10-(5-иодванилил-5,15-бис(пентафторфенил)коррол, проявляющий свойства потенциального сенсибилизатора для фотодинамической терапии антибактериальных инфекций и онкологических заболеваний

Изобретение относится к химической промышленности, а именно к получению нового коррола, в частности 10-(5-иодванилил)-5,15-бис(пентафторфенил)коррола, который может быть использован в качестве сенсибилизатора для фотодинамической терапии инфекционных и онкологических заболеваний. 7 ил., 1 пр.

 

Изобретение относится к химической промышленности, а именно к получению нового лиганда коррола, в частности 10-(5-иодванилил)-5,15-бис(пентафторфенил)коррола, который может быть использован для создания на его основе фотосенсибилизатора для фотодинамической терапии инфекционных и онкологических заболеваний.

Корролы - тетрапиррольные макрогетероциклические соединения, занимающие по структуре промежуточное положение между порфиринами и корринами [Erben, Ch. Metallocorroles: molecular structure, spectroscopy and electronic states. / Ch. Erben, S. Will, K.M. Kadish // In: The porphyrin handbook. - Ed. by Kadish K.M., Smith K.M., Guilard R. - Academic Press. - New York. - 2000. - V. 2. - P. 235-300]. Описанные в литературе синтетические методики [Gryko, D.T. Refined methods for the synthesis of meso-substituted A3- and trans-A2B-corroles. / D.T. Gryko, B. Koszarna // Org. Biomol. Chem. - 2003. -V. l. - P. 350-357] позволяют получать мезо-замещенные корролы различного строения - как с одинаковыми (А3-типа), так и с разными (А2В-типов) мезо-заместителями, в том числе различной электронной природы. "Несимметричные" корролы А2B-типа и их расширенные аналоги могут демонстрировать высокие квантовые выходы флуоресценции и выступать в качестве эффективных генераторов синглетного кислорода [Flamigni, L. Photoactive corrole-based arrays. / L. Flamigni, D.T. Gryko // Chem. Soc. Rev. - 2009. - V. 38. - P. 1635-1646; Shi, L. The heavy atom effect on photocleavage of DNA by mono-hydroxyl halogenated corroles. / L. Shi, H.Y. Liu, L.P. Si, K.M. Peng, L.L. You, H. Wang, L. Zhang, L.N. Ji, C.K. Chang, H.F. Jiang // Chinese Chem. Lett. - 2010. - V. 21. - P. 373-375], что позволяет рассматривать их в качестве потенциальных средств для фотодинамической терапии инфекционных и онкологических заболеваний.

Наиболее близким структурным аналогом заявляемого соединения является 10-(2-гидрокси-5-иодфенил)-5,15-бис(пентафторфенил)коррол [You, L.L. Photophysical properties of the corrole photosensitizers. / L.L. You, H. Shen, L. Shi, G.L. Zhang, H.Y. Liu, H. Wang, L.N. Ji // Sci. China Phys. Mech. Astron. - 2010. - V. 53. -N. 8 - P. 1491-1496], приведенный выше. Данное соединение обладает выраженной способностью к генерации синглетного кислорода в неводных средах за счет снижения квантового выхода флуоресценции, что позволяет рассматривать его в качестве потенциального эффективного средства для ФДТ.

Основным недостатком данного соединения является высокая стоимость 2-гидрокси-5-иодбензальдегида и его малая стабильность, что значительно усложняет и удорожает получение коррола.

Технический результат предлагаемого изобретения заключается в создании нового коррола из стабильных при комнатной температуре веществ, имеющего один из самых высоких квантовых выходов синглетного кислорода в неводной среде, при низкой стоимости получаемого препарата и возможностью варьирования его амфифильности путем дальнейшей химической модификации.

Технический результат достигается путем синтеза 10-(5-иодванилил)-5,15-бис(пентафторфенил)коррола формулы:

,

проявляющий свойства потенциального сенсибилизатора для фотодинамической терапии антибактериальных инфекций и онкологических заболеваний.

Структура заявленного соединения доказана методами электронной спектроскопии, 1Н-ЯМР и масс-спектрометрии MALDI.

ЭСП: λmах (СНСl3) (lgε)/nm 412 (5.18),426 (пл), 526 (пл), 565 (4.38), 613 (4.17), 655 (пл); λmax (DMF) (lgε)/nm 425 (5.19), 441 (5.16), 589 (4.24), 628 (4.67).

ЯМР 1Ή (CDCl3, 500 МГц), δ, м.д. (J, Гц). 9.15 д (2Н, Н2, Н18, J 4.2), 8.76 д.д (4Н, Н7-8, Н12-13, J 17.2 и 7.7), 8.60 д (2Н, Н3, Н17, J 4.3), 8.16 и 7.69 оба с (1Н, 10-мезо-Ph), 4.04 с (3Н, 10-мезо-Рh-ОСН3), 1.28 с (1Н, 10-мезо-Ph-OH).

Масс-спектр, m/z: 877.92 (100%) [М]+, 878.93 (56%) [МН]+.

Данное изобретение позволяет получить следующие преимущества:

- использовать исходные вещества с высокой доступностью и стабильностью;

- варьировать амфифильность за счет модификации как гидрокси-, так и метоксигруппы, которая может быть переведена в гидроксигруппу в остатке 5-иодванилина;

- достигнуть более низкой стоимости получаемого препарата.

Для реализации способа используются следующие вещества:

1. Хлороформ ТУ 2631-001-29483781-04 изм. №1, 2

2. Метанол ГОСТ 6995-77

3. Дихлорметан ТУ 6-09-2662-77 изм. №1, 2, 3

4. Петролейный эфир ТУ 2631-074-44493179-01

5. Пиррол CAS 109-97-7

6. Соляная кислота (конц.) ГОСТ 3118-77 (СТ СЭВ 4276-83)

7. n-Хлоранил CAS 118-75-2

8. Пентафторбензальдегид CAS 653-37-2

9. Ванилин CAS 121-33-5

10. Иод ГОСТ 4159-79

11. Иодид калия ГОСТ 4232-74

12. Гидрокарбонат натрия ГОСТ 2156-76

13. Карбонат натрия ГОСТ 83-79

14. Трифторуксусная кислота ТУ 6-09-3877-80

15. Силикагель для колоночной хроматографии СAS 7631-86-9 или Cat №1.07734.9999.

Изобретение поясняется чертежами, где:

Фиг. 1 - Масс-спектр 5-(пентафторфенил)-дипирролилметана,

Фиг. 2 - Масс-спектр 5-иодванилина,

Фиг. 3 - Масс-спектр 10-(5-иодванилил)-5,15-

бис(пентафторфенил) коррола,

Фиг. 4 - 1Н ЯМР-спектр 5-(пентафторфенил)-дипирролилметана,

Фиг. 5 - 1HЯМР-спектр 5-иодванилина,

Фиг. 6 - 1Н ЯМР-спектр 10-(5-иодванилил)-5,15-бис(пентафторфенил) коррола,

Фиг. 7 - Электронный спектр поглощения 10-(5-иодванилил)-5,15-бис(пентафторфенил) коррола в 1 - хлороформ, 2 - ДМФА, 3-10% водн. этанол с добавкой 1% ПАВ.

Заявленное соединение получают следующим образом.

Стадия 1. Синтез 5-(пентафторфенил)-дипирролилметана.

2 мл (16,2 ммоль) пентафторбензальдегида растворяют в 50 мл свежеперегнанного пиррола. К смеси добавляют 0,12 мл (1,62 ммоль) трифторуксусной кислоты. Реакционную массу перемешивают в течение 0,5 ч при комнатной температуре, после чего разбавляют 150 мл хлороформа и промывают на делительной воронке водой, водным раствором карбоната натрия (5,72 г Na2CO3⋅10Н2О в 400 мл воды) и еще четырехкратно - водой, для получения рН~7. Органический слой отделяют. Перегонкой на ротационном испарителе частично отгоняют хлороформ; при последующей отгонке растворителя под вакуумом отгоняют смесь хлороформа и пиррола, а в реакционной колбе оставляют коричневую смолу. Смолу растворяют в 120 мл метанола, и при последующем добавлении воды наблюдают образование беловатого осадка дипирролилметана, который отфильтровывают и высушивают. С целью дополнительной очистки раствор переосажденного продукта в метаноле обрабатывают активированным углем при комнатной температуре в течение 5-10 мин, после чего уголь отфильтровывают и проводят повторное переосаждение добавлением воды. Очищенный таким образом продукт образует бледно-розовые игольчатые кристаллы.

Выход: 2,01 г (40%). Спектр ЯМР lH (CDCl3, 500 МГц), δ, м.д. 8.19 уш.с (2Н, NHl, NH11), 6.76 с (2Н, Η2, Н10), 6.20-6.18 м (2Н, Н3, Н9), 6.05 уш.с (2Н, Η4, Н8). Масс-спектр, m/z: 311.05 (100%) [М1]+, 312.06 (90%) [М2]+, 313.05 (74%) [М3]+(изотопный эффект).

Стадия 2. Синтез 5-иодванилина.

10 г иодида калия и 5 г гидрокарбоната натрия растворяют в 200 мл воды. К полученному раствору при перемешивании добавляют 7,51 г (0,05 моль) ванилина. Далее к образованной взвеси медленно небольшими порциями добавляют 12,66 г (0,05 моль) кристаллического иода. Общее время синтеза составляет 2 ч. При этом уже к середине реакции наблюдают образование осадка 5-иодванилина, а раствор окрашен в интенсивный коричневый цвет за счет избытка иода. Осадок 5-иодванилина кремового цвета отделяют от раствора с помощью фильтра Шотта, пятикратно промывают водой и высушивают в сушильном шкафу при 50°С до постоянной массы.

Выход: 10,17 г (74%). Спектр ЯМР 1Ή (CDC13, 500 МГц), δ, м.д. 9.79 с (1Н, 3-СОН), 7.84 и 7.40 оба с (1Н, Η2, Н4), 3.99 с (3Н, 1-ОСН3), 3.20 - 2.20 под м (1Н, 6-ОН). Масс-спектр, m/z: 279.05 (100%) [МН]+.

Стадия 3. Синтез 10-(5-иодванилил)-5,15-бис(пентафторфенил)коррола.

153,1 мг (0,48 ммоль) 5-(пентафторфенил)-дипирролилметана и 68,2 мг (0,24 ммоль) 5-иодванилина растворяют в 24 мл метанола, затем к реакционной смеси добавляют раствор 1,2 мл концентрированной соляной кислоты в 24 мл воды. При этом наблюдают образование розового осадка. Реакционную массу перемешивают в течение 1 ч при комнатной температуре, после чего проводят экстракцию 20 мл хлороформа, отделение органического слоя и трехкратную промывку его водой. Полученный раствор в СНСl3 разбавляют 100 мл хлороформа. Затем к раствору добавляют 177,4 мг (0,72 ммоль) n-хлоранила (2,3,5,6-тетрахлор-1,4-бензохинона) и реакционную смесь подвергают кипячению в течение 1 ч. После этого реакционную смесь упаривают и подвергают колоночной хроматографии на силикагеле с использованием хлороформа в качестве элюента. Большая часть коррола при этом остается в первой фракции, однако для выделения чистого продукта подвергают повторной хроматографии. Повторную хроматографию проводят на силикагеле с использованием в качестве элюента смеси дихлорметан - петролейный эфир (1:1 об., затем 3:1 об.). Зона фиолетового цвета, идущая сразу после самой первой желтой зоны, представляет собой 10-(5-иодванилил)-5,15-бис(пентафторфенил)коррол. Раствор этой зоны собирают и упаривают; продукт переосаждают из дихлорметана с помощью петролейного эфира.

Выход: 56 мг (26%). ЭСП: λmax (СНСl3) (lgε)/nm 412 (5.18),426 (пл), 526 (пл), 565 (4.38), 613 (4.17), 655 (пл); λmax (DMF) (lgε)/nm 425 (5.19), 441 (5.16), 589 (4.24), 628 (4.67). Спектр ЯМР 1Н (CDCl3, 500 МГц), δ, м.д. (J, Гц). 9.15 д (2Н, Н2, Н18, J 4.2), 8.76 д.д (4Н, Н7-8, Н12-13, J 17.2 и 7.7), 8.60 д (2Н, Н3, Н17, J 4.3), 8.16 и 7.69 оба с (1H, 10-мезо-Ph), 4.04 с (3Н, 10-мезо-Рh-ОСН3), 1.28 с (1Н, 10-мезо-Рh-ОН)·Масс-спектр, m/z: 877.92 (100%) [М]+, 878.93 (56%) [МН]+.

Возможность использования заявленного соединения в качестве потенциального фотосенсибилизатора иллюстрируют фотофизическим показателем - временем жизни синглетного кислорода (Δτ) и его квантового выхода (ϕΔ). Определение фотофизической характеристики 10-(5-иодванилил)-5,15-бис(пентафторфенил)коррола в бензоле осуществлялось путем совместного фотоокисления тетрацена и коррола в бензоле в присутствии молекулярного кислорода при инициировании процесса светом от осветителя ОВС-1 с галогенной лампой КГМ 9-70. Облучение растворов проводилось в прямоугольной кювете из кварцевого стекла (1×1 см) при помощи комбинации стеклянного фильтра КС - 10 с коротковолновой границей пропускания при 610 нм и линзового конденсора. В соответствии с условиями эксперимента возбуждающий свет поглощался в области длинноволнового максимума коррола. При этом максимальная оптическая плотность в наиболее батохромных полосах видимого спектра поглощения тетрацена и коррола составляла около 1. Окисление контролировалось по уменьшению интенсивности их поглощения. Электронные спектры поглощения и кинетику фотоокисления измеряли на спектрофотометре «SPECORD-M40» (Carl Zeiss, ГДР).

Квантовый выход 1O2Δ) определялся относительным методом. При использовании в качестве эталона сравнения диметиловый эфир Pd-мезопорфирина -IX (ϕΔэт=1) обнаружено, что при возбуждении раствора 10-(5-иодванилил)-5,15-бис(пентафторфенил)коррола в области его УФ-поглощения (337.1 нм) величина ϕΔ составляет 0.75 в бензоле. Значение квантового выхода 1O2 полученного коррола почти такое же, как у прототипа, однако, значительно выше, чем для фотосенсибилизаторов, применяемых в настоящее время в медицинских целях, для которых величина ϕΔ колеблется в пределах 0,4-0,6 [Bonnett R. Chemical aspects of photodynamic therapy. VHC Publ.: London, 2000. 285 p.].

10-(5-иодванилил)-5,15-бис(пентафторфенил)коррол формулы:



 

Похожие патенты:

Изобретение относится к способу получения 2,7-дициклоалкил-2,3а,5а,7,8а,10а-гексаазапергидропиренов общей формулы (1): при котором 1,3,5-трициклоалкил-1,3,5-триазины, где R указаны выше, подвергают взаимодействию с 1,4,5,8-тетраазадекалином в среде метанола в присутствии катализатора NiCl2 при мольном соотношении 1,3,5-трициклоалкил-1,3,5-триазин: 1,4,5,8-тетраазадекалин: NiCl2=2:1:(0.03-0.07) при комнатной (~20°С) температуре и атмосферном давлении в течение 2.5-3.5 ч.

Изобретение относится к способу получения соединений формулы (I) где n равно 2-6,заключающемся во взаимодействии пурпурина 18 с аминоспиртом, при котором пурпурин 18, растворенный в органическом растворителе, выбранном из хлорированного алифатического углеводорода, обрабатывают 4-6-кратным по молям количеством С2-С6-аминоспирта при температуре 20°С до полного превращения исходного пурпурина 18; реакционную массу промывают водой, осушают и выпаривают при пониженном давлении, полученный твердый продукт, содержащий смесь амидов, растворяют в трифторуксусном ангидриде и объединяют с 5%-ным раствором гидрокарбоната натрия, целевой продукт экстрагируют дихлорметаном, органическую фазу промывают водой, осушают и хроматографируют на силикагеле в системе дихлорметан-алифатический спирт с получением раствора соединения формулы (I); раствор соединения формулы (I) выпаривают при пониженном давлении, полученный твердый продукт, содержащий соединение формулы (I), подвергают очистке перекристаллизацией из смеси растворителей дихлорметан/петролейный эфир, отфильтровывают и высушивают.

Изобретение относится к гомогенным катализаторам окисления диэтилдитиокарбамата натрия на основе тетра-4-(4'-карбоксифениламино)фталоцианина кобальта(II), модифицированного нитрогруппами или фрагментами аминобензойной кислоты общей формулы: где X = NH.

Изобретение относится к способу получения комплексов лантаноидов с 5,15-дифенилтетрабензопорфином. Способ включает взаимодействие фталимида с ацетатом цинка при температуре 230-240°C в течение 20-30 мин, сплавление полученного 3-[(1-оксо-1H-изоиндол-3-ил)метилен]-2,3-дигидро-1H-изоиндол-1-он с фенилуксусной кислотой и солью лантаноида при температуре 320-330°C в течение 50-60 мин, выделение и очистку целевых продуктов методом хроматографии.

Изобретение относится к получению нового производного фталоцианина, а именно тетра-4-{4-[1-метил-1-(4-сульфофенил)этил]фенокси}тетра-5-нитрофталоцианина кобальта формулы: Вышеуказанное производное фталоцианина проявляет каталитическую активность при окислении серосодержащих органических соединений.

Изобретение относится к порфиразину общей формулы в которой R представляет собой BnOPh (4-бензилоксифенил), 4FBnOPh (4-(4-фторбензилокси)фенил). Изобретение также относится к порфиразиновому комплексу гадолиния и к применению порфиразина и порфиразинового комплекса гадолиния в качестве мультимодального агента фотодинамической терапии злокачественных новообразований.

Изобретение относится к тетра-4-[4-(1-метил-1-фенилэтил)фенокси]тетра-5-нитрофталоцианинам кобальта и никеля общей формулы Соединения обладают красящей способностью по отношению к полистиролу и капрону и могут быть использованы в качестве исходных соединений для синтеза металлокомплекса тетра-4-{4-[1-метил-1-(4-сульфофенил)этил]фенокси}тетра-5-нитрофталоцианина с кобальтом, проявляющего каталитическую активность при окислении серосодержащих органических соединений.

Изобретение относится к области нефтехимии, а именно к способу получения углеводородов, пригодных для использования в качестве компонентов дизельного топлива, заключающемуся в декарбонилировании/декарбоксилировании стеариновой кислоты в растворителе в атмосфере водорода при 350-400°С и давлении водорода 0,1-5 МПа в присутствии гетерогенного катализатора, представляющего собой октанатриевую соль 2,3,9,10,16,17,23,24-октакарбоксифталоцианина кобальта, нанесенную на оксид алюминия.

Настоящее изобретение относится к борированным производным фторированных бактериохлоринов и их металлокомплексов. Соединения имеют общую формулу I в которой М=2Н, X=Cs (Ia), M=Cu, X=Cs (Iб), М=Zn, X=Cs (Iв), М=Ni, X=Cs (Iг), M=Pd, X=Cs (Iд), M=2H, X=Na (Ie), M=Cu, X=Na (Iж), М=Zn, X=Na (Iз), М=Ni, X=Na (Iи), М=Pd, X=Na (Iк).
Изобретение относится к способу получения 2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана, включающего каталитическое гидрирование 4,10-дибензил-2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана с использованием отработанного катализатора, подачу водорода под давлением, в котором гидрирование 4,10-дибензил-2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана осуществляют в смеси с катализатором, отработанным на стадии каталитического гидрирования 2,4,6,8,10,12-гексабензил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана, в течение 10-40 минут, при этом отношение 4,10-дибензил-2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана к отработанному катализатору составляет 3,0-5,0, а подачу водорода при проведении гидрирования осуществляют при достижении реакционной массой температуры 85-99°С.

Изобретение относится к способу получения соединения формулы [1Е] а также к способу получения 1-(2-дезокси-2-галоген-4-тио-β-D-арабинофуранозил)цитозина следующей формулы [14]: Кроме того, изобретение относится к промежуточному соединению формулы [1F] Технический результат: разработан новый способ получения тионуклеозида, который является пригодным в качестве лекарственного препарата.

Изобретение относится к твердой дисперсии, пригодной для индукции апоптоза. Дисперсия включает соединение Формулы I где значение групп R0, R1, R2, R3, R4, A, В, R5, X, Y и R6 определено в формуле изобретения, или его фармацевтически приемлемую соль.

Изобретение относится к соединениям общей формулы (I) или (II): n=0-2;A выбирается независимо и представляет собой 5-7-членный ароматический гетероцикл, содержащий 1-2 атома N и 0-1 атом S; А содержит 0-2 заместителя R; R выбирается независимо и представляет собой метил или этил; B выбирается независимо и представляет собой фенил, 5-6-членный гетероарильный цикл, содержащий 0-2 атома N и 0-1 атом S, или 5-6-членный циклоалкил, содержащий 0-2 атома N и 0-1 атом S; B содержит 0-3 заместителя R1; C выбирается независимо и представляет собой фенил, -NH2, -NH-C1-3-алкил, -NH(С1-3-алкил)С1-3-алкил, 5-6-членный гетероарильный цикл, содержащий 0-2 атома N и 0-1 атом S, или 5-6-членный циклоалкил, содержащий 0-2 атома N и 0-1 атом S; C содержит 0-3 заместителя R1; R1 выбирается независимо и представляет собой -C1-6-алкил, галоген, фенил, -C5-7-гетероарил, содержащий 1-2 атома N и 0-1 атом S, -COOH, -CONH2, -NH2 или -NHR2; R2 выбирается независимо и представляет собой -C1-6-алкил, -C(O)-C1-8-алкил; линкер X выбирается независимо и представляет собой -CH2-, -С(=O)-СН2- или -CH2-O-группу; линкер Q выбирается независимо и представляет собой -NH- или -NH-C(O)-группу; линкер Y выбирается независимо и представляет собой -O-(СН2)m или -С(O)-NH-(СН2)m, где m=1-3; Z выбирается независимо и представляет собой -СН2- группу или атом кислорода.

Изобретение относится к соединению формулы (I) или его фармацевтически приемлемым солям: , в которой J представляет собой группу формулы IIa, R1a представляет собой C1-С3алкил; Y1a представляет собой N или CRxa, где Rxa представляет собой Н, Х2а выбран из группы, состоящей из: Н, С1-С4алкила; Х1а выбран из группы, состоящей из: водорода, галогена, C1-С6алкила, С1-С4галогеналкила, -O-С1-С4алкила, -O-C1-С3алкилен-С3-С7циклоалкила, -O-С1-С4галогеналкила, -О-С1-С3алкилен(5-членного гетероциклоалкила с 1 гетероатомом, выбранным из О), -O-C1-С6алкилен-N(R10)2, -O-C1-С3алкилен-С(О)ОС1-С4алкила, -С2-С4алкенилен-С(О)-O-С1-С4алкила, -С(О)-С1-С4алкила, C(O)O-C1-С4алкила, C(O)NR10R12, -NR10-С1-С3алкилен-С(О)-С1-С4алкила, -SO2NR10R12 и любой из групп: ii) 6-членный гетероциклоалкенил, который может быть замещен 1 R2; iii) 5-6-членный гетероциклоалкил с 1-2 гетероатомами, выбранными из N, который может быть замещен 1-2 R3; iv) 5-6-членный гетероарил с 1-3 гетероатомами, независимо выбранными из N, О, 9-10-членный бициклический гетероарил с 1-3 гетероатомами, независимо выбранными из N, S, которые могут быть замещены 1-2 R4; v) фенил, который может быть замещен 1-2 R6; X3 представляет собой L-G, где L отсутствует или выбран из группы, состоящей из: -O-, -O-C1-С3алкилена; и G выбран из группы, состоящей из: фенила, 6-членного гетероарила с 1 гетероатомом, выбранным из N, 9-членного бициклического гетероарила с 2 гетероатомами, выбранными из N, С3-С7циклоалкила, 6-членного гетероциклоалкила с 1 гетероатомом, выбранным из N, О, где G может быть замещен 1-2 группами, А2 представляет собой CR18, и А1, А3 и А4 представляют собой CR19, значения остальных заместителей указаны в формуле изобретения.

Настоящее изобретение относится к новым дейтерированным диаминопиримидинам общей формулы (I) и их фармацевтически приемлемым солям. Соединения обладают свойствами ингибирования ALK протеинкиназ и могут быть использованы для лечения и/или предупреждения онкологических заболеваний, нарушения пролиферации клеток, сердечнососудистых заболеваний, воспаления, инфекции, аутоиммунных заболеваний, трансплантации органов, вирусных заболеваний, сердечнососудистых заболеваний или метаболических заболеваний.

Изобретение относится к соединению формулы (III) или его фармацевтически приемлемой соли, где W представляет собой S; Y представляет собой N; X представляет собой N; R1 выбран из (а) C1-С6 алкила, необязательно содержащего в качестве заместителя амино, метиламино, диметиламино, C1-С6 алкокси или изоиндолил; (b) -NR8R7, -CH2NR7R8, где R7 и R8 соединены с образованием необязательно замещенного С3-С7 неароматического кольца, которое представляет собой пирролидин, морфолин, пиперазин, пиперидин, 1,4-диазепан, азепан, азетидин, 2-азабицикло[2.2.1]гептан, или 2,5-диазабицикло[2.2.1]гептан, и необязательно замещен одним или более C1-С6 алкилами, C1-С6 алкокси, метоксиэтилом, 1-метоксипропаном, изопропилоксиметилом, изопропилоксиэтилом, -С(O(СН2)-O-метилом, -С(O)(СН2)-O-изопропилом, C1-С6 галогеналкилом, -S(O)2-метилом, -S(O)2-изопропилом, оксо, -С(O)(С1-С2)алкил-N(метил)2, -С(O)(С2)алкил-(пирролидином), трет-бутил-С(О)- или фенилом; или (c) -O-(тетрагидро-2Н-пирана); каждый из R2, R3 и R5 представляют собой водород; R4 выбран из С3-С6 циклоалкила, C1-С6 алкила, С2-С6 алкенила, С2-С6 алкинила и необязательно замещенного гетероарила, выбранного из пиридина, пиразола, пиридазина, пиримидина, причем указанный гетероарил необязательно замещен 1-2 заместителями, выбранными из C1-С6 алкила и CN.

Изобретение относится к соединениям общей формулы (1) , и их фармацевтически приемлемым солям. Технический результат: получены новые соединения и их кристаллические формы, которые ингибируют Ахl и применимы для лечения заболеваний, вызванных гиперфункцией Ахl, заболеваний, связанных с гиперфункцией Ахl, и/или заболеваний, сопровождаемых гиперфункцией Ахl, таких как гиперопролиферативное заболевание.

Изобретение относится к соединению формулы (I) или к его фармацевтически приемлемой соли, а также к лекарственному средству или фармацевтической композиции, которая содержит данное соединение в качестве действующего вещества, обладающего ингибирующим эффектом в отношении ксантиноксидазы.

Изобретение относится к области биотехнологии, конкретно к биспецифическим связывающим полипептидным терапевтическим средствам, специфично нацеленным на клетки, экспрессирующие специфический мембранный антиген простаты (ПСМА), что может быть использовано в медицине.

Изобретение относится к области биохимии, в частности к антителу, которое специфично связывается с неполным полипептидом CAPRIN-1, а также фармацевтической композиции, конъюгату и комбинированному лекарственному средству, его содержащим.

Изобретение относится к химико-фармацевтической композиции и представляет собой применение соединений бактериохлорофилла для получения фармацевтической композиции для фотодинамической терапии заболеваний, расстройств и состояний, связанных с аномалией роговицы и склеры, выбранных из истончения роговицы и ослабления склеры.
Наверх