Способ подготовки компонентов топлива для заправки двигательных установок ракетной техники

Изобретение относится к ракетной технике и может использоваться для подготовки ракетного топлива. Способ подготовки компонентов ракетного топлива для заправки двигательных установок ракетной техники включает процесс термостатирования и газонасыщения. Процесс термостатирования и газонасыщения производится в агрегате термостатирования и газонасыщения с использованием заправочной автоцистерны и вспомогательного оборудования. Процесс заключается в прокачке компонентов топлива по замкнутому контуру: заправочная автоцистерна – агрегат термостатирования и газонасыщения – заправочная автоцистерна. Заправочная автоцистерна представляет собой подвижный агрегат, обеспечивающий транспортирование и временное хранение компонентов топлива. В качестве вспомогательного оборудования используют холодильно-нагревательный центр и агрегат термического обезвреживания паров компонентов топлива. Техническим результатом изобретения является обеспечение заданных параметров температуры и газонасыщения компонентов топлива, повышение мобильности и простота эксплуатации. 2 ил., 1 табл.

 

Предлагаемое изобретение относится к ракетной технике и может быть использовано при подготовке компонентов ракетного топлива, двигательные установки которой работают на высококипящих компонентах.

Наиболее близким к предлагаемому изобретению является стартовый комплекс для предстартовой подготовки и пуска ракеты-носителя с космической головной частью (варианты), содержащий хранилища жидких ракетных горючих, сооружения для заправки и слива компонентов жидких ракетных горючих (патент номер RU 2318706 С1, B64G 5/00, 10.03.2008).

Предлагаемый способ подготовки компонентов топлива (КТ) для заправки двигательных установок ракетной техники включает процесс термостатирования и газонасыщения компонентов топлива, при этом процесс термостатирования и газонасыщения осуществляют в агрегате термостатирования и насыщения (АТН) с использованием заправочной автоцистерны (ЗАЦ) и вспомогательного оборудования путем прокачки компонентов топлива по замкнутому контуру: заправочная автоцистерна - агрегат термостатирования и насыщения - заправочная автоцистерна.

Сущность (задача) способа заключается в обеспечении заданных параметров температуры и газонасыщения компонентов топлива путем прокачки их через агрегат термостатирования и насыщения.

Сущность изобретения поясняется «Схемой подготовки» (Фиг. 1) и «Принципиальной схемой АТН» (Фиг. 2).

Агрегат термостатирования и насыщения представляет собой транспортируемый кузов-фургон с размещенным в нем технологическим оборудованием и органами управления.

В качестве органов управления используются - щит питания, пульт управления, пневматический щит.

В качестве технологического оборудования используются - сливная емкость (поз. 9), струйный насос (поз. 12), электронасосный агрегат (поз. 5), теплообменники Т1 (поз. 6) и Т2 (поз. 11). Все технологическое оборудование соединено между собой трубопроводами (поз. 7) с запорной арматурой (поз. 10).

Теплоноситель от холодильно-нагревательного центра (ХНЦ) (поз. 1) подается на вход агрегата термостатирования и насыщения (АТН) (поз. 2), проходит через теплообменники Т1 и Т2 (поз. 6 и 11) и возвращается в ХНЦ (поз. 1).

Компоненты топлива из заправочной автоцистерны (ЗАЦ) (поз. 3) поступают на вход АТН (поз. 2), где с помощью электронасосного агрегата (поз. 5) прокачиваются через теплообменники Т1 и Т2 (поз. 6, 11), в которых происходит либо их нагрев, либо их охлаждение. После теплообменника Т2 (поз. 11) компоненты топлива поступают в струйный насос (поз. 12), где происходит их газонасыщение одним из двух способов:

- подачей азота из баллона (поз.8) в поток компонента;

- эжектированием азота из азотной подушки ЗАЦ.

Нагретые (охлажденные) и газонасыщенные компоненты топлива возвращаются в ЗАЦ (поз. 3).

После завершения операций термостатирования и газонасыщения остатки компонентов топлива из теплообменников Т1 и Т2 (поз. 6, 11) выдавливаются азотом, поступающим из баллона (поз. 8) в сливную емкость (поз. 9), откуда поступают в ЗАЦ по отдельной магистрали трубопровода.

Пары компонентов топлива из агрегата термостатирования и насыщения (поз. 2) поступают в агрегат термического обезвреживания паров компонентов топлива (поз. 4), в котором происходит их сжигание.

Таким образом, мы видим, что технологическое оборудование обеспечивает термостатирование компонентов топлива, проходящего через теплообменники агрегата (теплоноситель в теплообменники подается от внешнего холодильно-нагревательного центра) и газонасыщение компонентов топлива одним из двух способов:

- путем подачи азота непосредственно в поток жидкости;

- за счет эжектирования азота из азотной подушки емкости ЗАЦ, в которой находится подготавливаемый компонент топлива с помощью струйного насоса агрегата термостатирования и насыщения с поддержанием в азотной подушке емкости соответствующего давления.

В процессе подготовки компоненты топлива прокачиваются по замкнутому контуру: заправочная автоцистерна - агрегат термостатирования и насыщения - заправочная автоцистерна до достижения требуемых параметров температуры и газонасыщения.

Заправочная автоцистерна представляет собой подвижный агрегат, обеспечивающий транспортирование и временное хранение компонентов топлива.

В качестве вспомогательного оборудования используются:

- холодильно-нагревательный центр, обеспечивающий охлаждение и/или нагрев теплоносителя и подачу его с заданным расходом в теплообменники агрегата термостатирования и насыщения (АТН).

- агрегат термического обезвреживания паров компонентов топлива, в котором сжигаются образующиеся во время технологического процесса пары компонентов топлива.

В процессе работ, проводимых по тематике АО «ВПК «НПО машиностроения» (тема «Стрела-С»), был проведен сравнительный анализ предлагаемого способа подготовки компонентов ракетного топлива и используемого в настоящее время.

Выявлено следующее:

Таким образом, предлагаемый способ подготовки компонентов ракетного топлива, обеспечивающий задание параметров температуры и газонасыщения компонентов топлива путем прокачки их через агрегат термостатирования и насыщения и заправочной автоцистерны, является более мобильным, простым в эксплуатации, удобным в работе, менее затратным и более экологически безопасным.

Способ подготовки компонентов топлива для заправки двигательных установок ракетной техники, включающий процесс термостатирования и газонасыщения компонентов топлива, отличающийся тем, что процесс термостатирования и газонасыщения осуществляют в агрегате термостатирования и насыщения с использованием заправочной автоцистерны и вспомогательного оборудования путем прокачки компонентов топлива по замкнутому контуру: заправочная автоцистерна - агрегат термостатирования и насыщения - заправочная автоцистерна.



 

Похожие патенты:

Изобретение относится к средствам наземной эксплуатации солнечных батарей (СБ), в частности для проверки их работоспособности. Устройство содержит кожух, включающий корпуса (2) из термостойкой пластмассы со светодиодными излучателями (5).

Изобретение относится, преимущественно, к наземным электротехническим испытаниям космических аппаратов (КА). Циклограммы электрических проверок КА (1) заложены в блок (4.1) формирования директив оператора.

Изобретение относится к ракетно-космической технике и может использоваться для запуска полезных грузов на околоземную орбиту. В устройстве запуска ракет с лазерным ракетным двигателем (ЛРД) имеется платформа, на которой расположено поворотное зеркало с механизмом управления.

Изобретение относится к области промышленного и специального строительства, в частности к объектам, предназначенным для подготовки и обеспечения космических запусков.

Изобретение относится к устройствам установочно-обслуживающего наземного оборудования космических ракетных комплексов. Устройство установочно-обслуживающее содержит подвижную платформу с механизмами передвижения, механизмами фиксации и опорами для закрепления на фундамент стартового сооружения.

Изобретение относится к разъемным соединениям и может быть использовано для подсоединения с последующим отделением воздуховодов системы термостатирования космической головной части при нахождении ракеты-носителя с последней на стартовой позиции.

Изобретение относится к области управления качеством продукции, в частности, крупногабаритных топливных баков ракет. Способ заключается в выборе информативных параметров качества (ИПК) изготовления тонкостенной оболочки бака.

Изобретение относится к ракетно-космической технике и может быть использовано при подготовке к старту ракеты космического назначения (РКН). Устройство обеспечения чистоты объектов космической головной части содержит побудитель расхода газового компонента, газовод, фильтр, рассекатель потока газового компонента, прибор контроля чистоты газового компонента, замкнутый объем в виде контейнера с космическим аппаратом и адаптером.

Изобретение относится к ракетной технике и может быть использовано для запуска ракет. Стартовая позиция для самоходных пусковых установок (ПУ) для запуска ракеты под углами, близкими к вертикальному углу, содержит укрытие в виде траншеи с тупиком в грунте с аппарелью и обваловкой из грунта, с двумя расположенными под углами боковыми газоходами, перпендикулярными к оси траншеи и шириной, равной ширине траншеи.

Группа изобретений относится к средствам предстартовой подготовки космического аппарата (КА). Устройство содержит противоточный рекуперативный жидкостно-жидкостный теплообменный агрегат, включенный в циркуляционный тракт теплоносителя системы терморегулирования КА.

Изобретение относится к средствам воздушного запуска в космос ракет, спутников, орбитальных самолетов и других объектов. Стратосферная платформа содержит корпус в виде нескольких соединённых в кольцевую структуру шаров с оболочками из ультратонкой плёнки, заполняемыми гелием. К корпусу на множестве равномерно распределённых строп подвешена титановая кольцевая труба. С трубой соединены стропы с замками для удержания запускаемого объекта, например ракеты-носителя. Платформа снабжена системой очистки гелия в виде труб отбора газа из шаров и труб накачки шаров гелием. Трубы подключены к станции очистки на поверхности планеты и поддерживаются на весу более мелкими шарами, также подключенными к системе очистки гелия. Платформа связана электропроводными тросами с поверхностью планеты. Путём регулирования подъёмной силы шаров производятся многократные подъем в стратосферу и спуск платформы на поверхность планеты. С помощью платформы могут проводиться круглосуточное наблюдение за атмосферой и другие геофизические и технологические исследования. Техническим результатом изобретения является создание универсального воздушного средства для экономичного многоразового запуска космических объектов большой стартовой массы. 30 ил., 1 табл.

Изобретение относится к космической технике. В стартовой системе для космических летательных аппаратов старт летательного аппарата, закрепленного на стартовой платформе с электродвигателем, осуществляется из горизонтального положения. Разгонный импульс летательный аппарат получает при движении по направляющей конструкции, имеющей нисходящую и восходящую ветви с радиусами кривизны, обеспечивающими допустимые уровни перегрузок. Направляющая конструкция может содержать прямолинейные участки, располагаться в тоннелях и эстакадах. Стартовая платформа может состоять из двух секций – верхней и нижней. Нижняя секция оборудована электродвигателем, а верхняя секция имеет самолетную конструкцию и имеет складные крылья. Техническим результатом изобретения является экономия топлива на начальном этапе полета космического летательного аппарата. 23 з.п. ф-лы, 2 ил.

Изобретение относится к космической технике, а именно к стартовым комплексам ракет. В стартовом комплексе для ракет малого и сверхмалого класса для придания ракете начального ускорения используется сила тяжести ускоряющей цистерны с водой, которая через несущие тросы и систему блоков соединяется с пусковой клетью с размещенной в ней ракетой. Ракета внутри клети фиксируется с помощью пневмобаллонов, симметрично обжимающих ракету по всей высоте. Разгон клети с ракетой и ускоряющее падение цистерны происходят в специально оборудованных шахтах. В момент разъединения ракеты с пусковой клетью и включения маршевых двигателей открываются сбросовые клапаны для опорожнения ускоряющей цистерны. Для остановки системы применяются тормозящие тросы, соединяющие пусковую клеть с тормозными цепями, расположенными на дне стартовой шахты, а также тросовые тормоза. Техническим результатом изобретения является увеличение массы полезной нагрузки, выводимой ракетой при прежних запасах топлива. 6 ил.

Изобретение относится к способу электрических проверок космического аппарата (КА). Для электрической проверки производят включение и выключение КА, подключение и отключение наземных имитаторов бортовых источников электропитания, автоматизированную выдачу команд управления, допусковое телеизмерение и контроль параметров бортовой вычислительной системы, контроль сопротивления изоляции бортовых шин относительно корпуса, формирование директив автоматической программы и директив оператора в ручном режиме, формирование протокола испытаний, отображение текущего состояния процесса испытаний. В случае недостатка мощности солнечных батарей для питания нагрузки отключают функцию распределения токов разряда, контролируют разницу токов разряда для проверки исправности разрядных преобразователей. Обеспечивается надежность проведения электрических проверок КА. 1 з.п. ф-лы, 2 ил.
Наверх