Способ обработки эмульсии

Изобретение относится к способу изготовления однофазной фазостабильной жидкости. Способ заключается в том, что на первом этапе смешивают липофильную жидкость с гидрофильной жидкостью так, что образуется смесь жидкостей, на втором этапе статическое давление смеси устанавливают ниже давления пара по меньшей мере одной из жидкостей так, что, посредством так называемой интенсивной кавитации, образуются кавитационные пузыри, и на третьем этапе кавитационные пузыри схлопываются, причем образуется однофазная фазостабильная жидкость. Смесь приводят во вращательное движение посредством шнека со спиральной сужающейся трубой. Перед вторым этапом смесь приводят во вращательное движение. Диаметр трубы шнека в ее самой тонкой части составляет не более 30% от диаметра около впускного отверстия. Изобретение обеспечивает создание способа изготовления фазостабильных жидкостей из липофильной фазы и гидрофильной фазы без эмульгаторов. 6 з.п. ф-лы, 2 ил.

 

Изобретение касается способа изготовления однофазной фазостабильной жидкости.

С одной стороны, из документа DE 102008046889 известны гиперболические воронки, позволяющие привести жидкость в быстрое вращательное движение.

Кроме того, например, из документа US 8088273 (колонка 5, строка 30) известно, что интенсивная кавитация эмульсии может привести к коренному изменению ее химического состава.

До сих пор было практически невозможно изготовить фазостабильные жидкости из липофильной фазы и гидрофильной фазы без эмульгаторов.

Таким образом, задача настоящего изобретения состоит в создании способа изготовления однофазных фазостабильных жидкостей из липофильной фазы и гидрофильной фазы.

Положенная в основу изобретения задача решается в первом варианте выполнения посредством способа изготовления однофазной фазостабильной жидкости, в котором

a) на первом этапе смешивают липофильную жидкость с гидрофильной жидкостью так, что образуется смесь жидкостей,

b) на втором этапе статическое давление смеси устанавливают ниже давления пара по меньшей мере одной из жидкостей так, что, например, посредством так называемой интенсивной кавитации, образуются кавитационные пузыри,

и

c) на третьем этапе кавитационные пузыри схлопываются, причем образуется однофазная фазостабильная жидкость.

В предложенном в изобретении варианте снижение статического давления на втором этапе предпочтительно выполняется посредством слива смеси из сопла. При ударном падении давления при выходе из сопла образуются кавитационные пузыри посредством так называемой интенсивной кавитации, поскольку жидкость имеет значительную скорость (как, например, при вращательном движении) при прохождении через сопло. Установлено, что при этом и, в частности, при заключительном разрушении кавитационных пузырей меняется химический состав жидкости.

В предложенном в изобретении способе предпочтительно перед вторым шагом смесь приводят во вращательное движение.

В предложенном в изобретении способе смесь предпочтительно приводят во вращательное движение посредством шнека со спиральной трубой, посредством гиперболической воронки, посредством центробежного насоса, посредством трубы с расположенными внутри и образующими завихрения формообразованиями, посредством турбины или посредством нескольких таких устройств.

Например, труба шнека может сужаться. В предложенном в изобретении способе сужающаяся труба шнека предпочтительно снова расширяется напротив конца шнека в направлении течения жидкости, причем, также предпочтительно, выходное отверстие шнека меньше, чем входное отверстие. Альтернативно диаметр трубы также может быть постоянным.

В предложенном в изобретении способе речь идет предпочтительно о сужающемся и, в частности, о сужающемся-расширяющемся сопле.

В предложенном в изобретении способе смесь сначала приводят во вращательное движение с помощью центробежного насоса и затем продолжают ускорять смесь, например, в шнеке. В частности, после этого смесь направляют предпочтительно через трубу с расположенными внутри и образующими завихрения формообразованиями.

В предложенном в изобретении способе образующие завихрения формообразования предпочтительно, по меньшей мере, частично, имеют геликоидальную форму. Труба располагается предпочтительно вертикально. Таким образом, можно получить завихрения по типу завихрений Тейлора-Куетта. Внутренний диаметр трубы составляет, предпочтительно, от 2 до 10 см. Длина трубы составляет, предпочтительно, от 1 до 3 м.

В предложенном в изобретении способе диаметр трубы шнека в ее самой тонкой части предпочтительно составляет не более 30% от диаметра у впускного отверстия.

В предложенном в изобретении способе жидкость окружает, предпочтительно, выпускное отверстие сопла. Предпочтительно выпускное отверстие сопла, в частности, располагается не в газообразной среде.

В соответствии с третьим этапом с) однофазная фазостабильная жидкость предпочтительно переливается в запасной резервуар.

Гидрофильной жидкостью предпочтительно является вода. Липофильной жидкостью предпочтительно является органическое топливо, в частности, дизельное топливо или керосин.

Весовое соотношение между гидрофильной жидкостью и липофильной жидкостью предпочтительно составляет от 0,8:1 до 1,2:1.

Предложенный в изобретении способ предпочтительно выполняется при комнатной температуре и при атмосферном давлении.

Первый этап а) проводится, например, по меньшей мере, частично, в заливной воронке. В этой заливной воронке на узком конце воронки расположено, например, задерживающее устройство, например, задерживающее сито. Над этим задерживающим устройством в воронке расположены, например, шарики. Эти шарики могут иметь диаметр от 5 до 20 мм. Такие шарики могут быть выполнены, например, из металла, и, в частности, из высококачественной стали. Эти шарики используются для того, чтобы обеспечить хорошее перемешивание обеих жидкостей уже в процессе заливки.

Внутренняя стенка шнека может быть выполнена из металла и, в частности, предпочтительно, из меди.

Для того чтобы оптимизировать пропускную способность шнека, можно расположить параллельно несколько спиральных труб и, в частности, от 2 до 3 труб.

На фиг. 1 показана типичная конструкция для предложенного в изобретении способа. Последующее конкретное описание примера выполнения не ограничивает область применения изобретения и служит лишь для пояснения изобретения.

Обычный керосин и вода были перелиты в весовом соотношении 1:1 с помощью обычных систем подачи жидкостей посредством центробежных насосов под давлением из резервуара 1 и 2 в смесительную камеру 8, которая была выполнена в виде вертикально расположенной воронки с находящимися в ней стальными шариками диаметром, соответственно, 11 мм. Стальные шарики удерживались над задерживающим ситом в воронке. Посредством давления и шариков из жидкостей образовалась эмульсия. Затем эту эмульсию направили в шнек 9, медная труба которого имеет постоянный диаметр 2 см, причем труба была выполнена в виде сужающегося геликса, который вновь расширялся напротив конца шнека. Полный диаметр шнека 9 на верхнем конце составлял 20 см, а на малом диаметре - 5 см. У выпускного отверстия диаметр шнека 9 составлял 10 см. После шнека 10 эмульсия сжималась посредством вертикально расположенной трубы 10 диаметром 7 см и длиной 1,5 м и расположенного в ней геликоидального спирального отклоняющего устройства (как в шнековом экструдере для обработки пластмасс). После этого жидкость подавалась под давлением посредством сопел в резервуар 11 с жидкостью. Посредством ударного перепада давления при выходе из сопел и высокой скорости жидкости (также скорости вращения) возникало явление кавитации. При этом образовывались кавитационные пузыри, которые затем сразу схлопывались. При этом образовывалась однофазная фазостабильная жидкость, которая, очевидно, больше не содержала воды и имела высокую теплотворную способность. Затем эта жидкость была перелита в резервуар 12 для продукта.

Теплотворная способность использованного керосина составляла 43,596 кДж/кг. Теплотворная способность полученной жидкости составила 43,343 кДж/кг.

С помощью инфракрасной спектроскопии (фиг. 2) в полученной жидкости не было обнаружено признаков воды. Типично широкие ОН линии в диапазоне от 3300 до 3400 см-1 отсутствуют.

Список условных обозначений

1. Цистерна с дизельным топливом

2. Цистерна с водой

3. Шаровой отсечной вентиль

4. Центробежный насос

5. Обратный клапан

6. Гидрометрическая трубка

7. Трехходовой вентиль

8. Смесительная камера

9. Шнек

10. Труба с расположенными внутри и образующими завихрения формами

11. Кавитационная камера (резервуар)

12. Резервуар с продуктом

13. Устройство для удаления воздуха

1. Способ изготовления однофазной фазостабильной жидкости, в котором

a) на первом этапе смешивают липофильную жидкость с гидрофильной жидкостью так, что образуется смесь жидкостей,

b) на втором этапе статическое давление смеси устанавливают ниже давления пара по меньшей мере одной из жидкостей так, что, например, посредством так называемой интенсивной кавитации, образуются кавитационные пузыри, и

c) на третьем этапе кавитационные пузыри схлопываются, причем образуется однофазная фазостабильная жидкость,

отличающийся тем, что смесь приводят во вращательное движение посредством шнека (9) со спиральной сужающейся трубой, что перед вторым этапом смесь приводят во вращательное движение и что диаметр трубы (9) шнека в ее самой тонкой части составляет не более 30% от диаметра около впускного отверстия.

2. Способ по п. 1, отличающийся тем, что снижение статического давления на втором этапе осуществляют посредством слива смеси из сопла.

3. Способ по п. 1, отличающийся тем, что сужающаяся труба шнека (9) снова расширяется напротив конца шнека (9) в направлении течения жидкости, причем, также предпочтительно, выходное отверстие шнека (9) меньше, чем входное отверстие.

4. Способ по п. 2, отличающийся тем, что сопло представляет собой сужающееся и, в частности, сужающееся-расширяющееся сопло.

5. Способ по п. 1, отличающийся тем, что смесь сначала приводят во вращательное движение с помощью центробежного насоса (4) и затем продолжают ускорять смесь в шнеке (9); в частности, после этого смесь направляют предпочтительно через трубу (10) с расположенными внутри и образующими завихрения формообразованиями.

6. Способ по п. 1 или 5, отличающийся тем, что образующие завихрения формообразования, по меньшей мере, частично, имеют геликоидальную форму.

7. Способ по п. 1, отличающийся тем, что жидкость окружает выпускное отверстие сопла, которое, в частности, располагается не в газообразной среде.



 

Похожие патенты:

Изобретение относится к способу гидратации гелевых частиц для обработки подземной скважины и может использоваться в нефтяной промышленности. .

Изобретение относится к конструкции смесителя для приготовления смеси двух и более жидкостей, в первую очередь водно-спиртовой смеси для производства водки в ликероводочной промышленности.

Изобретение относится к устройствам планетарного типа, используемым для производства эмульсий, масел, смазок и антикоррозионных покрытий. .

Изобретение относится к способу и устройству для гидратирования геля, предназначенного для обработки буровой скважины, и может использоваться в нефтяной промышленности.

Мешалка // 2234974
Изобретение относится к устройствам для перемешивания и суспендирования материалов в жидкости. .

Изобретение относится к устройствам для растворения, эмульгирования и диспергирования различных материалов и может быть использовано для тонкого измельчения твердых материалов в различных отраслях промышленности, смешивания различных жидкостей, ускорения массообменных и физико-химических процессов.

Изобретение относится к технологии приготовления высокодисперсной длительно устойчивой эмульсии из взаимно не смешивающихся жидкостей и непосредственно касается способа и устройства для эмульгирования таких жидкостей, в частности, углеводородных жидкостей и воды, путем их совместной гидроакустической обработки.

Изобретение относится к технологии получения нанопорошков феррита кобальта в микромасштабном реакторе. Способ заключается в подаче исходных компонентов - смеси растворов солей кобальта и железа в соотношении компонентов, отвечающих стехиометрии CoFe2O4, и раствора щелочи в соотношении с растворами солей, обеспечивающем кислотность среды в диапазоне от 7 до 8, отвечающей условиям соосаждения компонентов, при этом растворы исходных компонентов подают в виде тонких струй диаметром от 50 до 1000 мкм со скоростью от 1,5 до 20 м/с, сталкивающихся в вертикальной плоскости под углом от 30° до 160°, при температуре в диапазоне от 20°С до 30°С, и давлении, близком к атмосферному, причем соотношение расходов исходных компонентов задают таким образом, что при столкновении струй образуется жидкостная пелена, в которой происходит смешивание и контакт растворов исходных компонентов.

Изобретение относится к устройствам для перемешивания, эмульгирования, гомогенизации жидких сред и может быть использовано для проведения и интенсификации гидродинамических физико-химических, тепломассообменных процессов в системах «жидкость-жидкость» и жидкость-газ».

Настоящее изобретение направлено на жидкие композиции для кондиционирования ткани и способы их получения и применения. Описана композиция кондиционера для ткани, имеющая вязкость от 5 сПз до 5000 сПз, при этом композиция содержит от 4 % до 30 % по массе одного или более активных веществ кондиционера для ткани, которое представляет собой соединение сложноэфирного четвертичного аммония, выбранное из группы, состоящей из сложных моноэфиров ацил-оксиэтил- N,N-диметиламмоний хлорида, сложных диэфиров ацил-оксиэтил-N,N-диметиламмоний хлорида и их смесей, при этом указанное активное вещество содержит частицы, при этом частицы имеют гранулометрический показатель от 750 до 3000: от 1 м.д.
Изобретение относится к изготовлению резиновой смеси для автомобильной шины. .
Изобретение относится к изготовлению резиновой смеси для автомобильной шины. .
Изобретение относится к изготовлению резиновой смеси для автомобильной шины на основе ненасыщенных каучуков. .

Изобретение относится к средствам получения высокодисперсных гомогенизированных смесей с заданной концентрацией компонентов. .

Изобретение относится к области переработки жидких сред, в частности к физико-химическому изменению исходного жидкого углеводородного сырья, например нефти и нефтепродуктов, получению жидких композиционных материалов, в том числе наноструктурированных жидкостей, и может использоваться в химической, нефтехимической, нефтеперерабатывающей пищевой, фармацевтической промышленности.

Изобретение относится к машиностроению и может быть применено для диспергирования, эмульгирования и обеззараживания технологических, например, смазывающих и охлаждающих жидкостей.

Группа изобретений относится к получению суспензии порошков неорганических и органических материалов и может быть использована для деагломерации в жидкой среде наноразмерных порошков углерода, металлов и их соединений, органических веществ в химической, нефтехимической, пищевой, фармацевтической и других отраслях промышленности.
Наверх