Способ измерения угла места (высоты) низколетящих целей под малыми углами места в радиолокаторах кругового обзора при наличии мешающих отражений от подстилающей поверхности

Изобретение относится к радиолокации и может быть использовано в трехкоординатных радиолокаторах кругового обзора для измерения угла места (высоты) низколетящих целей под малыми углами места, в том числе целей, летящих на предельно малых высотах (десятки метров от поверхности земли), при наличии мешающих отражений от подстилающей поверхности. Достигаемым техническим результатом изобретения является создание способа измерения угла места (высоты) низколетящих целей под малыми углами места в трехкоординатных радиолокаторах кругового обзора, позволяющего обеспечить минимизацию влияния явления многолучевости, вызванного переотражениями эхо-сигналов от подстилающей поверхности. Технический результат достигается благодаря тому, что вычисление угла места (высоты) обнаруженной цели производится на основе оценок координаты дальности и разности в оценке азимутов цели, измеряемых при прохождении вертикального и наклоненного на 45 градусов в угломестной плоскости лучей антенной системы через цель на одной дальности. 1 ил.

 

Изобретение относится к радиолокации и может быть использовано в радиолокаторах кругового обзора для измерения угла места (высоты) низколетящих целей под малыми углами места при наличии мешающих отражений от подстилающей поверхности.

В трехкоординатных радиолокаторах различного назначения при измерении угломестных координат возникает проблема, обусловленная снижением точности оценивания угла места (высоты) обнаруженных низколетящих целей из-за явления многолучевости, порожденного отражениями эхо-сигналов от подстилающей поверхности. Наиболее значительное влияние на точность измерения обнаруженной цели явление многолучевости оказывает в радиолокационных станциях низколетящих целей. Для борьбы с явлением многолучевости при измерении угла места (высоты) разработаны различные методы, которые условно можно разделить на две группы.

К первой относятся способы, направленные на совершенствование антенных систем, заключающиеся в реализации узконаправленных по углу места диаграмм направленности антенн с целью уменьшения зоны взаимодействия главного луча диаграммы направленности антенны с подстилающей поверхностью (см., напр. [1]). Однако практическая реализация этих способов влечет за собой увеличение апертуры (размера) антенной системы, причем как по вертикали, так и по горизонтали. Другими словами, в основе этих способов - повышение угловой разрешающей способности по угловым координатам. Последний фактор также направлен на снижение зоны взаимодействия с подстилающей поверхностью. Реализация больших антенн является малоприемлемым решением для большинства радиолокаторов, предназначенных для обнаружения низколетящих целей, так как повышается конструктивно-технологическая сложность изделий, снижается мобильность и возникают затруднения по их размещению на высотных опорах.

Вторая группа способов определения угла места (высоты цели), основана на привлечении дополнительной информации о влиянии отражений от подстилающей поверхности и устранении или снижении эффективности этого влияния на оценку угла места (высоты) цели. К этой группе относится значительное число способов, базирующихся на моноимпульсном методе измерения угломестной координаты. Например, для устранения недостатков, вызванных влиянием многолучевости и в разной степени проявляющихся в верхнем и нижнем лучах диаграмм направленности антенн в моноимпульсных системах пеленгации (см., напр.[1]), применяются различные способы снижения этого влияния на оценку угла места как за счет использования дополнительных антенн [2, 3], так и за счет учета оценки мешающего влияния отраженного от поверхности эхо-сигнала путем решения специальных уравнений [2-6], обеспечивающих снижение отрицательного влияния на точность оценки угломестной координаты. К тому же при реализации способа [3] требуется проведение большого количества измерений, т.е. определение угла места является итерационной процедурой, которая вносит свои дополнительные погрешности в случае слабой отражательной способности цели. В способе [4] необходимо использовать априорные данные по интенсивности отражений от подстилающей поверхности, получаемые на основе информации о перепаде высот рельефа земной поверхности, содержащейся в цифровых картах местности, и его применение ограничено метровым диапазоном, способ [5] может быть реализован только в антеннах с горизонтальной поляризацией, использование способа [6] ограничено местностью с не очень сложной структурой подстилающей поверхности или с относительно ровной поверхностью, и его невозможно использовать в системах обзорного типа с механическим сканированием. Кроме того, задача оценки мешающего влияния отраженного от поверхности эхо-сигнала, в принципе, является сложной, необходимо учитывать фактор времени года и суток, метеоусловий, типа местности, что трудно реализовать.

Во всех рассмотренных выше способах для снижения отрицательного влияния многолучевости на точность измерения угла места низколетящих целей используемые приемы приводят либо к увеличению размера антенных систем, либо к дополнительным измерениям и решениям уравнений с использованием априорных или апостериорных данных параметров подстилающей поверхности, полученных в процессе дополнительных измерений. Необходимость выполнения дополнительных измерений снижает темп обзора пространства и приводит к увеличению времени обзора пространства, что неприемлемо для радиолокаторов, предназначенных для обнаружения низколетящих целей.

Наиболее близким по технической сущности к заявляемому способу является способ измерения высоты целей по методу V-образного луча, описанный, например, в монографии [6], стр. 274-275. В данном способе высота воздушного объекта определяется с использованием измерений дальности до цели и ее азимута на данной дальности, измеренных двумя специально ориентированными диаграммами направленности антенны. При реализации описанного в монографии метода V-луча антенная система имеет два луча - вертикальный и наклонный, плоскость последнего составляет с плоскостью вертикального луча угол в 45 градусов. В вертикальной плоскости диаграмма направленности формируется по закону типа cosecθ, где θ - угол плоскости луча, отсчитываемый от линии пересечения вертикального и наклонного лучей диаграммы направленности антенны. Ширина лучей в азимутальной плоскости выбирается исходя из требуемого разрешения по азимуту и обычно составляет единицы градусов. При методе V-луча оба луча антенной системы вращаются вокруг вертикальной оси. Для оценки высоты используются оценка дальности до цели и измерение азимутальной координаты в вертикальном и наклонном лучах диаграммы направленности. Однако поскольку метод V-луча предназначался для измерения высоты целей на больших и средних высотах, то вертикальный и наклонный лучи пересекаются в нижней части зоны ответственности (вблизи поверхности Земли). В связи с этим разность в оценках азимута низколетящих целей в вертикальных и наклонных лучах мала или равна нулю, в связи с чем сложно оценить высоту низколетящей цели под малыми углами места.

В предложенном способе аналогично методу V-луча используются две антенны, причем вертикальные и наклонные лучи пересекаются под углом 45 градусов в верхней зоне ответственности и разнесены в нижней части зоны ответственности (на поверхности Земли). Угол места (высота) обнаруженной цели определяется на одной дальности на основе разности измеренных азимутов в вертикальном и наклонном лучах и вычисляется по формуле:

εцГΔ, h=Rнsinεц, где εц - оцениваемый угол места, h - высота цели, Rн - дальность до цели, βΔ - разность азимутов, βГ - ширина горизонтального луча между нижней кромкой вертикального и нижней кромкой наклонного лучей.

Существо предлагаемого способа можно пояснить с привлечением фиг. 1, где:

О - центр системы координат XYZ;

Лв - вертикальный луч, ориентированный вдоль оси z;

Лн - наклонный луч;

Лг - горизонтальный луч, являющийся проекцией Лн на горизонтальную плоскость;

ОВ - линия перечения горизонтального и наклонного лучей;

ОК - линия пересечения наклонного луча и горизонтальной плоскости;

B1 - точка нахождения цели в вертикальном луче;

K1 - точка нахождения цели в наклонном луче;

K2 - проекция точки K1 на горизонтальную плоскость;

В2 - проекция точки K1 на ось z;

На фиг. 1 радиолокатор (антенная система) находится в точке O (в центре системы координат XYZ). Оба луча антенной системы имеют сравнительно узкую диаграмму направленности по азимуту (например, 0,8-1°), вертикальный луч Лв (ориентированный на фиг. 1 вдоль оси z) и наклонный луч Лн неподвижны относительно друг друга и вместе вращаются вокруг оси Y. Вертикальный луч Лв имеет диаграмму направленности (угол ВОВ2=ε) в угломестной плоскости, составляющую единицы градусов (например, 6-10°). Наклонный луч Лн, пересекается с Лв в верхней зоне ответственности и наклонен по отношению к вертикальному лучу на 45°, лучи разнесены в нижней зоне ответственности на поверхности Земли. В этом случае горизонтальный луч Лг, являющийся проекцией Лн на горизонтальную плоскость, равен Лв (из построения). Следовательно, угол В2ОK равен углу ВОВ2 и равен ε.

Пусть цель находится в вертикальном луче в точке В1, а в наклонном луче в точке K1. Тогда. B1O=K1O=RH по определении B1B2=K1K2 и угол ВВ2К равен углу K1K2K и равен 90°. В то же время, поскольку угол K1K2K=углу K1K2O=90°, а катет K2O общий, тогда треугольник KOK1 равен треугольнику KOK2 и угол KOK2 равен углу K1OK2 и равен углу B1OB2ц - искомому углу места. Угол места можно определить, зная азимут цели в луче Лв0 и азимут цели в луче наклона Лнн, получаем значение угла В2ОK2Δн0. Тогда угол места цели εцГΔ, а высота цели h=Rнsinεн.

Работоспособность приведенных соотношений проиллюстрируем на двух крайних случаях. Пусть цель находится в точке K. Тогда разность азимутов βΔ=углу KOB2Г, следовательно εцГΔ=0, т.е. цель на поверхности Земли. Другой крайний случай - цель в точке B, βΔ=0, следовательно εцГ=ε.

ЛИТЕРАТУРА

1. Леонов А.И., Фомичев К.И. Моноимпульсная радиолокация. - М.: Радио и связь, 1984 г. - 312 с.

2. Патент на изобретение RU №2444750 C2, МПК G01S 5/08. Способ определения угломестной координаты низколетящей цели.

3. Патент на изобретение RU №2307375 C1, МПК G01S 13/04. Способ измерения угла места низколетящей цели и радиолокационная станция для его реализации.

4. Патент на изобретение RU №2291464 C2, МПК G01S 13/04, G01S 13/42, G01S 3/74. Способ измерения угла места целей при наличии отражений принимаемого эхосигнала от земной поверхности и импульсная наземная трехкоординатная радиолокационная станция для его реализации.

5. Патент на изобретение RU №2038607 C1, МПК G01S 13/02. Способ измерения угла места маловысотных целей.

6. Патент на изобретение RU №2392638 C1, МПК G01S 13/00. Способ высокоточного радиолокационного измерения угла места низколетящей цели в условиях интерференции сигналов.

7. Бакулев П.А. Радиолокационные системы.- М.: Радиотехника, 2004. - 320 с.

Способ измерения угла места (высоты) низколетящих целей под малыми углами места в трехкоординатных радиолокаторах кругового обзора при наличии мешающих отражений от подстилающей поверхности, характеризующийся тем, что в радиолокаторе кругового обзора излучаются и принимаются радиолокационные импульсные сигналы с помощью двух специально ориентированных одинаковых антенн, имеющих сравнительно узкую диаграмму направленности в азимутальной плоскости и достаточно широкую диаграмму направленности в угломестной плоскости, одна из антенн формирует вертикальный луч в угломестной плоскости, а другая антенна наклонный луч в угломестной плоскости, наклоненный относительно вертикального луча, оба луча неподвижны относительно друг друга и вместе вращаются вокруг вертикальной оси, отличающийся тем, что диаграммы направленности вертикального и наклонного лучей пересекаются в верхней зоне ответственности под углом 45 градусов и разнесены в нижней части зоны ответственности, а угол места (высота) обнаруженной цели определяется на одной дальности на основе разности измеренных азимутов в вертикальном и наклонном лучах и вычисляется по формуле:

εцГΔ, h=Rнsinεц, где εц - оцениваемый угол места, h - высота цели, Rн - дальность до цели, βΔ - разность азимутов, βГ - ширина горизонтального луча между нижней кромкой вертикального и нижней кромкой наклонного лучей.



 

Похожие патенты:

Предлагаемое изобретение относится к радиолокационной измерительной технике и может быть использовано в радиолокаторах, в том числе радиовысотомерах, с непрерывным сигналом.

Изобретение относится к области радиолокации, в частности к радиолокационным станциям (РЛС) обнаружения наземных и низколетящих целей. Достигаемый технический результат - однозначное и более точное измерение азимутальной координаты цели под малыми углами места и улучшение разрешающей способности по азимуту.

Изобретение относится к радиолокационной технике и может быть использовано для обнаружения и измерения расстояний и измерения радиальных скоростей. Достигаемый технический результат - обеспечение постоянной разрешающей способности измерения расстояний до целей.
Изобретение относится к радиолокации протяженных целей и может быть использовано для измерения высоты и составляющих скорости летательных аппаратов (ЛА). Достигаемый технический результат - однолучевое измерение скорости летательного аппарата на базе радиовысотомера, позволяющее измерить высоту и составляющие скорости ЛА при сниженных габаритах антенной системы.

Группа изобретений относится к радиолокации протяженных целей и может быть использована для измерения высоты и составляющих скорости летательных аппаратов. Достигаемый технический результат - однолучевое измерение высоты и составляющих скорости ЛА на базе радиовысотомера при сниженных габаритах антенной системы.

Изобретение может быть использовано в радиолокационных станциях (РЛС) для управления их разрешающей способностью. Достигаемый технический результат - возможность в широких пределах изменять разрешающую способность РЛС.

Изобретения относятся к области радиотехники и могут быть использованы для определения местоположения объектов угломерно-дальномерным способом с летно-подъемного средства (ЛПС).

Изобретение относится к радиолокационной технике и может быть использовано для обнаружения и измерения расстояний до неподвижных и подвижных объектов и для измерения радиальной скорости объектов.

Изобретение относится к области радиолокации, в частности к способам обнаружения объектов и определения параметров траектории их движения, и может быть использовано при построении радиолокационных станций (РЛС), осуществляющих последовательный круговой или секторный обзор пространства за счет сканирования диаграммой направленности антенны.

Изобретение относится к области радиолокационной техники, а точнее, к способам цифровой обработки сигнала, отраженного от целей и принятого радиолокатором. .

Изобретение относится к радиолокации и может использоваться в радиотехнических системах с непрерывным излучением для определения дальности и радиальной скорости высокоскоростных целей со сниженной радиолокационной заметностью. Достигаемый технический результат - увеличение дальности обнаружения и повышение точности определения дальности и радиальной скорости высокоскоростных целей со сниженной радиолокационной заметностью. Сущность способа заключается в приеме отраженного сигнала, его демодуляции, запоминании демодулированного сигнала биений в течение периода модуляции зондирующего сигнала, определении скорости изменения частоты его линейной частотной модуляции (ЛЧМ) и расчете с ее помощью радиальной скорости цели с последующим формированием опорного сигнала, демодуляцией запомненного сигнала и определением по его частоте дальности до цели. Устройство для реализации способа содержит частотный модулятор, генератор высокой частоты, передающую антенну, а также приемную антенну, первый умножитель сигналов, усилитель низкой частоты, измеритель скорости изменения частоты ЛЧМ сигнала, вычислитель радиальной скорости, формирователь опорного сигнала, второй умножитель сигналов, частотный анализатор и вычислитель дальности, а также запоминающее устройство и устройство синхронизации. Перечисленные средства определенным образом соединены между собой. 2 н.п. ф-лы, 1 ил.
Изобретение относится к радионавигации и технике связи и может использоваться для определения пространственных координат (ПК) объекта - источника радиоизлучения (ИР), находящегося на стационарном или подвижном объекте. Достигаемый технический результат - обеспечение однозначного определения ПК ИР, находящегося в любой точке пространства, с высокой точностью. Указанный результат достигается за счет того, что на объекте формируют и передают радиосигнал (PC) в виде трех высокочастотных гармонических колебаний с заданными частотами, содержащими заданную высокочастотную составляющую и заданные низкочастотные составляющие. При приеме и обработке PC обеспечивают выполнение заданных в способе условий. Принятые на каждой из станций PC передают по соответствующим линиям связи в единый центр. В нем осуществляют квадратурный прием высокочастотных PC, принятых от каждой из станций с заданными частотами гетеродинов. Для них полученные аналоговые квадратурные компоненты преобразуют в цифровые квадратурные компоненты (ЦКК). Последовательно формируют для каждого PC ЦКК, соответствующие трем упомянутым низкочастотным гармоническим колебаниям. Из полученных ЦКК формируют ЦКК, соответствующие гармоническим колебаниям на разностных частотах, и по этим ЦКК формируют ЦКК, соответствующие разностям фаз колебаний с одинаковыми разностными частотами, но относящимися к различным принятым PC. По сформированным таким образом ЦКК (с учетом временных задержек, возникающих при приеме, передаче по линии связи и обработке PC) однозначно определяют относительные дальности до объекта от фазовых центров антенн станций и по ним однозначно определяют ПК фазового центра антенны объекта.

Изобретение относится к радиолокации протяженных целей, в частности к радиолокационным измерителям высоты, скорости и наклона вектора скорости летательного аппарата (ЛА) относительно земной поверхности, и может быть использовано при пикирующих траекториях ЛА, в том числе на беспилотных летательных аппаратах и снарядах. Результаты измерений высоты и вектора скорости ЛА могут быть использованы в интересах автономной навигации ЛА или коррекции инерциальной системы управления. Достигаемый технический результат - измерение высоты, истинной скорости ЛА и угла между направлением вектора скорости и плоскостью горизонта (угла пикирования) при использовании однолучевой антенной системы, ориентированной в направлении, совпадающем с продольной осью ЛА. Указанный результат достигается тем, что производится зондирование земной поверхности радиолокационным сигналом в направлении продольной оси ЛА, когерентный прием отраженного сигнала с получением двумерного радиолокационного изображения (РЛИ) местности в координатах дальность - доплеровская частота, нахождение зависимости максимальной доплеровской частоты (МДЧ) от дальности по данным РЛИ, формирование исходной гипотезы о координатах ЛА по имеющимся априорным данным, при этом итерационно уточняют гипотезу о значениях измеряемых параметров за счет расчета гипотетической кривой МДЧ, соответствующей гипотезе, формируют сигнал ошибки гипотетической кривой МДЧ относительно кривой МДЧ по данным РЛИ, преобразуют сигнал ошибки кривой МДЧ в сигнал ошибки измеряемых параметров, суммируют его с уточняемой гипотезой, повторяют итерации и выдают в режиме слежения измеренных параметров высоты, истинной скорости и угла наклона вектора скорости ЛА относительно горизонта потребителю. 2 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относится к радиолокации протяженных целей, в частности к радиолокационным измерителям высоты, скорости и наклона вектора скорости летательного аппарата (ЛА) относительно земной поверхности, и может быть использовано при пикирующих траекториях ЛА, в том числе на беспилотных летательных аппаратах и снарядах. Результаты измерений высоты и вектора скорости ЛА могут быть использованы в интересах автономной навигации ЛА или коррекции инерциальной системы управления. Достигаемый технический результат - измерение высоты, истинной скорости ЛА и угла между направлением вектора скорости и плоскостью горизонта (угла пикирования) при использовании однолучевой антенной системы, ориентированной в направлении, совпадающем с продольной осью ЛА. Указанный результат достигается тем, что производится зондирование земной поверхности радиолокационным сигналом в направлении продольной оси ЛА, когерентный прием отраженного сигнала с получением двумерного радиолокационного изображения (РЛИ) местности в координатах дальность - доплеровская частота, нахождение зависимости максимальной доплеровской частоты (МДЧ) от дальности по данным РЛИ, формирование исходной гипотезы о координатах ЛА по имеющимся априорным данным, при этом итерационно уточняют гипотезу о значениях измеряемых параметров за счет расчета гипотетической кривой МДЧ, соответствующей гипотезе, формируют сигнал ошибки гипотетической кривой МДЧ относительно кривой МДЧ по данным РЛИ, преобразуют сигнал ошибки кривой МДЧ в сигнал ошибки измеряемых параметров, суммируют его с уточняемой гипотезой, повторяют итерации и выдают в режиме слежения измеренных параметров высоты, истинной скорости и угла наклона вектора скорости ЛА относительно горизонта потребителю. 2 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относится к области радиотехники и может быть использовано в пассивных системах местоопределения (МО) источников радиоизлучения (ИРИ), размещенных на неровных участках местности. Достигаемый технический результат – снижение погрешности определения координат ИРИ. Сущность изобретения заключается в расположении четырех приемных пунктов (ПП), размещенных на беспилотных летательных аппаратах (БЛА) типа "мультикоптер" в районе предполагаемого нахождения ИРИ. В указанный район ПП доставляются посредством беспилотного или пилотируемого летательного аппарата среднего класса. В состав каждого ПП входят блок навигационно-временного обеспечения, ненаправленная антенна, панорамный приемник, приемопередатчик. В районе предполагаемого нахождения ИРИ приемные пункты распределяют в пространстве по команде с наземного пункта управления и обработки (НПУО), формируя, таким образом, разностно-дальномерную систему (РДС) МО. Приемные пункты располагают в вершинах тетраэдра: периферийные ПП в вершинах его нижнего основания, а опорный в вершине над основанием. В образованной РДС по сигналам блоков навигационно-временного обеспечения каждого ПП осуществляется определение их координат в пространстве, высокоточная привязка к собственной системе координат РДС и передача координатной информации о периферийных ПП на опорный. По команде с него все ПП выполняют поиск сигнала ИРИ в заданном частотном диапазоне и при обнаружении сигнала ретранслируют его на опорный. Прием и ретрансляция сигнала ИРИ приемными пунктами осуществляются их панорамными приемниками и приемопередатчиками соответственно. На опорном ПП на основе вычисления корреляции между сигналом, принятым на нем, и сигналами, ретранслированными с периферийных ПП, вычисляются и отправляются на НПУО координаты обнаруженного ИРИ. На НПУО оценивается значение погрешности полученных координат и в случае превышения требуемого значения, установленного оператором, осуществляется пересчет собственных координат всех ПП для их перестроения. Такое перестроение ПП относительно ИРИ выполняется до тех пор, пока погрешность определения его координат не установится ниже требуемого значения. 8 ил.

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения координат местоположения источников радиоизлучения (КМПИРИ) ультракороткого–сверхвысокочастотного (УКВ-СВЧ) диапазонов как цифровых, так и аналоговых видов связи, сведения о которых отсутствуют в базе данных (например, государственной радиочастотной службы). Достигаемый технический результат - определение КМПИРИ одним постом радиоконтроля (РКП) и n, равно или более трех, виртуальных постов (ВП) без применения пеленгаторов и радиоприемников с автокорреляторами. Указанный результат достигается тем, что в основе способа лежит энергетический принцип, заключающийся в измерении (или вычислении) напряженности поля ИРИ и в нескольких точках пространства с известными координатами их местоположения. При этом напряженность поля ИРИ на РКП измеряют, а в дополнительной точке (точках) вычисляют. В качестве дополнительной точки в способе предложен виртуальный пост (ВП), координаты которого и параметры его виртуальной антенны (диаграмма направленности и высота подвеса) задаются. При использовании n ВП они «размещаются» не на одной прямой с РКП и «отстоят» от него по широте и (или) по долготе на несколько угловых минут. Вычисление напряженности на ВП основано на принципе корреляционной зависимости (КЗ) напряженностей полей, создаваемых в заданном диапазоне частот множеством источников радиоизлучения, находящихся согласно базе данных в зоне электромагнитной доступности РКП и вычисляемых, как для РКП, так и для всех заданных ВП по определенной программе. 5 ил., 1 табл.

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения координат местоположения источников радиоизлучения (КМПИРИ) УКВ-СВЧ диапазонов как цифровых, так и аналоговых видов связи, сведения о которых отсутствуют в базе данных (например, государственной радиочастотной службы). Достигаемый технический результат - определение КМПИРИ одним постом радиоконтроля (РКП) и n, равно или более двух, виртуальных постов (ВП) без применения пеленгаторов и радиоприемников с автокорреляторами. Указанный результат достигается тем, что в основе способа лежит энергетический принцип, заключающийся в измерении (или вычислении) напряженности поля ИРИ и в нескольких точках пространства с известными координатами их местоположения. При этом напряженность поля ИРИ на РКП измеряют, а в дополнительной точке (точках) вычисляют. В качестве дополнительной точки в способе предложен виртуальный пост (ВП), координаты которого и параметры его виртуальной антенны (диаграмма направленности и высота подвеса) задаются. При использовании n ВП их размещают не на одной прямой с РКП и «отстоят» от него по широте и (или) по долготе на несколько угловых минут. Вычисление напряженности на ВП основано на принципе корреляционной зависимости (КЗ) напряженностей полей, создаваемых множеством источников радиоизлучения в заданном диапазоне частот, находящихся согласно базе данных в зоне электромагнитной доступности РКП и вычисляемых как для РКП, так и для всех заданных ВП по определенной программе.1 з.п. ф-лы, 8 ил.

Изобретение относится к способам определения координат объектов. Заявлен способ определения координат объектов, при котором устанавливают на высотном сооружении вращающуюся вокруг вертикальной оси видеокамеру, выполненную с возможностью изменения угла наклона, определяют координаты высотного сооружения, наводят видеокамеру на определяемый объект, определяют координаты объекта по углу наклона видеокамеры, высоте расположения видеокамеры и азимутальному углу видеокамеры. Также в заявленном способе выбирают радиус обзора местности, выбирают шаг поворота видеокамеры, строят модель срезов рельефа вокруг точки установки видеокамеры с заданным шагом по базе данных карт высот рельефа, определяют расчетную линию горизонта в каждом кадре, накладывают на изображение с видеокамеры линию, составленную из точек расчетной линии горизонта, определяют на изображении с видеокамеры линию, соответствующую реальной линии горизонта, определяют отклонение реальной линии горизонта от расчетной, записывают в базу данных поправочный угол к углу наклона камеры для расчета координат пересечения вектора, соответствующего линии взгляда видеокамеры на рельеф местности. Технический результат – повышение точности определения координат объектов. 4 з.п. ф-лы, 6 ил.

Изобретение относится к радионавигации и может быть использовано для определения пространственных координат (ПК) объектов, стационарных или подвижных, и управления их движением в локальных зонах навигации. Достигаемый технический результат - обеспечение однозначного определения ПК без привлечения дополнительной информации. Указанный результат достигается за счет того, что системой n-х наземных станций передают радиосигналы в виде двух гармонических колебаний с соответственно заданными частотами и . Радиосигналы синхронизированно формируют заданным образом в едином центре в системе отсчета времени, связанной с ним, и передают по линиям связи на каждую станцию. При формировании и передаче радиосигналов обеспечивают выполнение заданных в способе условий. На объекте осуществляют прием совокупности аналоговых радиосигналов и преобразуют ее в соответствующую ей цифровую совокупность, каждый цифровой сигнал которой содержит две цифровые составляющие и . Для каждой из этих составляющих формируют квадратурные им цифровые компоненты и . По парам цифровых компонент и определяют в системе отсчета времени, связанной с объектом, моменты времен приема различных n-х радиосигналов и разности моментов времен приема различных двух n-х радиосигналов. По этим разностям и известным на объекте координатам фазовых центров антенн станций однозначно определяют относительные дальности до объекта от указанных фазовых центров антенн станций и по относительным дальностям однозначно определяют пространственные координаты фазового центра антенны объекта.
Наверх