Способ защиты стали от коррозии и наводороживания органическими соединениями в средах, содержащих сульфатредуцирующие бактерии

Изобретение относится к области защиты металлов от коррозии, наводороживания и развития сульфатредуцирующих бактерий (СРБ) и может быть использовано в водно-солевых средах, содержащих СРБ. Способ включает введение в коррозионную среду ингибитора-бактерицида, при этом в качестве ингибитора-бактерицида используют органическое соединение - координационно-насыщенный комплекс кобальта с двумя перпендикулярно расположенными тридентатными лигандами - основание Шиффа 5-Br-салицилового альдегида и (S)-аминокислоты: аспарагина, глицина, глутамина или лейцина в количестве 1, 2, 5, 10 ммоль/л общей формулы

где R - изменяющаяся часть (S)-аминокислоты. Технический результат: повышение коррозионной стойкости стали и расширение ассортимента ингибиторов-бактерицидов. 4 табл., 1 пр.

 

Изобретение относится к защите металлов от коррозии, наводороживания и предупреждения развития сульфатредуцирующих бактерий (СРБ) с помощью применения органических ингибиторов в водно-солевых средах, содержащих СРБ. Может быть использовано в нефтяной отрасли, машиностроении, газовой промышленности, судостроении для защиты различных конструкций, нефтяных скважин, оборудования, подземных трубопроводов, деталей и сооружений из углеродистых и низколегированных сталей, которые по условиям эксплуатации контактируют с водными растворами солей, кислот, с промышленными и хозяйственно-бытовыми сточными водами, морской водой, а также увлажненными почвами.

Из существующего уровня техники известны следующие изобретения, которые можно рассмотреть в качестве аналогов предлагаемой разработки: «Способ защиты стали от кислотной и сероводородной коррозии» (Патент №584579, 20.07.2001, C23F 11/00); «Способ защиты стали от коррозии в минерализованных водно-нефтяных средах» (патент №2353708, 27.04.2009, C23F 11/14); «Способ защиты стали от сероводородной коррозии» (патент №2543018, 27.02.2015, C23F 11/14); «Способ защиты стали от коррозии» (Патент №2124579, 10.01.1999, C23F 11/18, C23F 11/167).

Недостатком этих аналогов является то, что применяемые в качестве ингибиторов (Ин) коррозии вещества либо не обладают бактерицидным действием, либо не исследовались на наличие бактерицидного эффекта по отношению к СРБ.

Наиболее близким по технической сущности заявляемому способу является «Способ защиты стали от коррозии и наводороживания в средах, содержащих сульфатредуцирующие бактерии» (Патент РФ №2338008, 10.11.2008, C23F 11/12).

Недостатком данного способа является зависимость снижения скорости коррозии стали от увеличения концентрации вводимых соединений - Ин. В этом случае достижение желаемого технического результата требует введения в систему органических веществ большей концентрации, а это, в свою очередь, требует синтеза большего количества Ин, что приводит к увеличению и материальных затрат, и к повышению трудозатрат при синтезе веществ.

Специфичность коррозионной среды, формируемой в присутствии СРБ, состоит в том, что продукты метаболизма СРБ - сероводород и органические кислоты делают коррозионную среду агрессивной, стимулируют процессы коррозии и наводораживания.

Задачей, на решение которой направлено заявляемое изобретение, является разработка высокоэффективных и экономичных ингибиторов коррозии и наводораживания стали, сочетающих в себе также и свойства бактерицидов по отношению к СРБ.

Поставленная задача решается тем, что в предлагаемом способе защиты стали от коррозии и наводораживания в водно-солевых средах, содержащих сульфатредуцирующие бактерии путем введения органических ингибиторов, согласно изобретению используют координационно-насыщенные комплексы на основе (S)-аминокислот и оснований Шиффа 5-Br-салицилового альдегида, при введении которых в водно-солевую среду, наблюдается стремительное уменьшение скорости коррозии и наводораживания стали, а также сильный бактерицидный эффект по отношению к СРБ. Причем высокие значения эффективностей ингибирующего коррозию действия и бактерицидного эффекта были отмечены уже при самой малой концентрации ингибитора (Ин), а именно в количестве 1 ммоль/л.

Заявляемые ОС являются хиральными комплексами, представляющими собой координационно-насыщенные комплексы кобальта с двумя перпендикулярно расположенными тридентатными лигандами - основаниями Шиффа 5-Br-салицилового альдегида и (S)-аминокислот: аспарагина (ОС1), глицина (ОС2), глутамина (ОС3), лейцина (ОС4). Общая формула соединений имеет вид

где R - изменяющаяся часть (S)-аминокислот.

ОС1, ОС2, ОС3, ОС4 - условный шифр ингибитора, связанный с разными аминокислотами, используемыми для синтеза исследуемых комплексов.

Техническим результатом предложенного изобретения является повышение коррозионной стойкости, получение высокоэффективных ингибиторов коррозии, сочетающих в себе свойства бактерицидов и ингибиторов наводораживания одновременно, обеспечивающего высокую степень защиты стали от коррозии и наводораживания, а также высокий бактерицидный эффект по отношению к СРБ в коррозионной среде при малых концентрациях вводимых органических соединений (ОС).

Проведенные экспериментальные исследования показали, что преимущества предлагаемого ингибитора коррозии стали по сравнению, с ингибитором описанным в прототипе, состоят в следующем.

1. Высокая степень защиты от коррозии комплексов на основе (S)-аминокислот и оснований Шиффа 5-Br-салицилового альдегида (68,2-90,1%) по сравнению с прототипом (28,0-76,0%).

2. Снижение скорости коррозии стали в присутствии комплексов на основе (S)-аминокислот и оснований Шиффа 5-Br-салицилового альдегида максимальной концентрации в 5,86 раз, а в присутствии ингибитора прототипа максимальной концентрации в 4,2 раза.

3. Высокая степень защиты от наводораживания стали комплексов на основе (S)-аминокислот и оснований Шиффа 5-Br-салицилового альдегида (20-78%) по сравнению с ингибитором прототипа (13,0-43,0%).

4. Высокий бактерицидный эффект. Подавление численности СРБ в среднем за время экспозиции под действием комплексов на основе (S)-аминокислот и оснований Шиффа 5-Br-салицилового альдегида концентрации 5 ммоль/л в 4,39 раз, а в присутствии ингибитора прототипа - в 1,7 раз больше естественного ее спада в контрольной серии.

5. Использование заявляемого изобретения позволяет достичь более стремительного угнетения жизнедеятельности СРБ, прогрессивного снижения скорости коррозии стали и ее наводораживания путем введения в водно-солевую заявляемых ОС в концентрациях ниже, чем в эксперименте с прототипом.

В заявляемом способе впервые используют в качестве ингибиторов коррозии и наводораживания - координационно-насыщенные комплексы на основе (S)-аминокислот и оснований Шиффа 5-Br-салицилового альдегида. Указанные соединения впервые были использованы в заявляемом способе и как бактерициды на СРБ.

Использование активной основы ингибиторов коррозии - координационно-насыщенных комплексов на основе (S)-аминокислот и оснований Шиффа 5-Br-салицилового альдегида способствует сдвигу и удержанию физико-химических параметров замкнутой системы в области значений, при которых существенно затрудняется агрессивное воздействие на сталь Ст. 3 коррозионной среды. Также, использование указанных ОС способствует существенному и стремительному угнетению жизнедеятельности сульфатредуцирующих бактерий вида Desulfovibrio desulfuricans, что характеризует данные соединения как хорошие бактерициды. Защитные свойства от коррозии мягкой стали, а также бактерицидный эффект проявляли все заявляемые ОС уже при самой малой концентрации Ин, что открывает возможности использования данных Ин в минимальных количествах.

Пример осуществления способа.

Для испытаний в качестве объектов исследования используют образцы мягкой стали Ст. 3, площадью поверхности 20 см2. В качестве питательной среды для культивирования СРБ выбор был сделан в пользу микробиологической среды - Постгейта «Б», содержащей в качестве органического субстрата молочнокислый кальций. Данная среда хорошо поддерживает развитие анаэробных СРБ вида Desulfovibrio desulfuricans, а последние, в свою очередь, отличаются продуцированием большого количества биогенного сероводорода, являющегося активным стимулятором процессов коррозии, наводораживания и водородного охрупчивания. Бактерии культивируют из природного источника - илистых отложений ручья.

Состав среды Постгейта «Б», г/л: NaCl - 7,5; K2HPO4 - 0,5; MgSO4⋅7H2O - 1,0; Na2SO4 - 2,0; Na2CO3 - 1,0; лактат Ca - 2,0.

Заявляемые ОС вводят в коррозионную среду в концентрациях (СОС) 1, 2, 5 и 10 ммоль/л.

Цикл экспериментальной экспозиции составляет 8 суток. За этот период в среднем проходит жизненный цикл популяции СРБ рода Desulfovibrio, находящейся в ограниченном замкнутом объеме среды. В течение этого периода ежесуточно контролируют следующие физико-химические параметры водно-солевой среды, инокулированной СРБ: водородный показатель и редокс-потенциал среды, численность клеток бактерий СРБ (бактериальный титр) и концентрацию биогенного сероводорода в среде, электродный потенциал образцов. По окончании экспозиции определяют скорость коррозии и послойное водородосодержание образцов.

Эффективность изобретения и сущность заявленного технического решения подтверждается таблицами 1, 2, 3, 4.

Прогрессивное снижение коррозии стали отражено в таблице 1 значениями эффективности ингибирующего коррозию действия (ЭИКД). При переходе от одной концентрации вводимых в систему органических веществ к другой значения ЭИКД меняются незначительно и уже при малых концентрациях Ин эффективность ингибирующего коррозию действия высока.

Объем наводораживания стальных образцов определяют методом анодного послойного растворения. Данный метод позволяет определить как общий объем абсорбированного водорода, так и характер его распределения по сечению стальных образцов [1, 2]. Метод основан на убыли концентрации растворенного в электролите кислорода, взаимодействующего в присутствии платинового катализатора с выделяющимся при анодном растворении водородом с применением в качестве реагента на кислород сафранина Т. Полученные в ходе проведенных экспериментов данные позволяют судить о сосредоточении абсорбированного сталью водорода в приповерхностных слоях стали на глубине 10-30 мкм. Это связано с деформацией кристаллической решетки металла вследствие образования наклепанного приповерхностного слоя металла и развития в этом слое большого количества областей, заполненных молекулярным водородом под высоким давлением [3]. Всего измеряли водородосодержание при послойном снятии шести слоев, толщина одного слоя составляла 10 мкм. Данные по эффективности применения заявленных ОС в качестве Ин наводораживания приведены в таблице 2.

Эффективность ингибирования наводораживания в большей степени зависит от концентрации Ин, но уже при концентрации, равной 5 ммоль/л, наблюдали значение ЭИНД более 55% для всех заявляемых ОС. С увеличением концентрации Ин наблюдается прогрессивное снижение показателя водородосодержания образцов.

Лабораторные испытания заявленной группы ингибиторов коррозии и наводораживания стали показали, что в исследуемой среде, в присутствии СРБ, обеспечивается степень защиты до 90%.

По мере накопления биогенного сероводорода в среде, такая среда становится благоприятным источником для коррозионных процессов. Сероводород является основным продуктом жизнедеятельности СРБ, поэтому по накоплению или отсутствию сероводорода в системе можно смело судить о том, насколько благоприятна данная система для развития данного рода бактерий, и, как следствие, судить о возможности возникновения коррозии металлических конструкций, находящихся в непосредственном контакте с данной средой. Концентрация сероводорода влияет и на другие параметры системы: pH, окислительно-восстановительный потенциал среды и электродный потенциал образца, скорость коррозии.

На вторые сутки эксперимента средняя концентрация сероводорода равна 134,85 мг/л. С развитием жизненного цикла СРБ концентрация сероводорода в естественных условиях среды увеличивается до максимума на 4 сутки, что соответствует и максимуму численности СРБ в данных условиях; а затем уменьшается. В случаях проведения эксперимента с исследуемыми ОС во всех концентрациях происходит снижение содержания сероводорода без предварительного его увеличения. К последнему дню проведения эксперимента устанавливается постоянное значение концентрации биогенного сероводорода. Было отмечено, что в присутствии ОС1 (СОС=1 ммоль/л), численность клеток СРБ равна на последний день экспозиции 5,33⋅106 мл-1, в присутствии ОС2 - 4,00⋅106 мл-1. Однако концентрация биогенного сероводорода на 8 сутки эксперимента в присутствии ОС1 этой же концентрации очень мала и составляет 22,5 мг/л, а в присутствии ОС2 - 22,95 мг/л. В некоторых случаях, низкие значения концентрации сероводорода в системе могут не соответствовать минимальным значениям численности клеток СРБ. Это возможно в том случае, когда бактерицидное действие осуществляется ОС не только за счет существенного и стремительного угнетения жизнедеятельности сульфатредуцирующих бактерий, а также за счет снижения их функциональной активности, а именно в данном случае - способности продуцировать H2S. Таким образом, сильное уменьшение в присутствии ОС концентрации биогенного сероводорода, вызывающего серьезные осложнения при эксплуатации всего добывающего оборудования и трубопроводов, делает среду гораздо менее коррозионно-активной и агрессивной, что уменьшает скорость коррозии и соответственно увеличивает коррозионную стойкость стали.

Изменения концентрации биогенного сероводорода представлены в таблице 3.

Бактерицидное действие определяют прямым подсчетом микроорганизмов (МО) с использованием микроскопа ZEISS Axio cam Primostar и камеры Горяева. Численность сульфатредуцирующих бактерий вида Desulfovibrio desulfuricans в замкнутой системе в течении 8 суток (полный жизненный цикл популяции СРБ рода Desulfovibrio) в присутствии исследуемых Ин коррозии представлена в виде таблицы 4.

По истечении латентной фазы развития бактерий (в данной среде 48 ч), исследуемые ОС с предлагаемой ингибирующей активностью вводили в среду Постгейта «Б» после инокуляции ее одинаковым количеством накопительной культуры СРБ. Почернение водно-солевой среды, стенок пробирок, а затем и поверхности образцов служило визуальным критерием развития и активности бактерий.

В контрольной серии образцов наблюдается максимум численности СРБ на 3-4 сутки эксперимента. Действительно, бактериальная культура в этот период продолжает свое развитие и накапливается в среде. По истечении 4 суток наблюдается уменьшение численности клеток СРБ. Это связано с тем, что большая часть питательных веществ среды уже исчерпана микроорганизмами, а количество токсичных продуктов метаболизма в среде наоборот, уже достаточно большое. Происходит замедление роста и деления бактерий.

В присутствии всех ОС, независимо от концентрации, наблюдается угнетение жизнедеятельности СРБ, причем максимум численности СРБ отсутствует. Уменьшение численности клеток СРБ происходит уже на 3 сутки эксперимента в присутствии всех испытуемых соединений.

В среднем, на вторые сутки экспозиции приходится количество клеток СРБ в среде равное 15,49⋅106 мл-1. Максимальное число бактерий в среде без ОС на 4 сутки N=20⋅106 мл-1. К концу экспозиции численность СРБ снижается в среднем до 4,25⋅106 мл-1 в присутствии ОС и до 10,66⋅106 мл-1 в отсутствии (контроль). Подавление численности СРБ в среднем за все время экспозиции под действием ОС больше естественного ее спада в контрольной серии в 2,24 раза при СОС=1 ммоль/л; 2,73 раза при СОС=2 ммоль/л; 4,39 раз при СОС=5 ммоль/л; 4,0 раза при СОС=10 ммоль/л.

Использование заявляемого изобретения позволяет достичь прогрессивного снижения скорости коррозии и наводораживания стали, а также уменьшения численности и жизнеспособности клеток СРБ путем введения в водно-солевую среду ОС - координационно-насыщенных комплексов на основе (S)-аминокислот и оснований Шиффа 5-Br-салицилового альдегида в концентрациях 1, 2, 5, 10 ммоль/л. На основании проведенных исследований можно сделать вывод, что ОС заявляемого изобретения позволяют повысить коррозионную стойкость стали, а также сочетают в себе одновременно свойства ингибиторов коррозии, наводораживания и бактерицидов.

Источники информации

1. Белоглазов С.М. Электрохимический водород и металлы. Поведение, борьба с охрупчиванием. Монография. Калининград: изд-во КГУ, 2004. - 321 с.

2. Белоглазов С.М. Об определении водорода в стали методом анодного растворения. - Зав. лаб. - 1961. - Т. 27. - С. 1468-1469.

3. Белоглазов С.М Распределение в стали водорода, поглощенного при катодной обработке в кислоте, и его влияние на микротвердость. - ФММ. - Т. 15. - С. 885-889.

Способ защиты стали от коррозии и наводораживания в водно-солевых средах, содержащих сульфатредуцирующие бактерии, включающий введение в коррозионную среду ингибитора-бактерицида, отличающийся тем, что в качестве ингибитора-бактерицида используют органическое соединение - координационно-насыщенный комплекс кобальта с двумя перпендикулярно расположенными тридентатными лигандами - основание Шиффа 5-Br-салицилового альдегида и (S)-аминокислоты в виде аспарагина, глицина, глутамина или лейцина в количестве 1, 2, 5, 10 ммоль/л общей формулы

где R - изменяющаяся часть (S)-аминокислоты.



 

Похожие патенты:

Изобретение относится к области защиты металлов от коррозии в сероводородных средах ингибиторами и может быть использовано для защиты стального оборудования в нефтяной отрасли.

Изобретение относится к защите металлов от коррозии, а именно к ингибиторам коррозии и коррозионного растрескивания под напряжением (КРН) стальных трубопроводов. Ингибитор содержит компоненты при следующем соотношении, мас.

Изобретение относится к защитным консервационным материалам для противокоррозионной защиты металлических изделий от воздействия окружающей среды. Композиция содержит тормозную жидкость "Томь" и ингибитор коррозии, при этом в качестве ингибитора коррозии она содержит 3,5-динитробензоат пиперидина в количестве от более 1,5 до 3,0 мас.%.

Изобретение относится к области защиты от коррозии металлов, в частности к способам получения полимерных основ для составов, обеспечивающих надежную защиту в средах, содержащих растворенный сероводород или углекислый газ, обладающих высокой сорбционной активностью по отношению к металлическим поверхностям, и может быть использовано в нефтедобывающей и нефтеперерабатывающей промышленности для защиты технологического оборудования.

Изобретение относится к области защиты металлов от коррозии и может быть использовано в нефтедобывающей промышленности для защиты технологического оборудования и трубопроводов от коррозионных разрушений в водно-нефтяных средах.

Изобретение относится к области защиты металлов от атмосферной коррозии с помощью ингибиторов и может быть использовано для временной защиты от коррозии изделий из черных и цветных металлов, а также деталей машин и оборудования при их транспортировании и хранении.

Изобретение относится к области защиты нефтепромыслового оборудования от коррозии, в том числе сероводородной и углекислотной, и может быть использовано в нефте- и газодобывающей промышленности.

Изобретение относится к области теплоэнергетики и может быть использовано для поддержания на тепловых электростанциях оптимального водно-химического режима ВХР пароводяного тракта, выполнения отмывки и консервации на топливосжигающих энергоблоках и парогазовых энергетических установках с обеспечением в заданных пределах величины pH рабочей среды и созданием на стенках тепловых поверхностей защитной магнетито-аминовой противокоррозионной пленки.

Изобретение относится к области теплоэнергетики и может быть использовано при организации водно-химического режима на основе комплексных аминосодержащих реагентов для пароводяного тракта энергоблока с барабанными котлами и, в частности, с котлами-утилизаторами применительно к энергоблокам с парогазовыми установками.

Изобретение относится к области защиты металлов от коррозии с помощью ингибиторов в минерализованных средах, содержащих сероводород, и может быть использовано в нефтяной отрасли.

Изобретение относится к области защиты металлов от коррозии в сероводородных средах ингибиторами и может быть использовано для защиты от коррозии оборудования в нефтяной отрасли. Способ включает добавление в сероводородсодержащую среду ингибитора 2,5-бис[2Е(Z)-1-метилбут-2-ен-1-ил] фенил-1,4-диамина в концентрации 25-200 мг/л. Технический результат: повышение степени защиты стали от коррозии до 89,8-96,1 %. 1 табл., 3 пр.

Изобретение относится к области защиты от образования накипи и коррозии металлов теплоэнергетического оборудования и может быть использовано для защиты оборудования и трубопроводов пароводяных трактов тепловых электрических станций (ТЭС), тепловых сетей и подобных теплоэнергетических установок. Способ включает дозирование стеариламина пленкообразующего алифатического амина R-NH2, где R=C16H33-С18Н37, в пароводяные тракты теплоэнергетической установки, при этом осуществляют дозирование стериламина в виде водного мицелла-молекулярного раствора, полученного рециркуляцией в вихревом насосе упомянутого стеариаламина с обессоленной деаэрированной водой при температуре 60-63°C в течение 1 часа, независимо от режима работы теплоэнергетической установки периодически 1-4 раза в год, как на рабочем, так и на остановленном оборудовании. Технический результат: повышение эффективности защиты от образования накипи и коррозии оборудования. 3 табл., 10 ил.
Изобретение относится к области защиты от коррозии металлов и может быть использовано в теплоэнергетике для использования при эксплуатации энергетического оборудования и трубопроводов, в том числе тепловых и атомных электрических станций, для снижения скорости коррозии металлических поверхностей оборудования и трубопроводов как в период эксплуатации, так и в период простоя, в том числе на период профилактических и ремонтных работ. Способ включает ввод консерванта в движущийся поток рабочего тела и консервацию в течение времени, необходимого для сорбции консерванта в количестве не менее 3 мг/м2, при этом в качестве консерванта используют водную эмульсию смеси первичных пленкообразующих алифатических аминов C16-C18, имеющую свойства текучести и гомогенности, водную эмульсию смешивают с циркулирующим в контуре энергетической установки рабочим телом, причем осуществляют ввод водной эмульсии с температурой 31-50°C. Технический результат изобретения заключается в повышении технологичности, расширении технологических возможностей, сокращении времени проведения консервации. 2 з.п. ф-лы, 3 пр.

Изобретение относится к защите от коррозии оборудования для добычи нефти, а также трубопроводов и резервуаров для нее. Ингибитор коррозии для защиты оборудования для добычи сырой нефти, нефтепроводов и резервуаров для сырой нефти, содержащий: компонент а), полученный в результате выполнения следующих процессов: А) - частичной нейтрализации смеси модифицированных производных имидазолина общих приведенных структурных формул путем обработки алифатической и/или ароматической монокарбоновой кислотой, содержащей от 1 до 7 атомов углерода в молекуле, и В) - дальнейшей частичной нейтрализации полученного промежуточного продукта жирными кислотами, содержащими от 12 до 22 атомов углерода в молекуле, и/или полимерами жирных кислот, содержащими от 18 до 54 атомов углерода в молекуле, компонент b), представляющий собой этоксилированные жирные амины, содержащие от 14 до 22 атомов углерода в молекуле, и от 2 до 22, предпочтительно от 5 до 15, этокси-групп в молекуле, компонент d), представляющий собой алифатические спирты, содержащие от 1 до 6 атомов углерода на молекулу, возможно, с добавлением воды. Способ получения указанного выше ингибитора коррозии включает указанные выше операции. Изобретение развито в зависимых пунктах формулы. Технический результат - повышение эффективности ингибирования. 2 н. и 7 з.п. ф-лы, 1 табл., 13 пр.

Изобретение относится к защите от коррозии оборудования для добычи нефти, а также трубопроводов и резервуаров для нее. Ингибитор коррозии для защиты оборудования для добычи сырой нефти, нефтепроводов и резервуаров для сырой нефти, содержащий: компонент а), полученный в результате выполнения следующих процессов: А) - частичной нейтрализации смеси модифицированных производных имидазолина общих приведенных структурных формул путем обработки алифатической и/или ароматической монокарбоновой кислотой, содержащей от 1 до 7 атомов углерода в молекуле, и В) - дальнейшей частичной нейтрализации полученного промежуточного продукта жирными кислотами, содержащими от 12 до 22 атомов углерода в молекуле, и/или полимерами жирных кислот, содержащими от 18 до 54 атомов углерода в молекуле, компонент b), представляющий собой этоксилированные жирные амины, содержащие от 14 до 22 атомов углерода в молекуле, и от 2 до 22, предпочтительно от 5 до 15, этокси-групп в молекуле, компонент d), представляющий собой алифатические спирты, содержащие от 1 до 6 атомов углерода на молекулу, возможно, с добавлением воды. Способ получения указанного выше ингибитора коррозии включает указанные выше операции. Изобретение развито в зависимых пунктах формулы. Технический результат - повышение эффективности ингибирования. 2 н. и 7 з.п. ф-лы, 1 табл., 13 пр.

Настоящее изобретение относится к способам и композициям для ингибирования коррозии металлов, конкретно нержавеющих и дуплексных сталей. Коррозия металлических трубопроводов составами ингибиторов гидратообразования, в частности локализованная коррозия, уменьшается, когда состав ингибитора гидратообразования содержит эффективное количество по меньшей мере одной гидроксикислоты или эквивалента, выбранной из группы, состоящей из гидроксикислот, имеющих от 2 до 20 атомов углерода и по меньшей мере одну гидроксильную группу, и по меньшей мере один ион неорганического галогенида, а также не содержит метанол. Изобретение развито в зависимых пунктах формулы. Технический результат – улучшение ингибирования гидратообразования и коррозии указанных сталей. 3 н. и 14 з.п. ф-лы, 1 пр., 1 ил.

Настоящее изобретение относится к способам и композициям для ингибирования коррозии металлов, конкретно нержавеющих и дуплексных сталей. Коррозия металлических трубопроводов составами ингибиторов гидратообразования, в частности локализованная коррозия, уменьшается, когда состав ингибитора гидратообразования содержит эффективное количество по меньшей мере одной гидроксикислоты или эквивалента, выбранной из группы, состоящей из гидроксикислот, имеющих от 2 до 20 атомов углерода и по меньшей мере одну гидроксильную группу, и по меньшей мере один ион неорганического галогенида, а также не содержит метанол. Изобретение развито в зависимых пунктах формулы. Технический результат – улучшение ингибирования гидратообразования и коррозии указанных сталей. 3 н. и 14 з.п. ф-лы, 1 пр., 1 ил.
Наверх