых гидратообразующих углеводородов включают, не в порядке ограничения метан, этан, пропан, изобутан, бутан, неопентан, этилен, пропилен, изобутилен, циклопропан, циклобутан, циклопентан, циклогексан и бензол. Примеры некоторых гидратообразующих газов включают, не ограничиваясь ими, кислород, азот, сероводород, двуокись углерода и хлор, например, известен способ ингибирования гидратообразования в газовом потоке содержащем водорастворимый ингибитор (метанол) (см. патент RU №2175882 кл. C2F 17, D 1/05 от 20.11.2001).

Кристаллы гидратов газов или гидраты газа составляют класс клатрат-гидратов, представляющих особый интерес для нефтегазодобывающей промышленности вследствие вызываемого ими закупоривания трубопровода при транспортировании углеводородного газа и других жидких углеводородов с газовой фазой. Например, при давлении около 1 МПа этан образует гидраты газа при температуре ниже 4°С, а при давлении 3 МПа этан образует гидраты газа при температуре ниже 14°С. Такие температуры и давления являются обычными условиями эксплуатации, используемыми при транспортировании углеводородного газа, включая попутный нефтяной и природный газ.

В виде агломератов гидратов газа они могут образовывать гидратные пробки в трубопроводе, используемом для получения и/или транспортирования углеводородного газа. Образование таких гидратных пробок может привести к остановке производства и значительным финансовым потерям. Кроме того, повторный запуск закупоренного оборудования, в частности, оборудования для отвода и транспортирования продукции, может быть трудным по причине значительных временных, энергетических и материальных затрат, а также разнообразные технические регулировки часто требуют надежного удаления гидратной пробки.

Известен способ подготовки углеводородного газа к транспорту методом низкотемпературной сепарации (НТС) газа (см. Балыбердина И.Т. Физические методы переработки и использования газа. – М.: Недра, 1988, с. 153-154). Этот способ осуществляется путем охлаждения газа в теплообменниках и редуцирующих устройствах (дросселях, детандерах и/или эжекторах) с последующим отделением конденсирующихся фаз в сепараторах. При температуре в концевом низкотемпературном сепараторе ниже минус 25°С обеспечивается высокая степень извлечения жидких углеводородов (С5 Н12+высшие) из природного газа газоконденсатных месторождений (выше 95%). Для предупреждения гидратообразования в поток газа перед теплообменниками и расширительными устройствами подается водорастворимый летучий ингибитор гидратообразования. Отработанный ингибитор (насыщенный раствор) регенерируется методом ректификации на отдельной установке регенерации. Для предупреждения гидратообразования в газовый поток подается ингибитор (обычно метанол).

Недостатком указанного способа является повышенный расход вводимого в газовый поток водорастворимого летучего ингибитора гидратообразования - метанола и энергетические затраты на его регенерацию из водометанольной фазы (насыщенного раствора). Регенерация метанола методом ректификации неэффективна при низких его концентрациях в насыщенном растворе (ниже 10-15 мас. %). В связи с этим жидкий метанольный состав низких концентраций утилизируют методом сжигания и закачкой через специальные скважины в пласт (горизонт) с помощью дожимной компрессорной станции (ДКС). Поскольку метанол является токсичным веществом с предельной допустимой концентрацией (ПДК), это отрицательно сказывается на экологии окружающей среды (воздушного бассейна и экологической среды).

Наиболее близким аналогом по сути к предлагаемому техническому решению является способ подготовки природного газа (см. патент RU №2124930, кл. B01D 53/00, 53/26, от 23.06.1998), включающий подачу газа из скважин на сепарацию, введение в поток газа водорастворимого летучего ингибитора гидратообразования - метанола, ступенчатую сепарацию с охлаждением газового потока между ступенями сепарации, выведение из сепараторов жидкости, разделение ее на углеводородную и водометанольную фазы, подачу жидких углеводородов с первой ступени сепарации на противоточное контактирование с отсепарированным газом на последнюю ступень сепарации, объединение жидких фаз с последней и промежуточных ступеней сепарации, выведение из полученной смеси водометанольной фазы и подачу ее на контактирование с газом на первую ступень сепарации, выведение с этой ступени водометанольной фазы на установку регенерации метанола, направляют в виде бокового погона оставшуюся после стадии контактирования с продувочным газом с концентрацией метанола не менее 10 мас. %.

При обработке углеводородного газа (исходный пластовый газ состава, мол. % N2 0,51, СН4 89,98, CO2 0,21, С2Н6 4,44, С3Н8 1,91, С4Н10 1,01, С5Н12 +высш. 1,94 в количестве 400 тыс. нм3/ч поступает на установку НТС) устанавливают следующие параметры: в сепараторах первой ступени 1, 2 давление 10 МПа и температура 25°С, в сепараторе 7 давление 9,8 МПа и температура минус 13°С, на входе в сепаратор-абсорбер 12 давление 5,5 МПа и температура минус 30°С. В разделительной емкости 6 давление 5,7 МПа и температура 20°С, в разделительной емкости 12 давление 3 МПа и температура минус 4°С.

Указанный способ подготовки углеводородного газа показал работоспособность и эффективность в начальный период эксплуатации газоконденсатных месторождений, когда газосборные сети (система внутрипромысловых газопроводов, связывающих кусты газоконденсатных скважин с установкой комплексной подготовки газа) функционировали практически в “безгидратном” режиме. Рассматриваемый способ и ему подобные с использованием водорастворимого летучего ингибитора гидратообразования метанола в сжатом природном газе имеет место реализация на установках комплексной подготовки газа (УКПГ) в Западной Сибири РФ. Однако, в процессе падения пластового давления и снижения дебита скважин, определенного технологическим регламентом, изменяется термодинамический режим газового потока в закрытой системе, включая внутрипромысловые трубопроводы (шлейфы и коллектор, соединяющие скважины с установкой НТС на УКПГ). При этом снижается температура на устьях скважин, поэтому промысловая трубопроводная система все в большей степени начинает работать в гидратном режиме.

К основным недостаткам способа относится необходимость насыщения поступающего на обработку углеводородного газа водорастворимым ингибитором гидратообразования - метанолом, несмотря на наличие у первой ступени сепарации отдувки, который начинают подавать на кусты скважин с целью ингибирования образования гидратов газа в газовом потоке при его транспортировании по шлейфам и низкотемпературной сепарации первой ступени перед отдувкой. Это приводит к тому, что в жидкой водометанольной фазе, отделяемой в сепараторе первой ступени установки НТС, концентрация отработанного метанола достигает 20% и более, а наличие метанола в утилизируемой водной фазе увеличивает прессинг на окружающую среду. Тем самым снижается эффективность процесса подготовки углеводородного газа к транспорту, происходит ухудшение условий для испарения на первой ступени сепарации подаваемого с предыдущей ступени сепарации отработанного метанола (из-за понижения температуры и присутствия паров метанола в газе, поступающем на первую ступень сепарации). Кроме того, отделяемая в сепараторе водометанольная фаза с относительно низкой концентрацией метанола не подлежит регенерации и утилизируется, что дополнительно увеличивает его расход и ухудшает экологические показатели установки НТС.

Следовательно существует необходимость в более эффективных ингибиторах гидратообразования в газовом потоке или смесях на их основе, которые было бы удобно примешивать в низких концентрациях к углеводородному газу перед его транспортировкой. Такой ингибитор должен понижать скорость образования зародышей, роста и/или агломерации кристаллов гидратов газа в углеводородном газе и таким образом предупреждать гидратные образования в потоке углеводородного газа и/или углеводородного сырья с газовой фазой при подготовке его к транспорту. Цель предлагаемого изобретения - повышение эффективности за счет снижения расхода водорастворимого летучего ингибитора гидратообразования - метанола и прессинга на окружающую среду.

Заявителю не известно из существующего уровня техники способа подготовки углеводородного газа к транспорту, в котором снижение расхода водорастворимого летучего ингибитора гидратообразования - метанола и прессинга на окружающую среду достигалось бы подобным образом.

Данное техническое решение иллюстрируется чертежом, на котором представлена технологическая схема подготовки углеводородного газа к транспорту по предлагаемому изобретению.

Способ осуществляется следующим образом.

В поток углеводородного газа транспортируемый по шлейфу из скважины на сепарацию при подаче на предварительную сепарацию в сепараторе первой ступени 1 вводят предлагаемый углеводородный фракционный состав (УФС), а из газового потока выделяют жидкость для последующего разделения на углеводородную и водосодержащую фазы. Отсепарированный газ проходит очистку в нижней зоне второго сепаратора первой ступени и поступает в верхнюю зону сепаратора 2 на стадию очередного контактирования с вводимым в него предлагаемым УФС. Оставшуюся после стадии контактирования жидкость выводят из сепаратора 2. Выделенные при сепарации на первой ступени в сепараторах 1 и 2 жидкости объединяют и направляют в емкость 6. В емкости 6 поступающую смесь разделяют на водную фазу, жидкие углеводороды и газ. Водную фазу направляют в промстоки, а газовую - в куб сепаратора-абсорбера 10. Углеводородную жидкость из емкости 6 охлаждают в рекуперативном теплообменнике 11 и подают на противоточное контактирование с газом в сепаратор-абсорбер 10. В поток газа из сепаратора 2 дополнительно закачивают предлагаемый УФС, после чего газ охлаждают в воздушном холодильнике 3, рекуперативном теплообменнике 4 и направляют в сепаратор 7. В сепараторе 7 газ отделяют от сконденсировавшейся жидкости и через эжектор 8, и расширительное устройство 9 подают в сепаратор 10 на противоточное контактирование с углеводородной жидкостью из емкости 6. Обработанный в сепараторе-абсорбере 10 газ нагревают в теплообменнике 4 и направляют потребителям, а выделенную жидкость объединяют с жидкостью из сепаратора 7. Образовавшуюся смесь нагревают в рекуперативном теплообменнике 11 и подают в емкость 12 для разделения на газовую, водную и жидкую углеводородную фазы. Жидкие углеводороды из емкости 12 направляют на вторичное использование, а газы дегазации через эжектор 8 - в абсорбер-сепаратор 10. Водную фазу, с наличием остаточных следов предлагаемого УФС, подают на стадию контактирования с газом в сепаратор первой ступени 2.

По сравнению с аналогом расход водорастворимого летучего ингибитора метанола, используемого в процессе подготовки углеводородного газа к транспорту, уменьшается на 2930 г/ 1000 м3 газа, в том числе при утилизации водометанольной жидкости на 380 г/1000 м3.

Данные по примеру осуществления предлагаемого способа приведены в таблице 1.

Краткое описание изобретения

Согласно изобретению процесс подготовки углеводородного газа к транспорту предлагается осуществлять по представленному способу, который включает подачу газа из скважин на сепарацию, ступенчатую сепарацию с охлаждением газового потока между ступенями сепарации, с целью повышения эффективности за счет снижения расхода водорастворимого летучего ингибитора гидратообразования в поток углеводородного газа, транспортируемого по шлейфу из скважин на сепарацию, и десорбера-сепаратора, до подачи на отдувку первой ступени сепарации, вводят углеводородный фракционный состав (УФС), выкипающий в интервале 25-360°С, в пределах 2-90/98-10 по массе к присутствующим водосодержащим молекулам в газовом потоке.

Воплощение изобретения предусматривает варианты повышения качества УФС за счет использования свойств дополнительных ингредиентов в его составе, углеводородной фракции, выкипающей в интервале 25-210°С, в пределах 0,1-99,55 мас. % и/или метил-трет-бутилового эфира в пределах 0,1-55,1 мас. %.

Представленный способ не требует применения новых дорогостоящих реагентов, снижает расход обычно используемого ингибитора гидратообразования - метанола в процессе переработки исходного газа и традиционной его регенерации из водометанольной фазы с низкой концентрацией, что позволяет исключить из технологического процесса энергоемкую установку по регенерации (восстановлению) отработанного метанола методом ректификации (см. установка регенерации патент №1350447, кл. F17D 1/05, 1987).

Подробное описание изобретения

Изобретение основано на ингибировании газового потока, содержащего гидратообразующие составляющие, прямым воздействием на присутствующие водосодержащие молекулы, что обеспечивает влияние на термодинамическое равновесие между водосодержащими молекулами и молекулами газа, изменяя сложившиеся условия гидратообразования в газовом потоке за счет использования имеющихся свойств у предлагаемого углеводородного фракционного состава (УФС), которые влияют на понижение скорости гидратообразования в углеводородном газе.

Изобретение направлено на предупреждение гидратообразования в газовом потоке. Формирование гидратообразования подразумевает образование зародышей, рост и агломерацию клатрат-гидратов. Такие клатрат-гидраты могут образовываться либо в текучем, либо практически в неподвижном потоке углеводородного газа, но часто наиболее проблематично их образование в текучем потоке, транспортируемом по трубопроводу. Например, могут возникать ограничения потока в результате частичного или полного задерживания (загидрачивания) газового потока по мере того, как клатрат-гидраты прилипают или скапливаются на внутренних стенках трубопровода, используемого для транспортирования углеводородного газа. Тем не менее изобретение может быть применено для предупреждения гидратообразования в газовом потоке, ингибируя формирование гидратообразующих и их составляющих на молекулярном уровне.

Сущность изобретения состоит в том, что предлагаемый углеводородный фракционный состав (УФС) из углеводородных фракций, выкипающих в интервале 25-360°C, включая смесь на их основе, а их количество в составе обеспечивает его качество см. Приложение 1.1. (Фракционный состав УФС "газоконденсатной смеси"), которые индифферентны к углеводородным соединениям газа, при контактировании (смешении) с гидратообразующими в газовом потоке, в частности с водосодержащими молекулами, нейтрализует (изолирует) их на стадии конденсации, что предотвращает образование гидратов при снижении температуры в шлейфе и при последующем охлаждении газового потока на ступенях сепарации, которые затем выводят жидкостью для последующего разделения на углеводородную и водную фазы, с направлением последней в промышленные стоки, а углеводородной фазы на повторное использование в закрытой системе.

Химический потенциал присутствующих водосодержащих молекул в газовом потоке при этом понижается настолько, что они не могут вступать в соединение с молекулами газа и образовывать гидратообразования.

Физическая сущность изобретения заключается в создании системы внутри газового потока, состоящей из двух жидких фаз, которая влияет на снижение имеющихся условий гидратообразования в газовом потоке на протяжении всего процесса подготовки углеводородного газа к транспорту в технологической цепочке, включая важнейшие процессы по выделению жидкости из газового потока с последующим разделением на углеводородную и водную фазы.

Изобретение относится к нефтегазодобывающему сектору производства, в частности, к обработке углеводородного сырья с газовой фазой и может быть использовано в процессе подготовки углеводородного газа к транспорту.

В поток углеводородного газа, транспортируемого по шлейфу от скважин на сепарацию, ступенчатую сепарацию с охлаждением газового потока и десорбера-сепаратора, до подачи на отдувку первой ступени сепарации, вводят углеводородный фракционный состав, выкипающий в интервале 25-360°C, в пределах 2-90/98-10 мас. % к массе присутствующих водосодержащих молекул в газовом потоке.

При необходимости повышения качества у предлагаемого состава УФС имеются варианты, которые предлагают дополнительно вводить в УФС углеводородную фракцию, выкипающую в интервале 25-210°C, в пределах 0,1-99,55 мас. % и/или метил-трет-бутилового эфира в пределах 0,1-55 мас. %.

Предлагаемый углеводородный фракционный состав УФС не содержит молекулы воды и кислородные соединения, но имеет в своем составе углеводородные фракции, которые при введении в газовый поток изменяют термодинамическое равновесие между молекулами воды и газа.

Во взаимодействии между молекулами воды и газа проводится коррекция, что снижает условия возникновения гидратообразования в закрытой системе. Необходимо руководствоваться тем, что вводить состав УФС в газовый поток необходимо до начала гидратообразования, в начале каждого технологического процесса подготовки углеводородного газа к транспорту, в целях его подготовки к транспорту или профилактических мер.

В отличие от используемого растворимого летучего ингибитора гидратообразования - метанола, предлагаемый состав УФС имеет варианты и дополнительно вводимые в его состав ингредиенты (УФ и МТБЭ), которые менее токсичны и полностью выводятся из газового потока в процессе сепарации в составе выводимой жидкости на установке НТС (низкотемпературной сепарации).

Необходимо руководствоваться тем, что эффективность предлагаемого способа возрастает при использовании энергии потока в закрытой системе и резко снижается при повышении температуры, что может являться регулирующим фактором в технологическом процессе подготовки используемого при подготовке углеводородного газа к транспорту. Эффективность данного приема тем выше, чем в большей степени поступающий на обработку газ выполняет функцию продувочного газа, а количество нейтрализованных водосодержащих молекул, сконденсированных в выводимую жидкость из потока углеводородного газа, возрастает.

Например, могут возникать ограничения газового потока по мере того, как гидратообразования прилипают на внутренних стенках трубопровода, используемого при его транспортировке от скважин до установки НТС (низкотемпературной сепарации). Тем не менее, изобретение может быть применено в промышленности для недопущения загидрачивания в закрытой (трубопроводной) системе.

Предлагаемый способ имеет следующие преимущества:

- осуществлять подготовку углеводородного газа к транспорту за счет нейтрализации (изоляции) водосодержащих молекул, присутствующих в газовом потоке, без использования в процессах растворимого ингибитора - метанола, где его концентрация в отдельных процессах иногда может достигать 50 мас. % к массе присутствующих водосодержащих молекул в газовом потоке;

- расход летучего токсичного метанола ингибитора гидратообразования в газовом потоке уменьшается до 100%. По известному способу расход метанола составляет 346 кг/ч;

одновременно сокращаются потери метанола с промышленными стоками;

- снижаются энергозатраты по эксплуатации установки регенерации метанола;

- снижается прессинг на окружающую среду.

Согласно изобретению предлагается способ предупреждения гидратообразования в газовом потоке. Поскольку предлагаемый состав УФС, диспергируясь в газовом потоке, раскрывает свои свойства по нейтрализации (изоляции) присутствующих водосодержащих молекул, снижается вероятность ограничения газового потока.

Необходимая потребность в составе УФС, для ввода в поток углеводородного газа по отношению к присутствующим водосодержащим молекулам в газовом потоке определяется их наличием, которое характеризуется показателем равновесной влагоемкости газового потока и определяется по уравнению Букачека.

Чтобы обеспечить эффективную и квалифицированную нейтрализацию водосодержащих молекул в газовом потоке, следует учесть два момента:

- во-первых, предпочтительно, чтобы отсутствовала водная фаза в газовом потоке в соответствии с технологическим регламентом эксплуатации оборудования, так в системах природного газа, водная фаза не появляется до тех пор, пока газ не охладится в достаточной степени для конденсации водосодержащих молекул;

- во-вторых, поскольку состав УФС прежде всего служит для ингибирования гидратообразования, важно обработать водосодержащие молекулы еще в мелкодисперсном состоянии, до их образования в газовом потоке закрытой системы.

Согласно изобретению жидкость, полученную после стадии воздействия вводимого состава УФС на водосодержащие молекулы в газовом потоке на первой ступени сепарации, разделяют на углеводородную и водную фазы, с направлением последней в промышленные стоки, а углеводородной фазы на повторное использование. Это обеспечивает отсутствие в промышленных стоках содержания летучего метанола и отпадает надобность в его регенерации.

Для оценки эффективности предлагаемого способа, по сравнению с аналогом, где раскрывается потенциал ингибирующих свойств предлагаемого состава УФС из углеводородных фракций, которые характеризуют свои физические воздействия на присутствующие водосодержащие молекулы в газовом потоке, что может быть использовано в процессе подготовки углеводородного газа к транспорту с высокой степенью извлечения жидкой фазы из потока углеводородного газа.

Таким образом, для использования изобретения в промышленности, предлагаемый состав УФС обладает необходимыми свойствами по созданию условий для нейтрализации водосодержащих молекул в газовом потоке, снижению скорости кристаллизации и гидратообразования в газовом потоке с помощью известных технологических приемов, например, непрерывной подачей его в газовый поток с помощью насосов или иного введения в закрытую систему, особенно перед остановкой и запуском задействованного технологического оборудования.

Технический результат предлагаемого способа состоит в том, что сокращается расход используемого растворимого летучего ингибитора гидратообразования метанола на предупреждение образования гидратов при подготовке углеводородного газа к транспорту, снижаются энергозатраты, связанные с его регенерацией, содержание токсичного ингибитора в промышленных стоках и прессинг на окружающую среду.

Состав УФС вводят в поток углеводородного газа, используя такие механические приспособления, как химические топливные насосы, тройники для присоединения отводного трубопровода к главной магистрали, фитинги для впрыскивания и другие устройства, хорошо известные специалистам в соответствующей области.

В качестве основного отличия от аналога (патент RU №2124930) для промышленной применимости предлагаемый способ подготовки углеводородного газа к транспорту характеризуется доступностью необходимых технических средств достижения и упрощенностью всех методов, на основе использования имеющихся технологических процессов и задействованного оборудования в промышленности РФ, без существенных затрат на переоборудование, с использованием в составе УФС углеводородных фракций, выкипающих в интервале 25-360°C, включая смесь на их основе (см. Приложение 1.1.), которая является побочным продуктом производства и используется в производстве различного моторного топлива для двигателей внутреннего сгорания (ДВС) или его компонентов в виде отдельных углеводородных фракций.

Способ повысит эффективность производства на 15%.

Приложение 1.1.

Фракционный состав УФС (газоконденсатная смесь)

1. Способ подготовки углеводородного газа к транспорту, включающий подачу газа из скважин на сепарацию, ступенчатую сепарацию с охлаждением газового потока между ступенями сепарации, введение в поток газа водорастворимого летучего органического ингибитора гидратообразования, выведение из сепараторов жидкой фазы, разделение ее на углеводородную и водометанольную фазы, отличающийся тем, что, с целью повышения эффективности за счет снижения расхода водорастворимого летучего ингибитора гидратообразования в поток углеводородного газа, транспортируемого по шлейфу из скважин на сепарацию, и десорбера-сепаратора, до подачи на отдувку первой ступени сепарации, вводят углеводородный фракционный состав, выкипающий в интервале 25-360°C, в пределах 2-90/98-10 по массе к присутствующим водосодержащим молекулам в газовом потоке.

2. Способ по п.1, отличающийся тем, что углеводородный фракционный состав дополнительно содержит углеводородную фракцию, выкипающую в интервале 25-210°C, в пределах 0,1-99,55 мас.%.

3. Способ по пп.1 и 2, отличающийся тем, что углеводородный фракционный состав дополнительно содержит метил-трет-бутиловый эфир в пределах 0,1-55,1 мас.%.



 

Похожие патенты:

Изобретение относится к технике, предназначенной для сухой очистки газов от пыли, и может быть использовано в строительной, огнеупорной, металлургической и других отраслях промышленности, а также в экологических процессах очистки вентиляционных выбросов.

Изобретение относится к оборудованию для проведения адсорбционных процессов улавливания тумана различных кислот, например в сернокислотной насадочной колонне. Это достигается тем, что в фильтре с зернистым адсорбентом, содержащим корпус, входной и выходной патрубки и элементы со взвешенными слоями адсорбента, в корпусе размещено по крайней мере два элемента со взвешенными слоями адсорбента, установленные параллельно по ходу газового потока, а каждый элемент выполнен в виде заполненных адсорбентом перфорированных опорных решеток, разделенных наклонными в сторону днища корпуса перегородками, причем оросители установлены над каждым слоем адсорбента и связаны между собой единой трубой, а в днище корпуса расположен канал для удаления шлама, а на перфорированных опорных решетках установлен вибратор.

Изобретение относится к оборудованию для проведения адсорбционных процессов в системе газ (пар) - адсорбент. Это достигается тем, что в кольцевом адсорбере, содержащем цилиндрический корпус с крышкой и днищем, выполненными эллиптической формы, причем в крышке смонтированы загрузочный и смотровой люки, причем загрузочный люк соединен с бункером-компенсатором, расположенном в крышке, а штуцер для подачи исходной смеси, сушильного и охлаждающего воздуха расположен в нижней части корпуса, в которой закреплены опоры для базы под внешний и внутренний перфорированные цилиндры, причем выгрузка отработанного адсорбента осуществляется через разгрузочный люк, установленный в нижней части корпуса, который закреплен в, по меньшей мере, трех установочных лапах, а штуцер для отвода паров и конденсата при десорбции и для подачи воды расположен в днище, в котором закреплен штуцер для отвода очищенного газа и отработанного воздуха и для подачи водяного пара, причем он закреплен через коллектор, имеющий два канала, причем в одном из которых расположена заслонка для процесса десорбции, с барботером, барботер выполнен тороидальной формы по всей высоте перфорированных цилиндров, а штуцер для предохранительного клапана установлен в верхней части корпуса, а процесс адсорбции и десорбции протекает при следующих оптимальных соотношениях составляющих аппарат элементов: коэффициент перфорации тороидальной поверхности барботера лежит в оптимальном интервале величин: К=0,5…0,9; отношение высоты Н цилиндрической части корпуса к его диаметру D находится в оптимальном соотношении величин: H/D=2,0…2,5; отношение высоты Н цилиндрической части корпуса к толщине S его стенки находится в оптимальном соотношении величин: H/S=580…875, при этом адсорбент выполнен по форме в виде шариков, а также сплошных или полых цилиндров, зерен произвольной поверхности, получающейся в процессе его изготовления, а также в виде коротких отрезков тонкостенных трубок или колец равного размера по высоте и диаметру: 8, 12, 25 мм.

Изобретение относится к теплоэнергетике и может быть использовано в процессах очистки дымовых газов от вредных примесей, например, для полной утилизации дымовых газов теплогенераторов, работающих на бессернистом топливе (природном газе).

Предложены системы и способы обнаружения проскока аммиака. В одном из примеров выхлопная система содержит два датчика NOx и использует изменяющиеся отклики этих датчиков NOx для присвоения выходного сигнала датчика NOx на выхлопной трубе уровням NOx и NH3 в ней.

Изобретение относится к процессам разделения многокомпонентных газовых потоков на отдельные компоненты или фракции при помощи адсорбентов и может быть использовано в нефтяной, газовой, нефтеперерабатывающей, нефтехимической, химической и других отраслях промышленности.

Изобретение раскрывает установку паровой конверсии сернистого углеводородного газа, которая оснащена линией ввода сырьевого газа и линией вывода конвертированного газа с рекуперационным устройством, включает также нагреватель и конвертор, при этом установка оборудована узлом адсорбционного обессеривания, состоящим, по меньшей мере, из двух переключаемых адсорберов, по меньшей мере один из которых, находящийся в режиме регенерации адсорбента, соединен с линией вывода конвертированного газа в дефлегматор, установленный в качестве рекуперационного устройства и оснащенный линией вывода подготовленного газа, а остальные адсорберы, находящиеся в режиме адсорбции, установлены на линии ввода сырьевого газа, кроме того, установка оснащена блоком подготовки воды, соединенным линией подачи подготовленной воды с линией подачи сырьевого газа после адсорбера и оснащенным линиями ввода воды, подачи дегазированного водного конденсата из дефлегматора и вывода солевого концентрата, при этом нагреватель установлен на линии подачи парогазовой смеси из дефлегматора в конвертор.

Изобретение относится к осушке и/или очистке газов в химической, металлургической или других областях народного хозяйства. Насадочный абсорбер осушки газа содержит корпус с патрубками подвода газа, отвода осушенного газа, подвода и отвода абсорбента и расположенные в корпусе входную сепарационную секцию, массообменную абсорбционную насадочную секцию и выходную фильтрующую секцию.

Изобретение относится к способу производства галобутилкаучуков, а именно к способу сушки влажной крошки этих каучуков. Техническим результатом является повышение эффективности сушки каучука без снижения его качества.

Способ и установка очистки природного газа от диоксида углерода и сероводорода с выделением указанных примесей в качестве новых видов сырьевых потоков могут быть использованы в газоперерабатывающей промышленности.

Изобретение относится к способам разделения газовых смесей, содержащих водород и диоксид углерода, с помощью гидридов металлов и может быть использовано в водородной энергетике, химической и пищевой промышленности. Исходную газообразную смесь подают в абсорбционный блок и фильтруют через засыпку порошка интерметаллического сплава, имеющего равновесное давление гидрирования меньшее, чем парциальное давление водорода в исходной смеси. Абсорбционный блок охлаждают для поддержания постоянной температуры. Одновременно с этим диоксид углерода отводят из абсорбционного блока. Для десорбции водорода температуру в абсорбционном блоке повышают. Изобретение позволяет снизить потери и повысить степень очистки водорода от примеси диоксида углерода. 1 ил.

Изобретение относится к композиции катализатора, пригодной для обработки выхлопного газа, содержащей: а) алюмосиликатный цеолитный материал, включающий в себя диоксид кремния и диоксид алюминия в каркасе СНА и имеющий соотношение оксида кремния и оксида алюминия (SAR) 10–25; b) 1-5 массовых процентов базового металла (ВM), считая на общую массу цеолитного материала, где указанный базовый металл расположен в указанном цеолитном материале в виде свободного и/или внекаркасного обмененного металла; с) щелочноземельный металл (в общем AM), расположенный в указанном цеолитном материале в виде свободного и/или внекаркасного обмененного металла, где ВМ и АМ присутствуют соответственно в мольном соотношении 15:1-1:1, причем диоксид алюминия содержит алюминий (Al), который является частью каркаса цеолита, и композиция катализатора имеет мольное соотношение (ВМ+АМ):Al 0,1-0,4, и AM представляет собой кальций. Изобретение также относится к каталитически активному слою из пористого оксида, каталитическому изделию для обработки выхлопного газа и способу восстановления NOx в выхлопном газе. Технический результат заключается в увеличении гидротермической стабильности материала. 4 н. и 12 з.п. ф-лы, 5 ил., 2 табл., 5 пр.

Способ очистки газовых выбросов может быть использован на предприятиях металлургической, химической, нефтяной, коксохимической, теплоэнергетической отраслей промышленности. Способ включает облучение газовых выбросов ультрафиолетовым излучением электрического разряда в рабочем интервале длин волн со средней плотностью световой энергии 10-3-3⋅10-1 Дж/см2, при этом облучение проводят в присутствии озона и карбамида при температуре газовых выбросов 0°С - +250°С, причем озон получают путем облучения потока воздуха, подаваемого в камеру предварительного облучения, причем большие значения средней плотности световой энергии из указанного диапазона используют в камере предварительного облучения, а меньшие - непосредственно в газоходе установки, причем облучение газовых выбросов ультрафиолетовым излучением электрического разряда в газоходе проводят в спектральном диапазоне длин волн 290-360 нм, причем облучение газовых выбросов ультрафиолетовым излучением электрического разряда в камере предварительного облучения проводят в спектральном диапазоне длин волн 360-430 нм. Изобретение позволяет повысить степень очистки промышленных выбросов от токсичных ПАУ, в том числе бенз(а)пирена. 1 ил.

Изобретение относится к области обогащения полезных ископаемых, а именно к флотационному процессу разделения минеральных частиц любой крупности. Может быть также использовано для очистки сточных вод, в химической промышленности и других отраслях производства, где необходима аэрация жидкости. Устройство для аэрации жидкости содержит емкость аэрируемой жидкости, ограниченную перегородками, газовую емкость, открытую в сторону днища емкости аэрируемой жидкости, струенаправляющую насадку, размещенную в газовой емкости, патрубки для подвода жидкости, патрубки для подвода газа, патрубки для отвода газа. Дополнительно устройство содержит источник колебаний, соединенный с газовой емкостью и позволяющий создавать требуемую по технологии дисперсность исходных пузырьков газа. Емкость аэрируемой жидкости содержит не менее 3-х перегородок, образующих между собой камеры сепарации пузырьков газов. Изобретение обеспечивает получение любой, требуемой по технологии, дисперсности исходных пузырьков газа. 8 з.п. ф-лы, 5 ил.

Изобретение относится к технике и технологии адсорбционной осушки и очистки углеводородных газов и может быть использовано в нефтегазоперерабатывающей и нефтехимической промышленности при проектировании и строительстве объектов подготовки и переработки газа, нефтехимпереработки, имеющих в своем составе установки адсорбционной подготовки газа. Способ регенерации адсорбента включает последовательное нагревание и охлаждение адсорбента продувкой сухим отбензиненным газом в качестве газа регенерации и газа охлаждения, который получают выделением углеводородов С2+выше или С3+выше из осушенного и очищенного углеводородного газа при его низкотемпературной переработке, последующем сжатии и охлаждении в дожимной компрессорной станции, нагрев газа охлаждения после стадии охлаждения адсорбента для получения горячего газа регенерации и его подачу на регенерацию адсорбента. При этом по первому варианту в качестве газа охлаждения используют часть потока сухого отбензиненного газа, который отбирают после охлаждения в дожимной компрессорной станции в количестве, равном общему количеству газа, необходимого для регенерации адсорбента, а при достижении заданной температуры на стадии охлаждения адсорбента подачу газа охлаждения прекращают и одновременно на стадии получения газа регенерации обеспечивают подачу части потока горячего сухого отбензиненного газа, отбираемого после сжатия в дожимной компрессорной станции в количестве, равном количеству газа охлаждения. По второму варианту в качестве газа охлаждения используют часть потока сухого отбензиненного газа, который отбирают после охлаждения в дожимной компрессорной станции в рассчитанном количестве, обеспечивающем за время цикла охлаждение-регенерация охлаждение адсорбента, при этом после стадии охлаждения адсорбента газ охлаждения соединяют с частью потока горячего сухого отбензиненного газа, постоянно отбираемого после сжатия в дожимной компрессорной станции в количестве, суммарно обеспечивающем регенерацию адсорбента. Также предложена система для осуществления предлагаемого способа. Изобретение позволяет снизить энергетические затраты на проведение процесса регенерации адсорбента. 3 н. п. ф-лы, 1 ил.

Изобретения относятся к области очистки газовых смесей и дымовых газов и могут применяться в теплоэнергетике. Устройство для очистки выбросов в атмосферу сжигающей топливо установки содержит топку с газоходом, связанным с входными патрубками эжекторов, парогенератор и воздухонагреватель. Парогенератор и воздухонагреватель расположены в корпусе топки и соединены газопроводами с переключателем рабочей среды. Переключатель рабочей среды посредством рабочего трубопровода также соединен с входными патрубками эжекторов, выходные патрубки которых размещены в емкости с очищающей средой. Трубопровод емкости для реактивов соединен с рабочим трубопроводом. Способ уменьшения вредных выбросов в атмосферу сжигающей топливо установки, содержащей устройство для очистки выбросов, заключается в удалении дымовых газов из топочного пространства за счет разрежения, создаваемого регулированными по производительности и перемещению эжекторами, выходные патрубки которых размещены в емкости с очищающей средой. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к очистке сероводородсодержащих углеводородных газов и может быть использовано в химической промышленности. Установка для процесса очистки сероводородсодержащих углеводородных газов от сероводорода с получением элементарной серы содержит реактор 1 прямого окисления сероводорода с катализатором, конденсатор серы 2, последовательный барботер 3, заполненный жидкой серой, промывную противоточную колонну 4. Изобретение позволяет обеспечить высокую степень непрерывной очистки сероводородсодержащих углеводородных газов от сероводорода. 1 ил., 2 табл., 6 пр.

Изобретение относится к оборудованию для проведения адсорбционных процессов в системе газ (пар) - адсорбент. Технический результат - повышение степени очистки газового потока от целевого компонента и пыли. В горизонтальном адсорбере периодического действия содержится цилиндрический корпус с крышками и днищем. Крышки выполнены сферическими и смонтированы слева и справа от горизонтально расположенного цилиндрического корпуса. В верхней части цилиндрического корпуса расположены загрузочные люки с предохранительными мембранами, штуцер для отвода паров при десорбции и штуцер для предохранительного клапана. В левой крышке расположен штуцер с распределительной сеткой для подачи паровоздушной смеси при адсорбции и воздуха при сушке и охлаждении. В средней части корпуса на балках с опорами, поддерживающими колосниковую разборную решетку, на которой уложен слой сетки, размещен слой адсорбента. На верхней сетке, прикрывающей слой адсорбента, положены грузы для предотвращения уноса адсорбента при десорбции. Выгрузка отработанного адсорбента осуществляется через, по меньшей мере, два разгрузочных люка, расположенных симметрично относительно вертикальной оси корпуса. В днище корпуса смонтирован смотровой люк со штуцером для отвода конденсата и подачи воды, а также барботер со штуцером для подачи водяного пара. Барботер выполнен по всей длине корпуса в виде, по меньшей мере, одной перфорированной цилиндрической трубы и закреплен на поверхности днища посредством распорок. Коэффициент перфорации цилиндрической поверхности барботера лежит в оптимальном интервале величин: К=0,5…0,9, а отношение длины L цилиндрической части корпуса к его диаметру D находится в оптимальном соотношении величин: L/D=1,5…5,0; отношение длины L цилиндрической части корпуса к толщине S его стенки находится в оптимальном соотношении величин: L/S=300…1125; отношение высоты слоя адсорбента H1 к длине L цилиндрической части корпуса находится в оптимальном соотношении величин: Н1/L=0,05…0,27. Адсорбент выполнен в виде, по крайней мере, трех коаксиально расположенных полусферических поверхностей, соединенных между собой с зазором посредством крепежного элемента через осесимметрично расположенные простановочные элементы в виде колец. Между полусферическими поверхностями закреплены на простановочных элементах гофрированные элементы, имеющие форму образующей поверхности, эквидистантную полусферическим поверхностям, или простановочные элементы в адсорбенте выполнены в виде цилиндрических винтовых пружин. 2 з.п. ф-лы, 3 ил.

Изобретение относится к составу катализатора для обработки выхлопного газа, включающему цеолитный материал, имеющий структуру с малыми порами и мольным отношением оксида кремния к окиси алюминия (SAR) от 10 до 30; от 1,5 до 5 вес. % обмениваемого неалюминиевого переходного металла, из расчета общего веса цеолита; и по меньшей мере 1,35 вес. % церия, из расчета общего веса цеолита, при том что упомянутый церий присутствует в виде, выбранном из обмениваемых ионов церия, мономерной окиси церия, олигомерной окиси церия и их сочетания, при условии, что упомянутая олигомерная окись церия имеет размер частицы меньше чем 5 мкм, причем обмениваемый неалюминиевый переходный металл выбран из группы, состоящей из марганца, железа, кобальта, никеля и меди и их смесей, причем по меньшей мере один металл со сверхрешеткой представляет собой медь и причем церий введен в катализатор после введения меди. Изобретение также относится к способу обработки NOx, включающему контактирование выхлопного газа, произведенного экономичным двигателем внутреннего сгорания. Технический результат заключается в увеличении каталитической активности СКВ катализаторов при низких температурах эксплуатации. 3 н. и 11 з.п. ф-лы, 1 ил., 1 табл., 1 пр.

Изобретение относится к нефтехимической и нефтеперерабатывающей промышленности. Способ очистки отходящих газов окисления изопропилбензола заключается в извлечении изопропилбензола с помощью низкотемпературной конденсации, причем для создания низких температур используют энергию отходящих газов окисления изопропилбензола. Изобретение позволяет увеличить степень извлечения изопропилбензола из отходящих газов. 1 ил.
Наверх