Генератор импульсов тока



Генератор импульсов тока
Генератор импульсов тока
Генератор импульсов тока
H03K3/00 - Импульсная техника (измерение импульсных характеристик G01R; механические счетчики с электрическим входом G06M; устройства для накопления /хранения/ информации вообще G11; устройства хранения и выборки информации в электрических аналоговых запоминающих устройствах G11C 27/02; конструкция переключателей для генерации импульсов путем замыкания и размыкания контактов, например с использованием подвижных магнитов, H01H; статическое преобразование электрической энергии H02M;генерирование колебаний с помощью схем, содержащих активные элементы, работающие в некоммутационном режиме, H03B; импульсная модуляция колебаний синусоидальной формы H03C;H04L ; схемы дискриминаторов с подсчетом импульсов H03D;

Владельцы патента RU 2631969:

Чуркин Иван Михайлович (RU)
Певчев Владимир Павлович (RU)
Синичкин Олег Игоревич (RU)
Зубенко Денис Александрович (RU)
Савёлов Леонид Вадимович (RU)

Изобретение относится к области импульсной техники и может использоваться для питания обмоток возбуждения реверсивного двигателя возвратно-поступательного движения. Технический результат – упрощение устройства путем исключения одного источника питания и одного накопительного конденсатора. Генератор импульсов тока содержит зарядное устройство, накопительный конденсатор, два основных тиристора, две индуктивные нагрузки, коммутирующий конденсатор, два вспомогательных тиристора, два диода. 4 ил.

 

Предлагаемое устройство относится к области импульсной электротехники и предназначено для питания обмоток возбуждения устройств, создающих импульсные магнитные поля, в частности, для питания реверсивного двигателя возвратно-поступательного движения.

Известен генератор импульсов тока (ГИТ) (а.с. СССР №1018201, опубл. в БИ №18, 1983), принятый за аналог, предназначенный для питания обмоток возбуждения двигателя возвратно-поступательного движения импульсами тока. Он содержит зарядное устройство, трансформатор с основными и вспомогательными обмотками, конденсаторы, диоды, дроссели, первый и второй вспомогательные тиристоры, включенные последовательно и в прямом направлении по отношению к зарядному устройству.

Рассматриваемый ГИТ содержит большое количество диодов, индуктивностей и индуктивно-связанных обмоток, рекуперация энергии в накопительный конденсатор осуществляется через многообмоточный трансформатор. Это значительно усложняет конструкцию.

Наиболее близким к предлагаемому по технической сущности и характеру протекания электромагнитных процессов является ГИТ по а.с. СССР №1622924, опубл. в БИ №3, 1991 г., принятый за прототип, содержащий два накопительных конденсатора, подключенных к двум зарядным устройствам, коммутирующий конденсатор и две катушки индуктивности – обмотки возбуждения двигателя возвратно-поступательного движения, подключенные через первый и второй основные тиристоры к накопительным конденсаторам и, через первый и второй дополнительные тиристоры к коммутирующему конденсатору.

Недостатком этого генератора является сложность конструкции, обусловленная наличием двух накопительных конденсаторов, подключенных к двум зарядным устройствам.

Задачей, на решение которой направлено заявляемое изобретение, является упрощение конструкции.

Техническим результатом является формирование импульсов тока в двух обмотках двигателя возвратно-поступательного движения с использованием лишь одного накопительного конденсатора с одним зарядным устройством.

Поставленная задача достигается тем, что ГИТ содержит зарядное устройство, накопительный конденсатор, первый и второй основные тиристоры, первую и вторую индуктивные нагрузки, зашунтированные коммутирующим конденсатором и первым, и вторым вспомогательными тиристорами, накопительный конденсатор и зарядное устройство, подключенные через первый основной тиристор к первой индуктивной нагрузке, а через второй тиристор – ко второй индуктивной нагрузке, первая индуктивная нагрузка зашунтирована первой последовательной цепью, состоящей из первого диода, коммутирующего конденсатора и первого вспомогательного тиристора в проводящем направлении, вторая индуктивная нагрузка зашунтирована второй последовательной цепью, состоящей из второго диода, коммутирующего конденсатора и второго вспомогательного тиристора в проводящем направлении, причем диоды и вспомогательные тиристоры в каждой из последовательных цепей, шунтирующих первую и вторую нагрузки, подключены к разным обкладкам коммутирующего конденсатора.

Предлагаемое изобретение иллюстрируется чертежами: на фиг.1 изображен предлагаемый генератор импульсов тока, на фиг.2 – кривые токов и напряжений на элементах схемы при работе предлагаемого ГИТ, на фиг.3 приведена принципиальная схема реверсивного двигателя возвратно-поступательного движения индуктивно-динамического типа, а на фиг.4 кривые токов и напряжений на элементах ГИТ, при его срабатывании в режиме форсировки гашения и возбуждения электромагнитного поля двигателя.

Устройство по фиг.1 состоит из накопительного конденсатора 1, подключенного к зарядному устройству 2 и через первый основной тиристор 3 к первой индуктивной нагрузке 4, а через второй основной тиристор 5 ко второй индуктивной нагрузке 6. Первая 4 и вторая 6 индуктивные нагрузки представляют собой обмотки возбуждения прямого и обратного хода реверсивного двигателя возвратно-поступательного движения, приведенного на фиг.3. Коммутирующий конденсатор 7 через первый вспомогательный тиристор 8 и первый диод 9 подключен к первой индуктивной нагрузке 4, а через второй вспомогательный тиристор 10 и второй диод 11 – ко второй индуктивной нагрузке 6.

На фиг.2 приведены кривые напряжения и токов на элементах ГИТ, где: 12 – напряжение на накопительном конденсаторе 1; 13 и 14 – токи в первой 4 и во второй 6 индуктивных нагрузках (пунктирные линии соответствуют варианту, когда индуктивностями 4 и 6 служат обмотки двигателя возвратно-поступательного движения, а сплошные – если индуктивности 4 и 6 постоянные), 15 – напряжение на коммутирующем конденсаторе 7.

На фиг.3 приведена функциональная схема двигателя возвратно-поступательного движения. Двигатель состоит из цилиндрического ферромагнитного якоря 16 с короткозамкнутыми витками 17, выполненными, например, из меди. Якорь 16 расположен внутри цилиндрического ферромагнитного индуктора 18, с обмотками возбуждения 4 и 6. Положение якоря 16 относительно индуктора 18 фиксируется ограничителями 19.

На фиг.4 приведены кривые токов и напряжений на элементах ГИТ при его срабатывании в режиме форсировки возбуждения и гашения электромагнитного поля двигателя, где: 20 – напряжение на коммутирующем конденсаторе 7; 21 – ток в индуктивной нагрузке 4 (или 6); 22 – напряжение на накопительном конденсаторе 1.

Работает ГИТ следующим образом. В исходном состоянии конденсаторы 1 и 7 заряжены с полярностью, указанной на фиг.1 без скобок. В момент времени t0 фиг.2, открывают первый основной тиристор 3, и предварительно заряженный от источника питания 2 накопительный конденсатор 1 по закону, описываемому кривой 12 (фиг.2), разряжается на первую индуктивную нагрузку 4. При этом ток i1, в обмотке возбуждения 4 нарастает по кривой 13. В короткозамкнутом витке якоря 16, магнитосвязанном с обмоткой 4, индуктируется вторичный ток i2. В результате взаимодействия двух контуров (4 и 17) с токами i1 и i2 возникает электромагнитная сила, ускоряющая якорь 16 вправо. В момент времени t1, когда якорь 16, достигнув упора 19, окажется в правом крайнем положении, как это показано на фиг.3 пунктиром, от схемы управления (на фиг.1 не показана) открывают первый вспомогательный тиристор 8 и к первому основному тиристору 3 прикладывается обратное напряжение от коммутирующего конденсатора 7. Тиристор 3 закрывается, а конденсатор 1 отключается от обмотки возбуждения 4 прямого хода двигателя. На интервале времени t1<t<t3 конденсатор 1 заряжается от источника 2 до исходного напряжения. Ток i1 индуктивной нагрузки 4 замыкается по цепи из конденсатора 7 и первого основного тиристора 8, перезаряжая конденсатор 7 полярностью, указанной на фиг.1 в скобках. При этом происходит рекуперация оставшейся энергии обмотки возбуждения 4 двигателя в конденсатор 7, напряжение на котором изменяется по кривой 15. В момент времени t2 рекуперация заканчивается, ток в цепи индуктивной нагрузки 4 и конденсатора 7 становится равным нулю, тиристор 8 закрывается.

Таким образом, формируется импульс тока в цепи обмотки возбуждения 4 прямого хода якоря двигателя возвратно-поступательного движения, и происходит перемещение якоря двигателя в прямом направлении. После фиксации якоря 16 ограничителем 19 ГИТ готов к второму срабатыванию, т.е. к формированию импульса тока во второй 6 индуктивной нагрузке с целью перемещения якоря в обратном напряжении.

Для перемещения якоря 16 двигателя в обратном направлении в момент времени t3, открывают второй основной тиристор 5, обеспечивая на интервале времени t3 - t4 (фиг.2) разряд накопительного конденсатора 1 на вторую индуктивную нагрузку 6. Ток i1 индуктивной нагрузки 6 нарастает (кривая 14). В результате, в короткозамкнутом витке 17 якоря 16, магнитосвязанном с обмоткой 6, наводится вторичный ток i2. Взаимодействие двух контуров (6 и 17) с токами i1 и i2 обуславливает возникновение электромагнитной силы, перемещающей якорь 16 с короткозамкнутым витком 17 влево до упора 19, и обеспечивая тем самым обратный ход якоря 16. В момент времени t4, когда якорь 16, достигнув упора 19, окажется в крайнем левом положении, как это показано на фиг.3, открывается второй вспомогательный тиристор 10. и к тиристору 5 прикладывается обратное напряжение (от конденсатора 7). Тиристор 5 закрывается, обмотка возбуждения 6 обратного хода якоря отключается от конденсатора 1. который затем заряжается от источника 2 до исходного напряжения, аналогично, как на интервале t1<t<t3, а ток обмотки возбуждения 6 перехватывается в цепь конденсатора 7. На интервале времени t4 - t5 ток обмотки возбуждения 6 протекает через второй диод 11, конденсатор 7 и тиристор 10, перезаряжая конденсатор 7 по кривой 15 до первоначального напряжения, полярность которого указана на фиг.1 без скобок. Этим достигается рекуперация оставшейся электромагнитной энергии обмотки возбуждения в конденсатор 7. В момент времени t5 ток обмотки возбуждения 6 становится равным нулю, и тиристор 10 закрывается. Таким образом, осуществляется формирование импульса тока в обмотке возбуждения 6 обратного хода якоря 16 двигателя.

Для повторного формирования импульса тока в обмотке возбуждения 4 вновь открывают тиристор 3. После этого описываемые выше процессы в ГИТ повторяются. Следует заметить, что интервал времени t2 - t3 между окончаниями прямого хода якоря двигателя и началом обратного хода может быть любой длительности и даже равным нулю.

Описанный выше режим работы ГИТ, когда в начале открывают основной тиристор 3 (5), а затем вспомогательный 8 (10) называют режимом работы с форсировкой гашения электромагнитного поля двигателя. Форсировка гашения поля двигателя обеспечивается рекуперацией энергии из индуктивной нагрузки 4 (6) в коммутирующий конденсатор 7, емкость которого во много (в 20 - 40 раз) меньше емкости накопительного конденсатора 1.

Известно [Б.Э. Коц. Электромагнит постоянного тока с форсировкой. М. «Энергия», 1973], что для увеличения КПД двигателей возвратно-поступательного движения используют также режим форсировки возбуждения электромагнитного поля двигателя. Такой режим работы предлагаемого ГИТ возможен, если после рекуперации энергии из индуктивной нагрузки 4 (6) в конденсатор 7, напряжение на нем будет выше напряжения на конденсаторе 1, а это можно обеспечить уменьшением емкости конденсатора 7.

Для реализации режима форсировки в момент времени t0 (фиг.4) открывают тиристор 8. При этом конденсатор 7 разряжается на индуктивную нагрузку 4, напряжение на конденсатор 7 изменяется по кривой 20 (фиг.4). Поскольку емкость конденсатора 7 много меньше емкости конденсатора 1, а напряжение на нем выше напряжения на конденсаторе 7 и индуктивности 4, это обеспечивает на интервале времени t0 - t1, быстрое нарастание тока по кривой 21. В момент времени t1, когда напряжение на конденсаторе 1 станет больше напряжения на конденсаторе 7 на величину U1, необходимого для запирания тиристора 8, открывают тиристор 3. Конденсатор 1, разряжаясь на интервале времени t1 - t2 на обмотку возбуждения 4 по кривой 22, обеспечивает поддержание тока на заданном уроне. Ток может быть постоянным, как показано на фиг.4, уменьшаться или увеличиваться. В момент времени t2, когда рабочий ход якоря 16 двигателя выбран, а напряжение на конденсаторе 7 станет больше напряжения на конденсаторе 1 на величину U2, необходимую для запирания основного тиристора 3, вновь открывают коммутирующий тиристор 8. При этом к тиристору 3 прикладывается обратное напряжение, и он закрывается. Оставшаяся энергия рекуперирует из обмотки 4 в конденсатор 7, перезаряжая его до напряжения, большего, чем напряжение на конденсаторе 1, и обеспечивая на интервале времени t2 - t3, форсировку гашения поля двигателя.

Накопительный конденсатор 1 на интервале времени t>t2 заряжается от источника питания 2. После чего ГИТ готов к формированию второго импульса тока с целью перемещения якоря двигателя в обратном направлении. Следует отметить, что рекуперация не преобразованной электромагнитной энергии обмотки возбуждения 4 (6) в коммутирующий конденсатор 7 обеспечивает его подзарядку для осуществления срабатываний ГИТ без использования специальной цепи заряда.

В предлагаемом ГИТ ввод энергии в обмотки возбуждения реверсивного двигателя осуществляется от единственного накопительного конденсатора, подключенного к одному источнику питания. Это позволило исключить вторые источник питания и накопительный конденсатор, обеспечив тем самым упрощение конструкции по сравнению с прототипом.

Генератор импульсов тока, содержащий зарядное устройство, накопительный конденсатор, первый и второй основные тиристоры, первую и вторую индуктивные нагрузки, зашунтированные коммутирующим конденсатором и первым, и вторым вспомогательными тиристорами, отличающийся тем, что накопительный конденсатор и зарядное устройство подключены через первый основной тиристор к первой индуктивной нагрузке, а через второй основной тиристор – ко второй индуктивной нагрузке, первая индуктивная нагрузка зашунтирована первой последовательной цепью, состоящей из первого диода, коммутирующего конденсатора и первого вспомогательного тиристора в проводящем направлении, вторая индуктивная нагрузка зашунтирована второй последовательной цепью, состоящей из второго диода, коммутирующего конденсатора и второго вспомогательного тиристора в проводящем направлении, причём диоды и вспомогательные тиристоры в каждой из последовательных цепей, шунтирующих первую и вторую нагрузки, подключены к разным обкладкам коммутирующего конденсатора.



 

Похожие патенты:

Изобретение относится к области и предназначено для получения последовательности случайных чисел с заданными статистическими характеристиками. Технический результат - повышение независимости вырабатываемой последовательности случайных чисел от параметров источника шума и получение последовательности случайных чисел с заданными статистическими характеристиками.

Изобретение относится к области вычислительной техники. Технический результат заключается в повышении быстродействия специализированных вычислителей таких как многозначный триггер.

Изобретение относится к импульсной технике и может быть использовано для формирования импульсов управления СВЧ-приборами с сеточным управлением. Техническим результатом является упрощение модулятора импульсов и повышение его надежности.

Изобретение относится к электронной технике в области преобразователей сигналов. Формирователь импульсов содержит микроконтроллеры, блок гальванической развязки, преобразователи питания, регуляторы напряжения, входы напряжения питания и входы сигнала тахометрических датчиков.

Изобретение относится к электротехнике и импульсной силовой электронике и предназначено для использования в самолетных электроимпульсных комплексах, в частности - в противообледенительных системах и системах питания бортовых проблесковых огней предупреждения.

Изобретение относится к высоковольтной импульсной технике и предназначено для управления тиратроном с холодным катодом серии ТДИ путем формирования импульсов поджига с нормированной крутизной фронта и следующих с высокой частотой следования импульсов.

Изобретение относится к области электротехники и может найти применение в различных отраслях техники в качестве электрического генератора. Магнитный усилитель содержит замкнутый магнитопровод с рабочей обмоткой и источник н.с.

Изобретение относится к области электротехники и может быть использовано в контактном электрошоковом оружии (ЭШО) и дистанционном электрошоковом оружии (ДЭШО), а именно в нелетальном электрошоковом оружии дистанционного действия, для правоохранительных служб и граждан.

Изобретение относится к области приборостроения и может быть использовано при разработке средств формирования эталонных сигналов частоты. Технический результат – расширение функциональных возможностей - обеспечен на основе использования эффекта постоянства скорости распространения света в определенной светопроводящей среде, обеспечивающего возможность формирования стабильных по частоте импульсов за счет уменьшения факторов внутренней нестабильности.

Изобретение относится к импульсной технике и может быть использовано для формирования мощных СВЧ-импульсов заданной формы в составе передатчиков радиолокационных станций, использующих СВЧ-приборы с сеточным управлением.

Изобретение относится к преобразовательной технике и может быть использовано в системах электроснабжения. Технический результат заключается в повышении коэффициента усиления напряжения. Индуктивно-емкостный преобразователь содержит проводящие обкладки, свернутые в спираль и разделенные диэлектриком, выполненным из первой и второй секций, причем начало первой проводящей обкладки первой секции подключено к началу первой проводящей обкладки второй секции, конец первой проводящей обкладки первой секции подключен к концу второй проводящей обкладки второй секции, начало второй проводящей обкладки первой секции подключено к началу второй проводящей обкладки второй секции, конец второй проводящей обкладки первой секции подключен к концу второй проводящей обкладки второй секции. 2 з.п. ф-лы, 9 ил.

Изобретение относится к области радиотехники и связи и может быть использовано для улучшения линейности усиления многочастотных сигналов. Технический результат заключается в снижении динамического диапазона многочастотных сигналов. Предложенный способ позволяет определить начальные фазы гармонических колебаний многочастотного сигнала, обеспечивающие снижение динамического диапазона его огибающей и, как следствие, улучшение линейности усиления. 2 ил.

Предлагаемый способ относится к области измерительной техники и предназначен для преобразования напряжения в частоту следования импульсов. Технический результат заключается в уменьшении абсолютной погрешности дискретности преобразования в код выходной частоты следования импульсов и расширение диапазона входных напряжений. В способе интегрируют преобразуемое напряжение и определяют в моменты синхронизации повторяющиеся периодически результаты интегрирования, и при условии, что в момент синхронизации результат интегрирования преобразуемого напряжения станет меньше заданного уровня, начинают интегрировать импульс стабильной площади, знак которого противоположен знаку преобразуемого напряжения, причем среднее значение площади импульса больше по абсолютной величине, чем любое преобразуемое напряжение из заданного диапазона, импульс стабильной площади действует в течение целого числа N периодов синхронизации, при этом N>1. 5 ил.

Изобретение относится к области высоковольтной импульсной техники. Генератор включает зарядную цепь, ограничитель и нагрузку. Зарядная цепь введена в генератор Маркса, содержащий также N1 - звеньев, состоящих из ключей с конденсаторами, соединенных по каскадной схеме умножения напряжения Аркадьева-Маркса. Конденсатор генератора Маркса первого звена подключен к общей шине, а зарядная цепь генератора Маркса подключена к общей шине и к точкам соединения конденсаторов и ключей в каждом из N1 - звеньев. Между последним ключом генератора Маркса и общей шиной последовательно подключены дроссель и импульсный диод с малым временем обратного восстановления. Ограничитель включает зарядную цепь и N2 - звеньев, состоящих из соединенных последовательно дрейфовых диодов и конденсаторов. Конденсатор ограничителя первого звена подключен к общей шине. Зарядная цепь ограничителя подключена к общей шине и к точкам соединения конденсаторов и дрейфовых диодов в каждом звене из N2 - звеньев. Последний дрейфовый диод из N2 - звеньев ограничителя подключен к точке соединения нагрузки и импульсного диода с малым временем обратного восстановления. Параметры зарядных цепей генератора Маркса и ограничителя и количество их звеньев N1 и N2 должны удовлетворять заданным условиям. Технический результат заключается в повышении КПД генератора. 2 ил..

Изобретение относится к области вычислительной техники, автоматики и может использоваться в различных цифровых структурах и системах автоматического управления и передачи информации. Технический результат заключается в возможности в рамках одной и той же архитектуры реализовывать две пороговые логические функции «Ограничение снизу» и «Ограничение сверху» двух многозначных входных переменных ("х", "хогр"). Токовый элемент ограничения многозначной выходной логической переменной содержит: первый (1) и второй (4) источники входного логического тока, соответствующие первой многозначной логической переменной "х", третий (5) источник входного логического тока, соответствующий второй логической переменной "хогр", устанавливающей уровень ограничения выходного тока устройства, первый (8) и второй (9) входные транзисторы, первую (2) и вторую (6) шины источника питания и источник вспомогательного напряжения (10). В схему введены первый (11), второй (12), третий (13) и четвертый (14) дополнительные транзисторы и первый (15) дополнительный источник входного логического тока, соответствующий второй логической переменной "хогр". 4 ил.

Изобретение относится к импульсной технике и может быть использовано для формирования прямоугольных импульсов при оптимальном соотношении КПД и габаритов блокинг-генератора, работающего в автоколебательном режиме. Технический результат заключается в оптимизации соотношения КПД и габаритов блокинг-генератора, работающего в автоколебательном режиме за счет снижения границы насыщения магнитопровода трансформатора. Генератор содержит ключевой транзистор и трансформатор, первичная обмотка которого включена между коллектором ключевого транзистора и источником питания, вторичная обмотка подключена к базе ключевого транзистора, содержит также регулирующий транзистор, первый, второй, третий и четвертый резисторы и конденсатор, причем первый резистор включен между эмиттером ключевого транзистора и общей землей, параллельно этому резистору включен эмиттерный переход регулирующего транзистора, эмиттер регулирующего транзистора соединен с общей землей, а база его подключена к эмиттеру ключевого транзистора и коллектор регулирующего транзистора соединен с базой ключевого транзистора. Конец вторичной обмотки, который не соединен с базой, подключен через второй резистор к схеме смещения из делителя напряжения питания на третьем и четвертом резисторах и конденсатора. 1 ил.

Изобретение относится к интегральной электронной технике и может быть использовано в составе боков синтезаторов сетки частот, а именно при реализации генератора, управляемого напряжением (ГУН). Технический результат заключается в повышения стабильности частоты выходного сигнала ГУН к действию помех по цепям напряжения питания. Устройство формирования управляющих напряжений для управления частотой выходного сигнала ГУН содержит элемент, корректирующий в зависимости от изменений напряжения питания значение тока, используемого при формировании управляющих напряжений. Элемент, осуществляющий коррекцию, включен последовательно с основным токозадающим элементом, что обеспечивает близкое к постоянному значению относительное изменение тока в широком диапазоне. 11 ил.

Изобретение относится к средствам формирования мощных прямоугольных высоковольтных импульсов наносекундной и субмикросекундной длительности в ускорительной технике. Технический результат заключается в получении плоским устройством в форме диска мощных высоковольтных импульсов из совокупности идентичных парциальных импульсов с сохранением их формы, высота устройства может быть на два порядка меньше его диаметра, что может представлять значительный интерес при компоновке ряда систем. Сумматор имеет два соосно соединенных металлических диска одного диаметра, в примыкающем основании первого из которых имеются концентрические пазы с размещенными в них ферромагнитными сердечниками, в сумматоре обеспечивается передача промежуточных импульсов внутри сумматора за счет соединения указанных линий с входными коаксиальными линиями с образованием согласованных сумматоров напряжений и токов, выход распределенного сумматора импульсов образован согласованным полосково-коаксиальным переходом, совмещенным с многоплечевым сумматором токов. На выходе распределенного сумматора формируется импульс с коэффициентом повышения напряжения, равным числу ребер с установленными в них коаксиальными линиями, а коэффициент повышения тока равен числу коаксиальных линий, устанавливаемых в одном ребре. 3 ил.

Изобретение относится к способам и устройствам заряда батарей емкостных накопителей электрической энергии в виде конденсаторов, ионисторов и т.п., широко используемых в импульсной технике, при их заряде от источника переменного тока, в том числе ограниченной мощности. Технический результат - улучшение удельных энергетических показателей (среднего значения зарядной мощности и КПД) зарядных устройств - достигается за счет того, что начальный заряд батареи производят при минимальной емкости накопителя и емкость батареи емкостного накопителя электрической энергии увеличивают по мере повышения напряжения на ее секциях. Предложены варианты схемотехнических решений устройства для реализации заявленного способа. В первом варианте устройства технический результат достигается за счет использования тиристоров в качестве токоограничивающего и развязывающих сопротивлений каскадов и разрядных ключей. Во втором варианте устройства технический результат достигается за счет включения ключа двусторонней проводимости между выпрямителем и средней точкой батареи конденсаторов, выполненной в виде емкостного трансформатора. В третьем варианте устройства технический результат достигается за счет выполнения емкостного накопителя электрической энергии в виде трех конденсаторов, образующих треугольник, в котором два конденсатора одинаковой емкости создают емкостной трансформатор напряжения, а вывод его средней точки соединен с одной из клемм входной диагонали выпрямителя через ключ двухсторонней проводимости. 3 н. и 1 з.п. ф-лы, 9 ил.

Изобретение относится к импульсной СВЧ технике, а именно к устройствам формирования импульсных сигналов сверхмалой длительности с функцией управления длительностью. Техническим результатом является реализация управления длительности формируемого сверхкороткого импульса за счет использования зависимости времени переключения диода с накоплением заряда из проводящего состояния в закрытое состояние от режима работы генератора. Генератор включает первую и вторую накопительные индуктивности, диод с накоплением заряда, а также двухканальный блок управления режимами работы с каналами положительной и отрицательной полярности, состоящими из стабилизатора напряжения, вход которого подключается к внешнему источнику напряжения питания, подстроечный вывод стабилизатора напряжения подтянут к его выходу резистором и соединяется с выходом операционного усилителя, отрицательный вход которого соединяется с его выходом через резистор обратной связи и подтягивается к земле при помощи другого резистора, а на положительный вход операционного усилителя подается сигнал управления. 3 ил.
Наверх