Планетарный редуктор

Изобретение относится к области машиностроения, а именно к зубчатым планетарным передачам с высокими передаточными отношениями. Планетарный редуктор с солнечным колесом и парными блоками сателлитов, зацепленными с неподвижной коронной шестерней и подвижной коронной шестерней. Солнечное колесо, неподвижная шестерня, сателлиты и коронная шестерня снабжены опорными элементами с круговыми контактными поверхностями, средний диаметр которых соответствует делительному диаметру соответствующего зубчатого колеса, при этом контактные поверхности взаимодействуют между собой с образованием опор всех вращающихся элементов. Обеспечивается повышение КПД, надежности и ресурса силового планетарного редуктора, не содержащего водила. 2 з.п. ф-лы, 5 ил.

 

Изобретение относится к области машиностроения, а именно к зубчатым планетарным передачам с высокими передаточными отношениями.

Известен планетарный редуктор, содержащий солнечное колесо, установленное на валу и зацепленное с группой первых сателлитов, зацепленных с неподвижной коронной шестерней, группу вторых сателлитов, каждый из которых установлен соосно с соответствующим первым сателлитом с образованием парного блока сателлитов и возможностью передачи крутящего момента от одного к другому, при этом вторые сателлиты зацеплены с подвижной коронной шестерней (DE 10003350 А1, опубл. 09.08.2001).

Недостатком известного редуктора является отсутствие средств стабилизации сателлитов на заданном радиусе и в положении осей вращения сателлитов параллельно оси вращения зубчатых колес передачи, что приводит к повышению механических потерь и снижению надежности редуктора.

Известен планетарный редуктор, содержащий солнечное колесо, установленное на валу и зацепленное с группой первых сателлитов, зацепленных с неподвижной коронной шестерней, группу вторых сателлитов, каждый из которых установлен соосно с соответствующим первым сателлитом с образованием парного блока сателлитов и возможностью передачи крутящего момента от одного к другому, при этом вторые сателлиты зацеплены с подвижной коронной шестерней, при этом неподвижная шестерня, сателлиты и коронная шестерня снабжены опорными элементами с круговыми контактными поверхностями, средний диаметр которых соответствует делительному диаметру соответствующего зубчатого колеса (DE 10030321 A1, опубл. 07.02.2002).

Недостатком известного редуктора является недостаточная степень стабилизации сателлитов, несмотря на наличие опорных элементов на нескольких зубчатых элементах, что не позволяет передавать значительный крутящий момент без ухудшения механического КПД и ресурса.

Техническим результатом является повышение КПД, надежности и ресурса силового планетарного редуктора, не содержащего водила.

Поставленная задача решается тем, что в планетарном редукторе, содержащем солнечное колесо, установленное на валу и зацепленное с группой первых сателлитов, зацепленных с неподвижной коронной шестерней, группу вторых сателлитов, каждый из которых установлен соосно с соответствующим первым сателлитом с образованием парного блока сателлитов и возможностью передачи крутящего момента от одного к другому, при этом вторые сателлиты зацеплены с подвижной коронной шестерней, согласно изобретению солнечное колесо, неподвижная шестерня, сателлиты и коронная шестерня снабжены опорными элементами с круговыми контактными поверхностями, средний диаметр которых соответствует делительному диаметру соответствующего зубчатого колеса, подшипник конца вала солнечного колеса установлен во внутреннем опорном элементе, контактная поверхность которого взаимодействует с контактными поверхностями опорных элементов вторых сателлитов, взаимодействующими, в свою очередь, с контактной поверхностью опорного элемента коронной шестерни, а контактные поверхности опорных элементов первых сателлитов взаимодействуют с контактными поверхностями опорных элементов солнечного колеса и неподвижной коронной шестерни.

Поставленная задача достигается также тем, что он может быть снабжен средствами ограничения осевого перемещения сателлитов.

Поставленная задача достигается также тем, что средства ограничения осевого перемещения сателлитов выполнены в виде кольцевых выступов опорных элементов сателлитов с возможностью контакта торцевых поверхностей выступов с торцевыми поверхностями опорных элементов, взаимодействующих с опорными элементами сателлитов.

Изобретение поясняется при помощи чертежей.

На фиг. 1 показана схема редуктора;

На фиг. 2 - продольный разрез редуктора;

На фиг. 3 - поперечный разрез А-А на фиг. 2;

На фиг. 4 - поперечный разрез Б-Б на фиг. 2;

На фиг. 5 - блок сателлитов в изометрии.

Описываемый редуктор содержит корпус 1, солнечное колесо 2, установленное на валу 3 и зацепленное с группой первых сателлитов 4, зацепленных с неподвижной коронной шестерней 5. Группа вторых сателлитов 6 расположена рядом с группой первых сателлитов 4, при этом каждый из сателлитов 6 установлен соосно с соответствующим первым сателлитом 4 с образованием парного блока сателлитов и возможностью передачи крутящего момента от одного к другому. В данном варианте выполнения сателлиты 4 и 6 установлены на шлицевом валике 7. Вторые сателлиты 6 зацеплены с подвижной коронной шестерней 8, установленной в корпусе 1 посредством подшипников 9. Солнечное колесо 2 снабжено опорным элементом 10 с круговой контактной поверхностью 11, неподвижная коронная шестерня 5 снабжена опорным элементом 12 с круговой контактной поверхностью 13, сателлиты 4 и 6 снабжены опорными элементами 14 и 15 с круговыми контактными поверхностями, соответственно, 16 и 17, а подвижная коронная шестерня 8 снабжена опорным элементом 18 с круговой контактной поверхностью 19. Каждый опорный элемент расположен соосно с соответствующим зубчатым колесом, а средний диаметр его контактной поверхности соответствует делительному диаметру соответствующего зубчатого колеса. Вал 3 может быть выполнен составным и содержит шлицевой вал 20, вставленный в вал 3, выполненный в данном случае заодно с солнечным колесом 2. Опорный элемент 10 является первой опорой вала 3 солнечного колеса 2 и в описываемом варианте опорный элемент 10 выполнен в виде отдельной детали, установленной на шлицевом валу 20. При этом контактная поверхность 11 опорного элемента 10 взаимодействует с контактными поверхностями 16 опорных элементов 14 первых сателлитов 4, которые, в свою очередь, взаимодействуют с контактной поверхностью 13 опорного элемента 12 неподвижной коронной шестерни 5. На втором конце вала 3 расположен подшипник 21, установленный во внутреннем опорном элементе 22, контактная поверхность 23 которого взаимодействует с контактными поверхностями 17 опорных элементов 15 вторых сателлитов 6, взаимодействующими, в свою очередь, с контактной поверхностью 19 опорного элемента 18 подвижной коронной шестерни 8.

Средства ограничения осевого перемещения сателлитов 4 и 6 могут быть выполнены в виде кольцевых выступов 24 опорных элементов 14 и 15, с возможностью контакта торцевых поверхностей элементов 10, 12, 18 и 22 с выступами 24.

В качестве выходного звена в описываемом варианте конструкции используется фланец 25, скрепленный с подвижной коронной шестерней 8. К фланку 25 может быть прикреплен еще один шлицевой вал 20 для привода последующей ступени идентичного редуктора.

В современной технике для достижения сверхвысоких передаточных отношений используются планетарные многоступенчатые, волновые и червячные редукторы.

В традиционных планетарных редукторах ограничено число сателлитов в одной ступени и, как правило, не превышает трех. Проблемой является достижение высочайшей точности выполнения координат отверстий в водиле под оси сателлитов для обеспечения гарантированного контакта всех участвующих в передаче крутящего момента зубьев.

В многоступенчатых волновых редукторах проблемой является обязательно одновременная передача усилия большим количеством элементов выходному звену. Проблема также связана с достижением высочайшей точности выполнения звеньев, передающих момент от одной ступени к другой. Кроме того, неизбежное проскальзывание элементов при взаимодействии всех звеньев приводит к значительному снижению КПД передачи.

Низкий КПД традиционной червячной передачи также не позволяет рассматривать ее в качестве перспективной для использования в технике.

Указанные выше проблемы достижения точности выполнения в планетарных и волновых передачах являются дополнительными к необходимости точного выполнения непосредственно зубьев (профиль, размер и угловое расположение).

Проблема может быть решена путем отказа от использования в планетарной передаче звена «водило». Редуктор состоит из двух рядов зацепления со свободно установленными в окружном направлении блоками парных сателлитов 4 и 6. В радиальном направлении блоки ограничены двумя рядами опорных элементов 10, 12 и 18, 22 с контактными поверхностями (катков), установленных как на блоках сателлитов, так и на внутренних и наружных звеньях зацепления.

Редуктор является синтезом редуктора Джеймса и редуктора Давида по принятой в данной области техники терминологии.

Отсутствие водила позволяет свободно расположить сателлиты в окружном направлении, обеспечив лишь точность выполнения зацепления. В этом случае возможно увеличение числа сателлитов и повышение нагрузочной способности редуктора за счет гарантированного контакта максимально возможного количества участвующих в передаче крутящего момента зубьев.

Так, вал 3 солнечного колеса 2 вращается на опорных элементах 14 сателлитов 4, опирающихся, в свою очередь, на опорный элемент 12, а также в подшипнике 20 внутреннего опорного элемента 21. Момент передается от солнечного колеса 2 к сателлитам 4, которые обкатываются по неподвижной коронной шестерне 5. Сателлит 4 передает свое вращение вокруг собственной оси второму сателлиту 6 посредством шлицевого валика 7. Вращение выходного звена, в данном случае подвижной коронной шестерни 8, установленной в подшипниках 9 корпуса 1, создается за счет ее зацепления со вторыми сателлитами 6. Из-за малой разницы в числе зубьев сателлитов 4 и 6, а также неподвижной 5 и подвижной 8 шестерен передаточное отношение редуктора может достигать трехзначных величин. Заданное положение блоков сателлитов вдоль оси вращения обеспечивается ограничительными кольцевыми выступами 24. Заданное радиальное положение в пространстве блоков сателлитов обеспечивается системой опорных элементов всех шестерен.

Таким образом, отказ от использования водила в планетарном редукторе позволяет использовать максимально возможное количество сателлитов с гарантией одновременной передачи крутящего момента всеми зацепленными парами, что обеспечивает повышенные надежность, ресурс и КПД редуктора.

1. Планетарный редуктор, содержащий солнечное колесо, установленное на валу и зацепленное с группой первых сателлитов, зацепленных с неподвижной коронной шестерней, группу вторых сателлитов, каждый из которых установлен соосно с соответствующим первым сателлитом с образованием парного блока сателлитов и возможностью передачи крутящего момента от одного к другому, при этом вторые сателлиты зацеплены с подвижной коронной шестерней, отличающийся тем, что солнечное колесо, неподвижная шестерня, сателлиты и подвижная коронная шестерня снабжены опорными элементами с круговыми контактными поверхностями, средний диаметр которых соответствует делительному диаметру соответствующего зубчатого колеса, подшипник конца вала солнечного колеса установлен во внутреннем опорном элементе, контактная поверхность которого взаимодействует с контактными поверхностями опорных элементов вторых сателлитов, взаимодействующими, в свою очередь, с контактной поверхностью опорного элемента подвижной коронной шестерни, а контактные поверхности опорных элементов первых сателлитов взаимодействуют с контактными поверхностями опорных элементов солнечного колеса и неподвижной коронной шестерни.

2. Планетарный редуктор по п. 1, отличающийся тем, что он снабжен средствами ограничения осевого перемещения всех сателлитов.

3. Планетарный редуктор по п. 1, отличающийся тем, что средства ограничения осевого перемещения всех сателлитов выполнены в виде кольцевых выступов опорных элементов сателлитов с возможностью контакта торцевых поверхностей выступов с торцевыми поверхностями опорных элементов, взаимодействующих с опорными элементами сателлитов.



 

Похожие патенты:

Изобретение относится к области машиностроения, а более конкретно к ролико-винтовым редукторам. Ролико-винтовой редуктор содержит входное звено, опорное звено, выходное звено и ролики.

Изобретение относится к машиностроению и электротехнике и может быть использовано в качестве редукторов и мультипликаторов в обычном исполнении, а также для передачи энергии с герметичным разделением полостей ведущего и ведомого валов.

Изобретение относится к области машиностроения, а более конкретно к ролико-винтовым редукторам. Способ сборки инвертированного ролико-винтового редуктора (ИРВР) включает нижеследующую последовательность действий.

Изобретение относится к области машиностроения, в частности к редукторам с соосными входным и выходным валами. Редуктор орбитальный содержит корпус, в котором установлены на одной оси входной быстроходный и выходной тихоходный валы.

Изобретение относится к машиностроению, а более конкретно к электроприводам. Электропривод содержит корпус с расточкой, подшипниковый щит, кронштейн с электродвигателем с шестерней и цилиндрический зубчатый редуктор.

Изобретение относится к области машиностроения, а более конкретно к планетарным передачам. Планетарная передача для вычитания и сложения угловых скоростей двух двигателей содержит валы (1) и (2), шестерни (3), (4) и (5), водило (6).

Изобретение относится к области транспортного машиностроения. Привод колеса велосипеда содержит планетарную передачу, включающую в свой состав водило, центральное звено планетарной передачи и сателлит.

Изобретение относится к области машиностроения, а именно к планетарным передачам. Пятисателлитная планетарная передача содержит входное зубчатое колесо, пять сателлитов, первый трехпарный шатун, второй трехпарный шатун, третий трехпарный шатун, четвертый трехпарный шатун, двухпарный повод, водило и неподвижное зубчатое колесо.

Изобретение относится к области машиностроения, в частности к конструкциям зубчатых передач, применяемых в устройствах преобразования энергии, распределительных или делительных передачах.

Изобретение относится к механическим передачам и предназначено для передачи вращательного движения и энергии от входного выходному звену с широким диапазоном передаточных отношений.

Изобретение относится к зацепляющим механизмам зубчатого типа. Система управления для зацепляющего механизма с зацеплением зубчатого типа, включающего в себя первый и второй элемент с множеством первых и вторых собачек соответственно, камеру для текучей среды и переключающий клапан, содержит электронный блок управления подачей и прекращением подачи текучей среды в камеру для текучей среды посредством переключающего клапана. Электронный блок управления обеспечивает заполнение камеры для текучей среды посредством управления переключающего клапана. Решение направлено на упрощение управления. 5 з.п. ф-лы, 7 ил.

Изобретение относится к машиностроению, в частности к передачам с ограниченным радиальным размером, и может быть использовано во всех отраслях народного хозяйства. Многорядная планетарная передача содержит солнечную шестерню (1), сателлиты (2), подшипники (3), оси сателлитов (4), неподвижное центральное колесо (5), водило, состоящее из выходного вала (6) и связанных с ним дисков (7), (8), (9), число которых соответствует числу рядов сателлитов (2). Водило выполнено содержащим ступенчатые стяжки (10), соединяющие диски (7), (8), (9) и щеку выходного вала (6). Диаметр стяжек (10) в местах расположения рядов сателлитов (2) подобран в соответствии с отношением ширины солнечной шестерни (1) к ее диаметру так, что под нагрузкой смещение одного диска водила относительно другого в результате деформации стяжек (10) и осей сателлитов (4) соответствует деформации кручения солнечной шестерни (1), за счет чего снижается неравномерность распределения нагрузки в зацеплениях. Обеспечивается упрощение конструкции многорядной планетарной передачи с механизмом выравнивания нагрузки в зацеплениях и повышение уровня ее технологичности. 1 ил.

Изобретение относится к машиностроению, в частности к редуктору с соосными входным и выходным валами. Редуктор орбитальный содержит зубчатое колесо (1, 2, 3), в котором зубья (3) изготовлены отдельно от держателя (1), а каждый зуб выполнен из двух параллельных между собой роликов (4) одного диаметра, скрепленных перемычкой (5), при этом ролики и перемычка выполнены из одного материала как одно целое. Все зубья установлены с гарантированным натягом в пазах (2), равномерно расположенных по окружности держателя. Достигается повышение ремонтопригодности. 3 ил.

Изобретение относится к ветровой турбине с коробкой передач одноступенчатого мультипликатора скорости с большим передаточным отношением. Коробка передач имеет коаксиальную пару кольцевых шестерней, включающую большую кольцевую шестерню, имеющую делительный диаметр А, и малую кольцевую шестерню, имеющую делительный диаметр D. Коаксиальная пара прямозубых шестерней включает большую прямозубую шестерню, имеющую делительный диаметр В, и малую прямозубую шестерню, имеющую делительный диаметр C. Большая прямозубая шестерня зацепляется с большой кольцевой шестерней, и малая прямозубая шестерня зацепляется с малой кольцевой шестерней, образуя две зацепляющиеся пары. Водило соединено с входным валом коробки передач. Две шестерни одной из двух коаксиальных пар скреплены вместе, чтобы действовать эпициклически на несущем элементе. Одна шестерня другой из двух коаксиальных пар прикреплена к каркасу устройства, и другая шестерня соединена с выходным валом. Четыре шестерни удовлетворяют соотношению размеров А=K+i, В=К, С=K-j и D=K+i-j-j, где K, i и j являются целыми числами. Изобретение направлено на изменение входной скорости на входном валу, соединенном с лопастным валом ветровой турбины, до выходной скорости на выходном валу, соединенном с электрическим генератором ветровой турбины. 3 з.п. ф-лы, 2 табл., 7 ил.

Группа изобретений относится к области авиадвигателестроения. Единый механизм передачи крутящего момента агрегатам двухвального, двухконтурного авиационного ТРД, имеющего газодинамически связанные между собой соосные валы РВД и РНД, включает соединенные с РВД с возможностью передачи агрегатам крутящего момента от турбины высокого давления ЦКП и кинематически соединенные с ней редукторы приводов КДА и КСА. Редукторы приводов КСА сообщены по крутящему моменту с ЦКП через многоступенчатый редуктор КДА и через гибкий вал с концевыми шарнирами и сильфонами. ЦКП содержит главную шестеренную пару конических ведущего и ведомого зубчатых колес, которые имеют зубчатые венцы. Главная шестеренная пара зубчатых колес ЦКП выполнена с передаточным числом i1,гп=(1,12÷1,43) [б/р]. Ведущее колесо главной шестеренной пары размещено на валу, установленном в шарико- и роликовом подшипниках. Ведомое колесо выполнено с валом, установленным в роликовом подшипнике и в шарикоподшипнике, который установлен в крышке корпуса ЦКП. Зубья конических венцов ведущего и ведомого колес выполнены переменной высоты, уменьшающейся в сторону осевой вершины условного конуса вершин зубьев. Угол αо.д.к наклона образующей условного делительного конуса зубчатого венца к оси вала колеса определен в диапазоне αо.д.к1=(0,7÷1,1) [рад] для ведущего колеса и αо.д.к2=(0,55÷0,83) [рад] для ведомого колеса. Угол спирали βш, выраженный в той же проекции как угол между касательной к линии зуба к средней точке последней и радиусом той же точки, проведенным от оси вала колеса, вариантно определен в диапазоне значений βш=(0,21÷0,32) [рад]. Достигается повышение КПД и ресурса двигателя. 7 н. и 16 з.п. ф-лы, 6 ил.

Изобретение относится к редуктору с уменьшенным люфтом. Редуктор (100, 150) содержит две аксиально разнесенные планетарные зубчатые передачи Каждая из передач содержит солнечную шестерню (18), аксиально разнесенные планетарные шестерни, перемещаемые водилом (16) планетарной передачи, и венцовую шестерню, прикрепленную к редуктору. Одна из планетарных шестерен входит в зацепление с фиксированной венцовой шестерней, а другая из планетарных шестерен (120) входит в зацепление с выходной венцовой шестерней (122). Солнечные шестерни (18) двух зубчатых передач установлены на одном валу (20). Водила (16) планетарной передачи двух зубчатых передач установлены на валу (110) таким образом, чтобы они могли свободно поворачиваться, но чтобы их аксиальное перемещение вдоль вала (110) было ограничено. Две выходные венцовые шестерни (122) являются косозубыми шестернями с противоположным направлением резьбы. Достигается компактность устройства. 2 н. и 12 з.п. ф-лы, 4 ил.

Изобретение относится к машиностроению, в частности к высоконагруженным зубчатым передачам. Волновая передача содержит эллипсовидный волнообразователь, гибкое колесо, установленное на ролики, размещенные на волнообразователе, и жесткое зубчатое колесо. Гибкое колесо выполнено с кольцевым ребром жесткости у торца, а пазы на нем выполнены с цилиндрическими поверхностями по краям и расположены симметрично по два ряда с каждой стороны от зубчатого венца, причем один ряд пазов смещен относительно другого на полшага. Обеспечивается повышение нагрузочной способности волновой передачи. 3 ил.

Изобретение относится к орбитальным электроприводам и генераторам. Технический результат состоит в улучшении гармонического состава однозубцовых гармоник. Статор орбитальной электрической машины содержит основание, полюсные наконечники с основными обмотками, расположенные радиально, и снабжен дополнительными обмотками, которые расположены в зоне внешних лобовых частей основных обмоток на немагнитных секторах. 3 ил.
Наверх