Модификатор для жаропрочных никелевых сплавов

Изобретение относится к области металлургии, а именно к модифицированию жаропрочных сплавов на основе никеля порошками тугоплавких соединений. Модификатор содержит, мас.%: ультрадисперсный порошок карбонитрида титана 1-5, порошки титана 18-22, хрома 2-4, молибдена 8-10, магния 10-15, вольфрама 8-10, ниобия 8-10, алюминия 10-15, никеля 8-10, марганца 2-5 и железа 5-10. Размер частиц ультрадисперсного порошка карбонитрида титана составляет 0,01-0,10 мкм, размер частиц порошка титана составляет 0,01-0,50 мкм, размер частиц порошков хрома, молибдена, вольфрама, ниобия, алюминия и магния составляет 10-60 мкм, а размер частиц порошков никеля и марганца не превышает 30-40 мкм. Использование модификатора обеспечивает получение сплава с мелкозернистой равномерной структурой и стабильными высокими физико-механическими свойствами. 1 табл.

 

Изобретение относится к области металлургии, а именно к модифицированию жаропрочных сплавов на основе никеля типа ЖС ультрадисперсными порошками тугоплавких соединений.

Повышение эффективности и надежности работы изделий, применяемых в авиации, космонавтике, автомобилестроении, теплоэнергетике, в газовом хозяйстве во многом определяется достигнутым уровнем служебных характеристик литых изделий из никелевых жаропрочных сплавов. Прогресс в этой области связан с использованием технологических приемов физического и химического воздействия на жидкий металл в процессе плавки, разливки, сварки. Достижение высокого уровня физико-механических свойств металла и производства годных изделий высокого качества требует решения комплекса задач практического и теоретического плана, связанного с выплавкой и формированием требуемой структуры отливок. Существенные резервы управления структурой и служебными свойствами отливок открывают использование методов энергетического воздействия на жидкий металл, среди которых важное место занимают модифицирование ультрадисперсными порошками (УДП) и высокотемпературная обработка расплавов (ВТОР).

Из уровня техники известен модификатор для никелевых сплавов, содержащий 0,5-+1,5 мас. % азота, 1,7-6,18 мас. % титана, 30-50 мас. % хрома, 0,1-1,0 мас. % бора, остальное никель. Модификатор способствует измельчению структуры и упрочнению сплава частицами нитрида титана (АС СССР 384918, Институт проблем литья Украинской ССР, 01.01.1973).

В качестве наиболее близкого аналога выбран модификатор для улучшения свойств отливок из жаропрочных сплавов, содержащий 20-25 мас.% молибдена, 60-70 мас. % хрома, никель – остальное (патент РФ 2337167 C2, 27.10.2008).

Недостатком известных модификаторов является то, что модифицирование тугоплавкими металлами и частицами тугоплавких соединений, сформированных в виде лигатуры или вводимых в виде порошка с размером частиц больше микрометра, не обеспечивает равномерного распределения их по объему расплава.

Основным недостатком известных методов суспензионного модифицирования является неоднородность суспензии, обусловленная неравномерным распределением частиц в объеме расплава, возможностью седиментации по плотности и низкой устойчивостью от коагуляции и растворения. Достижения теории и практики активного воздействия на расплав при раскислении, микролегировании и модифицировании позволяют утверждать, что устранение этого недостатка обеспечит значительный эффект в направленном воздействии на структуру металла и повышения физико-механических свойств отливок.

Задача, решаемая в результате реализации заявленного изобретения, заключается в выборе оптимального химико-физического состава модификатора, обеспечивающего эффективное воздействие на микро- и макроструктуру.

Техническим результатом изобретения является получение сплава с мелким зерном, равномерно распределенным по объему, и обеспечение высоких стабильных физико-механических свойств.

Указанный технический результат достигается за счет того, что в известный модификатор, содержащий молибден, хром и никель, дополнительно вводят ультрадисперсный порошок карбонитрида титана, порошки титана, вольфрама, ниобия, алюминия, магния, железа и марганца при следующем соотношении компонентов, мас. %:

карбонитрид титана 1,0 - 5,0
титан 18,0 - 22,0
хром 2,0 - 4,0
молибден 8,0 - 10,0
вольфрам 8,0 - 10,0
ниобий 8,0 - 10,0
алюминий 10,0 - 15,0
магний 10,0 - 15,0
никель 8,0 - 10,0
марганец 2,0 - 5,0
железо 5,0 – 10,0,

при этом размер частиц ультрадисперсного порошка карбонитрида титана составляет 0,01-0,10 мкм, размер частиц порошка титана составляет 0,01-0,50 мкм, а размер частиц порошков никеля, хрома, молибдена, вольфрама и ниобия составляет 10-60 мкм, а размер частиц алюминия, магния, марганца не превышает 30-40 мкм.

Содержание титана превышает содержание карбонитрида титана приблизительно в 8-10 раз, поскольку это необходимо для созданий на частицах карбонитрида плакирующего слоя титана. При этом при содержании титана меньше 18 мас.% не обеспечивается полное плакирование зерен карбонитрида, а при содержании титана более 22 мас. % снижается температура продуктов экзотермической реакции с никелем.

Содержание алюминия и магния от 10 до 15 мас.% выбрано для обеспечения прохождения устойчивых СВС процессов, в результате чего частицы модификатора под воздействием тепловой энергии металлотермической реакции, выделяемой при сгорании алюминия, магния, марганца, железа внутри брикета, будут «разрывать» брикет изнутри и разносить по всему объему частицы карбонитрида титана с плакируемым слоем титана, служащие зародышами кристаллизации. При содержании алюминия ниже 10 мас.%, магния ниже 10 мас.%, железа ниже 5 мас.%, марганца ниже 2 мас.%, в модификаторе не будет создаваться достаточное усилие для разлета частиц по объему расплава, при содержании алюминия, превышающем 15 мас.%, магния, превышающем 15 мас.%, железа, превышающем 10 мас.%, марганца, превышающем 5 мас.%, происходит перенасыщение расплава алюминием, магнием, марганцем, железом, что отрицательно сказывается на химическом составе, и как следствие физико-механических свойствах сплава и служебных характеристиках готового изделия.

При содержании хрома, молибдена, вольфрама, ниобия ниже минимальных значений увеличивается размер зерна никеля, в случае содержаний указанных компонентов выше максимальных значений прерывается распространение экзотермической реакции по брикету модификатора и не обеспечивается заданный состав сплава.

Содержание никеля выбрано из условия образования модификатором матрицы на основе МеС с содержанием никеля от 2,5-3,5 %.

Размер частиц карбонитрида титана ниже 0,01 мкм способствует агрегированию частиц, увеличению времени роста модифицированной фазы и снижает однородность распределения центров кристаллизации, выше 0,50 мкм – снижает однородность модифицированного металла.

Размер частиц титана 0,01-0,50 мкм обусловлен тем, что при размере частиц ниже 0,01 мкм происходит агрегирование частиц, а при размере частиц выше 0,50 мкм наблюдается неоднородное плакирование титаном частиц карбонитрида.

Размер частиц хрома, молибдена, вольфрама, ниобия ниже 10 мкм приводит к агрегированию частиц, а выше 60 мкм прерывается распространение экзотермической реакции по брикету модификатора.

Размер частиц марганца и никеля не оказывает непосредственного влияния на технический результат и может составлять не более 30-40 мкм.

Введение модификатора в широком диапазоне температурно-временных параметров плавки влияет на характер выделений карбидных включений в металле, среди которых наиболее распространенным является карбид МеС, имеющий в никелевых сплавах скелетообразную или строчечную морфологию. Применение технологии комплексного модифицирования приводит к уменьшению размеров и изменению дендритной ячейки, что вызвано увеличением темпа кристаллизации модифицированного сплава на первом этапе кристаллизации. Кроме того, изменяется морфология и топография карбидной фазы – от выделений типа пленок, выстроенных в цепочку и имеющих форму вида «китайский иероглиф», образующих каркас по границам зерен, до компактных округлой формы включений. Кроме того, после модифицирования значительно снижается дендритная ликвация, а элементы перераспределяются более равномерно, обеспечивая выравнивание состава между осями дендритов и межосными участками.

Возможность достижения указанного технического результата подтверждается следующим примером.

Пример.

Порошки компонентов модификатора с заданными размерами частиц смешивают в следующем соотношении, мас. %: 3,0 карбонитрида титана, 20 титана, 3,0 хрома, 9 молибдена, 9 вольфрама, 9 ниобия, 9 никеля, 10 алюминия, 10 магния, 7 железа, 3 марганца. Из полученной смеси формируют брикет путем прессования при 20-40 МПа и спекания при температуре 820-920 °С в вакууме в течение 25-30 мин.

Никелевый сплав, полученный с использованием такого модификатора, имеет однородную дендритную структуру с размером макрозерна 0,3-1,4 мм, содержащую глобулярные карбиды с размером 2-6 мкм.

Таблица 1

Физико-механические свойства сплава ЖС6-У


Объект исследования

Временное сопротивление разрыву, σв, МПа

Предел текучести
σ0,2, МПа

KCU,
MДж/м2

Форма карбидов

Размер карбидов, мкм

Средний размер зерна, мм

ОСТ 90126-85

960

800

-

-

-

-

Сплав по прототипу

855

730

0,12

игольчатая

6-16

3-8

Сплав ЖС6У, модифицированный TiCN+Ti

1220

1070

0,32

глобулярная

0,7-3,2

0,3-1,4

Таким образом, использование модификатора, содержащего плакированные титаном ультрадисперсные частицы карбонитрида титана, позволяет эффективно и целенаправленно воздействовать на микро- и макроструктуру никелевого сплава и получать мелкое равноосное зерно по всему объему отливки, обеспечивающее высокие физико-механические свойства отливки.


    Модификатор для никелевых сплавов, содержащий порошки молибдена, хрома и никеля, отличающийся тем, что он дополнительно содержит ультрадисперсный порошок карбонитрида титана, порошки титана, вольфрама, ниобия, алюминия, магния, марганца и железа при следующем соотношении компонентов, мас.%:

карбонитрид титана 1,0 - 5,0
титан 18,0 - 22,0
хром 2,0 - 4,0
молибден 8,0 - 10,0
вольфрам 8,0 - 10,0
ниобий 8,0 - 10,0
алюминий 10,0 - 15,0
магний 10,0 - 15,0
никель 8,0 - 10,0
марганец 2,0 - 5,0
железо 5,0 – 10,0,

при этом размер частиц ультрадисперсного порошка карбонитрида титана составляет 0,01-0,10 мкм, размер частиц порошка титана составляет 0,01-0,50 мкм, а размер частиц порошков хрома, молибдена, вольфрама, ниобия, алюминия и магния составляет 10-60 мкм, а размер частиц порошков никеля и марганца не превышает 30-40 мкм.



 

Похожие патенты:

Изобретение относится к цветной металлургии, в частности к способам изготовления стандартных образцов состава лигатур на основе алюминия с аттестованным содержанием одного или нескольких легирующих химических элементов.

Изобретение относится к области металлургии, в частности к составам сплавов, используемых для легирования серого чугуна. Сплав для легирования чугуна содержит, мас.%: хром 15,0-20,0, кремний 10,0-15,0, марганец 3,0-4,0, углерод 1,0-1,5, теллур 0,2-0,4, гафний 6,0-8,0, самарий 1,0-1,5, железо - остальное.

Изобретение относится к области металлургии, в частности к составам сплавов, используемых для легирования серого чугуна. Сплав для легирования чугуна содержит, мас.%: хром 15,0-20,0; кремний 10,0-15,0; алюминий 5,0-10,0; марганец 3,0-4,0; углерод 1,0-1,5; теллур 0,2-0,4; бор 1,6-2,0; никель 10,0-15,0; серебро 3,0-4,0; железо - остальное.

Лигатура // 2626256
Изобретение относится к области металлургии, в частности к составам лигатур, используемых в производстве бронзы. Лигатура содержит, мас.%: алюминий 25,0-35,0; никель 15,0-20,0; молибден 8,0-10,0; железо 3,0-5,0; РЗМ 0,5-1,0; цирконий 15,0-25,0; медь - остальное.

Изобретение относится к области металлургии, в частности к составам сплавов, используемых для легирования серого чугуна. Сплав для легирования чугуна содержит, мас.

Лигатура // 2625148
Изобретение относится к области металлургии, в частности к составам лигатур, используемых в производстве сплавов на основе титана. Лигатура содержит, мас.

Изобретение относится к области металлургии, в частности к составам сплавов, используемых для легирования серого чугуна. Сплав для легирования чугуна содержит, мас.

Изобретение относится к области металлургии, в частности к составам сплавов, используемых для легирования стали. Сплав для легирования стали содержит, мас.

Изобретение относится к области металлургии, в частности к составам сплавов, используемых для легирования стали. Сплав для легирования стали содержит, мас.

Изобретение относится к области металлургии, в частности к составам сплавов, используемых для легирования стали. Сплав содержит, мас.%: ванадий 30,0-35,0; углерод 0,5-1,0; хром 8,0-10,0; ниобий 8,0-12,0; селен 0,5-1,0; железо - остальное.

Изобретение относится к области цветной металлургии и может быть использовано при производстве сплавов титана. Лигатура содержит, мас.%: ванадий 40-50, титан 5-20, углерод 3-5, алюминий - остальное.
Изобретение относится к металлургии редких металлов и может быть использовано для получения жаропрочного никелевого сплава, а также для формирования внутренних электродов многослойных керамических электронных компонентов.
Изобретение относится к области металлургии редких металлов и сплавов, в частности к составам шихты для получения лигатур тугоплавких металлов, преимущественно металлов IV-VI групп, используемых для легирования титановых сплавов.
Изобретение относится к металлургии, а именно к способам получения сплавов тугоплавких металлов. .
Изобретение относится к металлургии, в частности к получению сплавов тугоплавких металлов внепечным алюмотермическим восстановлением. .

Изобретение относится к металлургии, а именно к сплавам на основе рения, используемым для введения их в литейные жаропрочные сплавы в качестве лигатуры. .

Изобретение относится к электрохимическим производствам, а точнее к полученинэ оксидных вольфрамовых бронз при меньшей температуре электрокристаллизации. .

Изобретение относится к области металлообработки , в частности к режущему инструменту. .

Изобретение относится к получению заготовок из сплавов на основе интерметаллида TiNi. Способ включает приготовление порошковой смеси из TiO2, Ni и/или оксида никеля и гидрида кальция, термическую обработку полученной смеси при температуре 1100-1300°С в течение не менее 6 часов с обеспечением гидридно-кальциевого синтеза порошка сплавов на основе интерметаллида TiNi.
Наверх