Способ литья крупногабаритных лопаток турбин

Изобретение относится к области технологии литейного производства и может найти применение для изготовления отливок крупногабаритных рабочих и сопловых турбинных лопаток из жаропрочных и коррозионностойких сплавов. Способ включает изготовление литейной формы, нанесение на поверхность литейной формы частиц алюмината кобальта, нагрев литейной формы, заливку в литейную форму расплава сплава и кристаллизацию сплава с формированием пера, коробки замковой полки, хвостовика лопатки и прибыли. Для формирования пера и коробки замковой полки лопатки в литейную форму сначала заливают расплав с температурой на 50-80°С выше температуры ликвидус сплава, а затем для формирования хвостовика лопатки и прибыли заливают расплав с температурой, равной температуре ликвидус сплава или выше ее на 1-15°С. Обеспечивается получение плотной мелкозернистой структуры металла как в тонкостенном пере, так и массивном хвостовике лопатки. 4 з.п. ф-лы.

 

Изобретение относится к области технологии литейного производства и может найти применение для изготовления отливок крупногабаритных рабочих и сопловых турбинных лопаток из жаропрочных и коррозионностойких сплавов.

Известен способ литья лопаток газовых турбин из жаропрочных сплавов на основе никеля, обеспечивающий получение мелкозернистой структуры литого металла, который включает нагрев расплава до температуры 1480-1600°С, введение в него модификатора на основе ультрадисперсных частиц карбонитрида титана и заливку расплава в форму. (RU 2457270, С22С 35/00, опубликовано 27.07.2012.)

Известный способ позволяет получить мелкозернистую структуру отливки, включая в тонкостенных элементах отливки, однако введение в расплав нитридов приводит к образованию пористости в отливках и снижению жаропрочности.

Известен способ литья лопаток газовых турбин, включающий литье в оболочковую форму, на внутренней поверхности которой размещают модификатор - частицы алюмината кобальта, причем температура расплава значительно выше температуры ликвидус сплава. (Е.Н. Каблов, «Литые лопатки газотурбинных двигателей. Сплавы, технологии, покрытия», М., Изд. МИСиС, 2001, 632 стр.)

При осуществлении известного способа также достигается мелкозернистая структура тонкостенных элементов отливки (перо турбинной лопатки). Однако в массивных элементах лопатки (хвостовик лопатки) измельчение зерна в отливке не происходит.

Наиболее близким по технической сущности и достигаемому результату является способ для литья лопаток турбин из жаропрочных сплавов на основе никеля, включающий изготовление оболочковой формы, на внутренней поверхности которой размещают частицы алюмината кобальта, нагрев формы и заливку в форму расплава с температурой, равной температуре ликвидус сплава или выше ее на 0-15°С. Температура формы при заливке составляет 750-1250°С. (US 5983983, B22D 25/02, B22D 27/20, B22D 31/00, опубликовано 16.11.1999.)

Недостатком этого способа является незалив тонкостенных элементов лопатки, например, кромки пера лопатки. Это связано с низкой температурой расплава при заливке.

Задачей и техническим результатом изобретения является создание способа литья крупногабаритных лопаток турбин, обеспечивающего получение плотной мелкозернистой структуры металла во всех элементах отливки, как в тонкостенном пере, так и массивном замке (хвостовике) лопаток.

Технический результат достигается тем, что способ литья крупногабаритных лопаток турбин включает изготовление литейной формы, нанесение на поверхность литейной формы частицы алюмината кобальта, нагрев литейной формы, заливку в литейную форму расплава сплава и кристаллизацию сплава с формированием пера, коробки замковой полки, хвостовика лопатки и прибыли, при этом сначала для формирования пера и коробки замковой полки лопатки в литейную форму заливают расплав с температурой на 50-80°С выше температуры ликвидус сплава, а затем для формирования хвостовика лопатки и прибыли заливают расплав с температурой, равной температуре ликвидус сплава или выше ее на 1-15°С.

Технический результат также достигается тем, что заливку расплава осуществляют с использованием двух заливочных тиглей, содержащих соответствующие упомянутые расплавы; заливку осуществляют с использованием одного заливочного тигля, содержащего расплав с температурой на 50-80°С выше температуры ликвидус сплава, при этом после заливки расплава, формирующего перо и коробку замковой полки лопатки, оставшийся расплав в течение не более 2-х минут охлаждают до температуры на 15-20°С ниже температуры ликвидус сплава, вновь нагревают его до температуры заливки хвостовика лопатки и прибыли, равной температуре ликвидус сплава или выше ее на 1-15°С, предпочтительно на 5°С, и заливают в литейную форму для формирования хвостовика лопатки и прибыли; время заливки расплава для формирования пера и коробки замковой полки лопатки составляет не более 30 с, а время заливки расплава для формирования хвостовика лопатки и прибыли составляет 5-8 с; литейную форму нагревают перед заливкой расплава до температуры 1050-1150°С.

Реализация способом по изобретению своего назначения и достижение поставленного технического результата может быть проиллюстрировано следующим примером.

Отливки полых рабочих лопаток газовой турбины общей длиной отливок 350-420 мм изготавливали из жаропрочного сплава на основе никеля ЦНК-7П, причем длина пера лопатки составили 140 мм и 210 мм (для первой и второй ступеней соответственно) при минимальной толщине стенки 0,8 мм, а длина замка лопатки - 40-60 мм при толщинах стенок от 15 до 25 мм.

Модельный блок состоял из 2-х лопаток с общей прибылью и горизонтальным литником между прибылью и обеими лопатками. Для отливки блока использовали оболочковые керамические формы, на внутреннюю поверхность которой наносили микрочастицы алюмината кобальта. Для этого при формировании первого внутреннего слоя литейной формы на выплавляемую модель окунанием или напылением наносили слой суспензии на основе электрокорунда со связующим Людокс, причем содержание алюмината кобальта в суспензии составило 7% от массы суспензии (допустимо 7-15%). Формирование последующих слоев литейной формы вели стандартным методом с использованием суспензии без алюмината кобальта. Конечная толщина стенки формы составила 10±1 мм.

Перед прокаливанием формы производили теплоизолирование прибыли и литника намоткой на прибыль 4-х слоев керамического войлока и 2-х слоев керамического войлока на литник общей толщиной 20 мм и 10 мм соответственно.

После прокаливания форму в теплоизолированном модуле помещали в вакуумную плавильно-заливочную установку с одним плавильным тиглем в печи подогрева и доводили температуру формы перед заливкой до 1100±10°С (перо лопатки) и 1150±10°С (замок лопатки).

Нагрев формы производили в вакууме 10-3 тор, расплавление шихтовой заготовки сплава и заливку расплава - под остаточным давлением аргона 150-200 Па. При заливке температура части расплава, который формирует тонкостенное перо и коробку замковой полки лопатки, составила 1440°±5, что на 70°С выше температуры ликвидус сплава. Время заливки формы с длиной пера 140 мм (первая ступень) составило 14±2 с, а формы с длиной пера 210 мм (вторая ступень) - 18±2 с.

Затем плавильный тигель возвращали в исходное положение, доводили температуру оставшегося расплава до температуры 1345-1355°С (15-25°С ниже температуры ликвидус), а затем после паузы 10-15 с вновь нагревали до температуры 0-15°С выше температуры ликвидуса и производили заливку толстостенного хвостовика и прибыли в течение 7±2 с. Общее время между двумя заливками составило менее 2-х мин.

Охлаждение литейной формы в теплоизолированном муфеле после заливки проводили в вакууме в отключенной печи подогрева в течение 15 мин до полного затвердевания расплава, а затем 30 мин - в воздушной атмосфере установки для формирования оптимального размера γ'-фазы и снятия остаточных напряжений в отливке.

Результатом осуществления указанного способа, по данным металлографических исследований, была получена плотная мелкозернистая структура пера лопаток и коробки замковой полки, состоящая из тонких вытянутых зерен толщиной 0,3-1,0 мм, что характерно для структур поверхностного модифицирования, а плотная структура замка состояла из мелких равноосных зерен размером 2-6 мм. Размер γ'-фазы - 0,3-0,5 мкм. Пористость металла лопаток - в пределах 0,4%.

Отливку лопаток на опытной установке также вели с использованием двух заливочных тиглей для раздельной заливки: пера и коробки замковой полки лопатки при температуре расплава на 50-80°С выше температуры ликвидус сплава, а толстостенного хвостовика и прибыли - при температуре, равной температуре ликвидус сплава или выше ее на 15°С.

При осуществлении способа по изобретению после заливки расплава, формирующего тонкостенное перо и коробку замковой полки, оставшийся расплав заливали в форму до истечения 1,5 мин, за которые расплав охлаждали до температуры 1345-1350°С, что на 15-20°С ниже температуры ликвидус сплава и вновь нагревали до температуры 1375°С, которая на 5°С выше температуры ликвидус сплава.

В результате была получена аналогичная структура пера лопаток и коробки замковой полки, а структура замка состояла из равноосных зерен с размером 0,5-2,0 мм при указанных выше размерах γ'-фазы и плотности отливок.

Таким образом, способ по изобретению обеспечивает достижение поставленного технического результата: получить плотную мелкозернистую структуру металла во всех элементах отливки, как в тонкостенном пере, так и массивном замке (хвостовике) лопаток.

1. Способ литья крупногабаритных лопаток турбин, включающий изготовление литейной формы, нанесение на поверхность литейной формы частиц алюмината кобальта, нагрев литейной формы, заливку в литейную форму расплава сплава и кристаллизацию сплава с формированием пера, коробки замковой полки, хвостовика лопатки и прибыли, отличающийся тем, что сначала для формирования пера и коробки замковой полки лопатки в литейную форму заливают расплав с температурой на 50-80°С выше температуры ликвидус сплава, а затем для формирования хвостовика лопатки и прибыли заливают расплав с температурой, равной температуре ликвидус сплава или выше ее на 1-15°С.

2. Способ по п. 1, отличающийся тем, что заливку расплава осуществляют с использованием двух заливочных тиглей, содержащих соответствующие упомянутые расплавы.

3. Способ по п. 1, отличающийся тем, что заливку осуществляют с использованием одного заливочного тигля, содержащего расплав с температурой на 50-80°С выше температуры ликвидус сплава, при этом после заливки расплава, формирующего перо и коробку замковой полки лопатки, оставшийся расплав в течение не более 2-х минут охлаждают до температуры на 15-20°С ниже температуры ликвидус сплава, вновь нагревают его до температуры заливки хвостовика лопатки и прибыли, равной температуре ликвидус сплава или выше ее на 1-15°С, предпочтительно на 5°С, и заливают в литейную форму для формирования хвостовика лопатки и прибыли.

4. Способ по п. 1, отличающийся тем, что время заливки расплава для формирования пера и коробки замковой полки лопатки составляет не более 30 с, а время заливки расплава для формирования хвостовика лопатки и прибыли составляет 5-8 с.

5. Способ по п. 1, отличающийся тем, что литейную форму нагревают перед заливкой расплава до температуры 1050-1150°С.



 

Похожие патенты:

Изобретение относится к литейному производству. Нагретый до температуры выше температуры ликвидуса жаропрочный сплав через стояк 2 и коллектор 3 литниковой системы заливают в тонкостенную керамическую форму 1 с затравкой, расположенной в верхней части формы.

Изобретение относится к получению литьем постоянных магнитов толщиной не более 40 мм из сплава на основе неодим-железо-бор (Nd-Fe-B) или празеодим-железо-бор (Pr-Fe-B). Способ включает заливку сплава в литейную форму и его объемную кристаллизацию при скорости охлаждения не менее 200 град/мин.

Изобретение относится к металлургии и может быть использовано для производства монокристаллических рабочих лопаток газовых турбин с повышенными характеристиками по ресурсу и рабочей температуре.

Изобретение относится к литейному производству и может быть использовано для получения из жаропрочного сплава отливок лопаток газовых турбин. Устройство содержит размещенную в вакуумном кожухе (2) технологическую камеру (16), которая поделена по горизонтали на зону нагрева и зону охлаждения теплоизоляционным экраном (9), установленным на стопорном кольце (14).

Изобретение относится к области литейного производства. Способ включает заливку расплавленного сплава в полость литейной формы через литейный канал.

Изобретение относится к литейному производству и может быть использовано при литье монокристаллических изделий, например рабочих лопаток турбин газотурбинных двигателей с заданной кристаллографической ориентацией.

Изобретение относится к литейному производству и может быть использовано для литья отливок с монокристаллической и направленной структурой из жаропрочных никелевых сплавов.

Изобретение может быть использовано для литья лопаток из жаропрочных сплавов с монокристаллической структурой. Устройство представляет собой керамическую форму, имеющую рабочие полости 1 лопаток, стартовые 2 и раздельные затравочные полости с затравками 3.

Изобретение может быть использовано для литья деталей, имеющих сквозные отверстия, в частности блока цилиндров двигателей внутреннего сгорания. Способ включает подготовку литейной формы (2) с литейным стержнем (8-19) для образования сквозного отверстия (O1, O2), заливку расплава металла (S) в форму, охлаждение литой детали (Z1, Z2) до температуры ниже температуры начала кристаллизации расплава металла (S), но выше минимальной температуры, до которой при ускоренном охлаждении происходит образование высокопрочной структуры.

Изобретение относится к литейному производству. Шихтовую заготовку размещают в керамической форме или тигле, помещают в нижнюю область зоны нагрева двухзонной печи подогрева форм и нагревают в атмосфере инертного газа.

Изобретение относится к литейному производству, в частности к получению кремниевых профильных отливок для мишеней магнетронного распыления. Шихту полупроводникового поликристаллического кремния расплавляют в графитовом тигле, который перемещают вертикально в полости нагревателя. В донном отверстии тигля формируется пробка из застывшего кремния. После расплавления пробки происходит слив расплава через донное отверстие в литниковое отверстие графитовой формы и его кристаллизация. Обеспечивается получение изделий из кремния высокой чистоты. 3 ил., 1 табл., 1 пр.

Изобретение относится к литейному производству, в частности к получению методом направленной кристаллизации литых постоянных магнитов из магнитотвердых материалов типа Al-Ni-Co-Ti-Fe со столбчатой структурой. Комбинированная литейная форма состоит из керамической формы, обернутой огнеупорным теплоизоляционным материалом в виде ткани толщиной 15-20 мм на основе керамического волокна, имеющего следующий состав, мас %: диоксид кремния 52-56, оксид алюминия 28-30, диоксид циркония 14-18. Керамическая форма и теплоизоляционный материал закреплены снаружи металлическими полосами из никелевой проволоки. Обеспечивается повышение основных магнитных характеристик изделий за счет улучшения качества столбчатой структуры. 1 ил., 1 табл.

Изобретение относится к литейному производству. Литниковая система содержит приемную чашу 1, вертикальный колодец 2 с дросселирующим элементом 3 и зумпфом 4. От вертикального колодца 2 отходят нижние 5 и верхние 7 питатели, соединенные кольцевыми коллекторами 8. Нижние питатели 5 направлены под углом до 15 градусов к горизонтали, что обеспечивает равномерную скорость заполнения и затвердевания отливок, расположенных вертикально. Верхние питатели 7 обеспечивают выход газов при заполнении и подпитку прибылей отливок горячим сплавом. Обеспечиваются равные условия заполнения и затвердевания каждой лопатки в блоке для получения плотных отливок. 4 ил.

Изобретение относится к области литья и, в частности, к модели (12) для литья по разовой модели, выполненной в форме лопатки газотурбинного двигателя с хвостовиком (15) и пером (14) с обеих сторон полки (20), которая перпендикулярна основной оси лопатки. Перо лопатки (14) имеет внутреннюю поверхность (17), спинку (16), входную кромку (18) и выходную кромку (19). Модель (12) также включает расширительную полосу (21), смежную выходной кромке (19), и огнеупорный стержень (21), заделанный в модель (12), и имеющий как на корыте (17), так и на спинке (16) соответствующую выровненную лакированную поверхность (31) между выходной кромкой (19) и расширительной полосой (21). Перегородка (24) продолжается между полкой (20) и указанной расширительной полосой (21) и имеет свободную кромку (25) между ними. Изобретение также относится к способу изготовления оболочковой формы из модели (12) и способу литья с использованием оболочковой формы. В результате обеспечивается устранение образования зерен на пересечениях выходной кромки или расширительной полосой с полкой лопатки газотурбинного двигателя. 4 н. и 7 з.п. ф-лы, 7 ил., 1 табл.

Изобретение относится к области литья, а более конкретно к оболочковой форме, а также к способам изготовления и использования такой оболочковой формы. Оболочковая форма содержит центральный цилиндр, формовочные полости, расположенные в узле вокруг центрального цилиндра, и по меньшей мере один теплозащитный экран, выполненный перпендикулярно упомянутой главной оси. Центральный цилиндр продолжается вдоль главной оси между разливочной чашей и основанием. Каждая формовочная полость соединена с разливочной чашей по меньшей мере одним подающим каналом, а также посредством литника-селектора со стартером в основании. По меньшей мере один теплозащитный экран полностью окружает каждую упомянутую формовочную полость в плоскости, которая является, по существу, перпендикулярной упомянутой главной оси. В результате обеспечивается направленная кристаллизация расплавленного металла в формовочных полостях оболочковой формы. 3 н. и 5 з.п. ф-лы, 6 ил., 1 табл.
Наверх