Литейный жаропрочный сплав на никелевой основе и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным сплавам на основе никеля, и может быть использовано при изготовлении рабочих лопаток газотурбинных установок. Жаропрочный сплав на основе никеля содержит, мас. %: углерод 0,05-0,15, хром 11,9-12,7, кобальт 10,0-12,0, вольфрам 4,0-5,2, молибден 1,5-2,1, титан 3,2-4,2, алюминий 3,2-4,0, тантал 1,5-2,9, бор 0,001-0,015, цирконий 0,008-0,08, церий 0,002-0,02, иттрий 0,002-0,02, лантан 0,002-0,02, кальций 0,001-0,01, никель - остальное. Сплав характеризуется высокими значениями длительной прочности, коррозионной стойкости, а также высокой фазовой стабильностью и снижением объемной доли выделений неравновесных фаз. 2 н. и 1 з.п. ф-лы, 2 табл., 3 пр.

 

Изобретение относится к области металлургии, а именно к производству литейных жаропрочных сплавов на никелевой основе и получаемым из них изделий с поликристаллической (равноосной) или направленной (монокристаллической) структурами, например, рабочих лопаток газотурбинных установок (ГТУ) и газотурбинных двигателей (ГТД), работающих в агрессивных средах при температурах до 900-1000°C.

Из /RU 2131944 C1, 20.06.1999/ известен жаропрочный сплав на основе никеля с монокристаллической структурой, предназначенный для изготовления преимущественно методами направленной кристаллизации деталей высокотемпературных узлов газовых турбин с направленной и монокристаллической структурами с высоким выходом годных отливок по макроструктуре, следующего химического состава, масс. %:

углерод 0,005-0,12
хром 13,5-14,5
кобальт 8,0-12,0
вольфрам 3,0-5,0
молибден 1,5-2,5
титан 3,4-4,3
алюминий 3,5-4,8
ниобий 0,4-1,4
тантал 0,2-1,0
гафний 0,1-0,4
бор 0,001-0,02
иттрий 0,005-0,05
никель остальное

Недостатком известного сплава является склонность к образованию вредных топологически плотно упакованных (далее - ТПУ) фаз, объемная доля которых в структуре материала турбинной лопатки из этого сплава после 1000 ч наработки может достигать 10%, что значительно уменьшает ее дальнейшую работоспособность.

Из /RU 2519075 C1, 10.06.2014/ известен жаропрочный сплав на основе никеля, предназначенный для литья деталей горячего тракта газотурбинных установок, например, турбинных рабочих лопаток с поликристаллической (равноосной) или направленной (монокристаллической) структурами, работающих в агрессивных средах при температурах до 700-1000°C, следующего химического состава, масс. %:

углерод 0,08-0,10
хром 8,85-9,15
кобальт 10,4-10,8
вольфрам 5,60-5,85
молибден 0,20-0,30
титан 3,0-3,2
алюминий 3,7-3,9
ниобий 0,10-0,15
тантал 3,9-4,1
гафний 0,10-0,15
бор 0,08-0,012
иттрий 0,010-0,012
рений 2,9-3,1
церий 0,01-0,012
лантан 0,010-0,012
магний 0,010-0,012
никель остальное,

при этом суммарное содержание церия, иттрия, лантана и магния - не менее 0,40-0,048 масс. %, суммарное содержание гафния и ниобия - 0,2-0,3 масс. %, а суммарное содержание алюминия и титана - 6,8-7,1 масс. % при отношении содержания титана к содержанию алюминия 0,81-0,825.

Недостатком известного сплава является низкая коррозионная стойкость: сравнительная коррозионная стойкость log [metal loss(mm/20 h)] составляет от -0,553 до -0,595, что ограничивает длительную работоспособность деталей из этого сплава в коррозионных средах при повышенных до 1000°C температурах. К его недостаткам следует также отнести повышенное (не менее 0,40 масс. %) суммарное содержание церия, иттрия, лантана и магния, в результате чего, сегрегируя в процессе направленной кристаллизации в междендритные области монокристаллических отливок рабочих лопаток, они понижают локальную температуру ликвидуса сплава, повышая склонность жидкого сплава к образованию при монокристаллическом литье посторонних кристаллов, препятствующих дальнейшему формированию монокристаллической структуры отливаемых рабочих лопаток, особенно в местах перехода от пера к полке замка лопаток. В связи с этим сплав обладает недостаточной технологичностью при изготовлении рабочих лопаток газовых турбин с монокристаллической структурой.

Наиболее близким аналогом является литейный жаропрочный сплав на никелевой основе, известный из /JP 4911753 В2, 04.04.2012/, предназначенный для изготовления лопаток промышленных газовых турбин с поликристаллической (равноосной) и направленной (столбчатой или монокристаллической) структурами, следующего химического состава, масс. %:

углерод 0,05-0,15
хром 9-12
кобальт 9-11
вольфрам 6-9
молибден менее 1
титан 4-5
алюминий 4-5
ниобий менее 1
тантал менее 3
гафний 0,5-2,5
бор 0,005-0,015
рений менее 3
цирконий менее 0,05
никель остальное

Дополнительные исследования показали, что повышенное до 2,5 масс. % содержание гафния приводит к тому, что он, сегрегируя при литье в междендритные области деталей из сплава, способствует образованию значительного количества неравновесных фаз эвтектического происхождения типа Ni3(Al,Hf) или Ni5Hf с низкими температурами плавления и тем самым понижает температуру солидуса сплава. В результате повышается опасность образования в процессе кристаллизации значительной пористости и кристаллизационных горячих трещин в отливках изделий сложной геометрии. Это может привести к оплавлению междендритных областей в отливках изделий из сплава при их термической обработке на твердый раствор и/или баротермической обработке при устранении литейной пористости. Указанный недостаток сплава-прототипа, связанный с особенностями его легирования, приводит к снижению технологичности при литье, а именно к необходимости проведения длительной многоступенчатой термической и/или баротермической обработки деталей. К другому недостатку сплава-прототипа следует отнести его низкую фазовую стабильность, проявляющуюся в склонности к образованию ТПУ фаз, объемная доля которых в структуре материала турбинной лопатки из этого сплава после 1000 ч наработки может достигать 10% и более, что значительно уменьшает ее дальнейшую работоспособность.

Технической задачей настоящего изобретения является создание литейного жаропрочного сплава на никелевой основе с повышенными физико-химическими свойствами, необходимыми для повышения эксплуатационных характеристик лопаток газовых турбин, работающих в агрессивных средах при температурах до 900-1000°C.

Техническим результатом предлагаемого изобретения является повышение длительной прочности, относительной коррозионной стойкости жаропрочного сплава на основе никеля при повышении его фазовой стабильности, а также снижение объемной доли выделений неравновесных фаз и, как следствие, обеспечение возможности получать из сплава изделия сложной формы с поликристаллической (равноосной) или направленной (монокристаллической) структурой, а также проводить их термическую и/или баротермическую обработку.

Для достижения поставленного технического результата предложен жаропрочный сплав на основе никеля, содержащий углерод, хром, кобальт, вольфрам, молибден, титан, алюминий, тантал, бор, цирконий, а также церий, иттрий, лантан и кальций при следующем соотношении компонентов, масс. %:

углерод 0,05-0,15
хром 11,9-12,7
кобальт 10,0-12,0
вольфрам 4,0-5,2
молибден 1,5-2,1
титан 3,2-4,2
алюминий 3,2-4,0
тантал 1,5-2,9
бор 0,001-0,015
цирконий 0,008-0,08
церий 0,002-0,02
иттрий 0,002-0,02
лантан 0,002-0,02
кальций 0,001-0,01
никель остальное

Сплав может дополнительно содержать рений в количестве 0,9-3 масс. %.

Также предложено изделие, выполненное из данного сплава на никелевой основе, имеющее равноосную или монокристаллическую структуру.

Введение в состав предлагаемого сплава церия, иттрия, лантана и кальция при заявленном соотношении легирующих элементов приводит к тому, что в процессе литья происходит взаимодействие вышеуказанных элементов с примесями серы, кислорода, азота с образованием сульфидов, оксидов и нитридов, которые при литье концентрируются в прибыльной части (литниках) отливки детали. В результате содержание вредных примесей серы, кислорода и азота в объеме твердого раствора сплава понижается и, как следствие, повышается длительная прочность. При термической и/или баротермической обработке отливок из сплава на внутренних поверхностях неизбежно имеющихся литейных и гомогенизационных микропор происходит взаимодействие вышеуказанных элементов с остатками примесей серы, кислорода, азота с образованием внутри микропор дисперсных сульфидов, оксидов и нитридов. Таким образом, уменьшается образование дополнительных концентраторов напряжений в виде отдельных частиц сульфидов, оксидов и нитридов. В результате также повышаются длительная прочность и сопротивление сплава коррозии.

Молибден и хром, имея коэффициенты распределения между γ'- и γ-фазами, равные ~0,3 и ~0,2 соответственно, растворяются в основном в γ-твердом растворе сплава. Поэтому повышение содержания молибдена до 1,5-2,1 масс. % и хрома до 11,9-12,7 масс. % в предлагаемом сплаве при заявленном сбалансированном суммарном содержании легирующих элементов вызывает увеличение периода кристаллической решетки γ-твердого раствора и тем самым повышение относительной разности периодов кристаллических решеток γ- и γ'-фаз (γ/γ'-мисфита), что способствует увеличению длительной прочности сплава.

Пониженное до 4,0-5,2 масс. % содержание вольфрама в предлагаемом сплаве приводит к снижению плотности и также способствует повышению высокотемпературной фазовой стабильности γ-твердого раствора и МеС-карбидов и, следовательно, достижению более высоких показателей длительной прочности.

Исключение из химического состава заявляемого сплава γ'-образующего элемента гафния наряду с повышением содержания γ-стабилизирующих элементов молибдена и хрома способствуют снижению объемной доли выделений неравновесных фаз эвтектического происхождения типа Ni3(Al,Hf) или Ni5Hf в литой структуре сплава, что позволяет получать из него сложнопрофильные изделия с поликристаллической (равноосной) или направленной (монокристаллической) структурой без образования в процессе кристаллизации литейной рыхлоты и горячих микротрещин, а также проводить термическую и/или баротермическую обработку изделий с целью снижения их пористости без опасности оплавления.

Кроме того, соотношение компонентов предлагаемого сплава - хрома, кобальта, вольфрама, молибдена, титана, алюминия, тантала, рения (при наличии), циркония и никеля, обеспечивает повышение фазовой стабильности, заключающееся в устранении склонности сплава к образованию ТПУ фаз.

Известно, что для обеспечения фазовой стабильности значение характеризующего ее параметра ΔЕ должно соответствовать условию: 0,02≥ΔE≥-0,04. Указанный параметр вычисляется по следующей формуле: где Zi - концентрация i-го элемента, атомн. %, Ai - атомная масса i-го элемента, Ei - количество валентных электронов i-го элемента, n=9 или 10 - количество компонентов сплава (хром, кобальт, вольфрам, молибден, титан, алюминий, тантал, рений (при наличии), цирконий, никель) (Самойлов А.И., Морозова Г.И., Кривко А.И., Афоничева О.С. Аналитический метод оптимизации легирования жаропрочных никелевых сплавов // Материаловедение. 2000. №2. С. 14-17).

Для предлагаемого сплава данное значение находится в интервале от -0,007 до -0,032, притом как для сплава-прототипа оно составляет от -0,123 до -0,055, то есть выходит за пределы критических значений. Это свидетельствует об отсутствии склонности предлагаемого сплава к образованию вредных ТПУ фаз, а также дестабилизирующим твердофазным карбидным реакциям типа МеС→Me6C+γ'.

Изделия из предлагаемого сплава, например, рабочие лопатки газовых турбин с поликристаллической (равноосной) и направленной (монокристаллической) структурами будут иметь высокие показатели длительной прочности и коррозионной стойкости, обеспечивающие повышение надежности и ресурса работы.

Примеры осуществления.

В вакуумной индукционной печи было осуществлено 4 плавки предлагаемого сплава и 2 плавки сплава-прототипа. Выплавленные сплавы переплавляли в вакуумных установках для равноосной или направленной кристаллизации и получали изделия с поликристаллической (равноосной) или направленной (монокристаллической) структурой в виде отливок диаметром ~16 мм и длиной соответственно 70 и 160 мм.

Химический состав предлагаемого сплава и сплава-прототипа приведен в таблице 1.

Далее из полученных отливок изготавливали образцы для дифференциального термического анализа и количественной металлографии, по результатам которых определяли температуру плавления и объемную долю выделений фазы эвтектического происхождения.

Полученные отливки из сплавов подвергали термической обработке, включающей гомогенизирующий отжиг и двухступенчатое старение.

Из термически обработанных таким образом отливок изготавливали образцы для определения плотности и механических испытаний на длительную прочность (длина образца 70 мм, рабочая база 25 мм, рабочий диаметр 5 мм), по результатам которых определяли время до разрушения при заданных температурах и напряжениях.

Механические испытания на длительную прочность проводили по ГОСТ 10145-81.

Испытания образцов с поликристаллической (равноосной) структурой проводили в атмосфере воздуха при температуре 900°C и напряжении 260 МПа.

Испытания образцов с направленной (монокристаллической) структурой проводили в атмосфере воздуха при температуре 1000°C и напряжениях 200 и 140 МПа.

Оценку коррозионной стойкости сплавов проводили расчетным путем, сравнивая полученные по известному регрессионному уравнению относительные значения потери массы сплава logjmetal loss(mm/20 h)] при выдержке в расплаве солей Na2S04+NaCl в течение 20 ч при температуре 900°С (Harada Н., Yamazaki М., Sakuma N. at al. Alloy design for nickel-base superalloys // In: Proc. Conf. "High Temperature Alloys for Gas Turbines 1982@, held in Liege, Belgium, 406 Okt. 1982 / D. Reidel Publishing Co.)

Полученные характеристики композиций предложенного сплава и сплава-прототипа приведены в таблице 2.

Как видно из таблицы 2, предлагаемый сплав обладает повышенными в сравнении со сплавом-прототипом характеристиками длительной прочности и коррозионной стойкости.

Сплав имеет более высокие значения температуры плавления выделений неравновесной фазы эвтектического происхождения (на 14-52°C) и меньшую ее объемную долю в структуре отливок изделий из сплава (в 2-4 раза), чем из сплава, взятого за прототип. Кроме того, абсолютные значения параметра ΔE, характеризующего фазовую стабильность, у предлагаемого сплава не выходят за рамки критических значений и составляют от -0,007 до -0,032, в отличие от сплава-прототипа, у которого значения параметра ΔЕ составляют от -0,123 до -0,055, что свидетельствует о повышении фазовой стабильности предлагаемого сплава - отсутствии склонности к образованию вредных ТПУ фаз, а также дестабилизирующим твердофазным карбидным реакциям типа MeC→Ме6С+γ'.

Сниженная объемная доля выделений неравновесной фазы эвтектического происхождения обеспечивает технологическое преимущество предлагаемого сплава, которое заключается в возможности получать из него изделия сложной формы с поликристаллической (равноосной) или направленной (монокристаллической) структурой без образования в процессе кристаллизации литейной рыхлоты и горячих микротрещин, а также проводить термическую и/или баротермическую обработку изделия без опасности оплавления.

Описанные преимущества позволят использовать предлагаемый сплав для производства рабочих лопаток газовых турбин ГТУ и ГТД, длительно работающих в агрессивных средах при температурах до 900-1000°C.

1. Жаропрочный сплав на основе никеля, содержащий углерод, хром, кобальт, вольфрам, молибден, титан, алюминий, тантал, бор и цирконий, отличающийся тем, что он дополнительно содержит церий, иттрий, лантан и кальций при следующем соотношении компонентов, мас. %:

углерод 0,05-0,15
хром 11,9-12,7
кобальт 10,0-12,0
вольфрам 4,0-5,2
молибден 1,5-2,1
титан 3,2-4,2
алюминий 3,2-4,0
тантал 1,5-2,9
бор 0,001-0,015
цирконий 0,008-0,08
церий 0,002-0,02
иттрий 0,002-0,02
лантан 0,002-0,02
кальций 0,001-0,01
никель остальное

2. Сплав по п. 1, отличающийся тем, что он дополнительно содержит рений в количестве 0,9-3 мас. %.

3. Изделие из жаропрочного сплава на основе никеля, отличающееся тем, что оно выполнено из сплава по п. 1 или 2.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, которые могут быть использованы для изготовления реакционных труб установок производства этилена с рабочими режимами при температуре плюс 900÷1160°С и давлением до 6 атмосфер.

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, которые могут быть использованы для изготовления реакционных труб нефтегазоперерабатывающих установок с рабочими режимами при температуре 800÷1150°С и давлением до 46 атмосфер.

Изобретение относится к области металлургии, а именно к защитным покрытиям для компонентов газовой турбины. Защитное покрытие компонента газовой турбины содержит, вес.%: Со 15-39, Cr 10-25, Al 5-15, Y 0,05-1, Fe 0,5-10, Mo 0,05-2, никель и примеси - остальное.

Изобретение относится к области металлургии, а именно к никель-хромовым сплавам для бесшовных нефтепромысловых труб. Ni-Cr сплав содержит, мас.%: Si от 0,01 до 0,5, Mn от 0,01 до менее чем 1,0, Cu от 0,01 до менее чем 1,0, Ni от 48 до менее чем 55, Cr от 22 до 28, Mo от 5,6 до менее чем 7,0, N от 0,04 до 0,16, растворимый Al от 0,03 до 0,20, РЗМ от 0,01 до 0,074, W от 0 или более и менее чем 8,0, Co от 0 до 2,0, один или элементов из Ca и Mg от 0,0003 до 0,01 в сумме, и один или более элементов из Ti, Nb, Zr и V от 0 до 0,5 в сумме, Fe и примеси – остальное.

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида Ni3Al. Сплав на основе интерметаллида Ni3Al содержит, мас.%: алюминий 8,2-8,8, хром 4,5-5,5, вольфрам 4,1-4,6, молибден 4,5-5,5, титан 0,8-1,2, углерод 0,12-0,18, кобальт 3,5-4,5, по меньшей мере один редкоземельный металл, выбранный из группы, включающей лантан, скандий и иттрий 0,015-0,3, никель - остальное.

Изобретение относится к области металлургии, в частности, к составам сплавов на основе никеля, которые могут быть использованы для изготовления деталей двигателей, тепловых агрегатов, печей, металлургического оборудования.

Изобретение относится к области металлургии, в частности к литейным жаропрочным сплавам на никелевой основе, используемым для изготовления высоконагруженных деталей газотурбинных двигателей и установок, а именно рабочих и сопловых лопаток газовых турбин с направленной столбчатой и монокристальной структурой, работающих при температурах 1000°C и выше.

Изобретение может быть использовано для соединения пайкой изделий из коррозионностойких жаропрочных сталей и сплавов, в частности, для соединения изделий из стали 12Х18Н10Т.

Изобретение относится к области металлургии, а именно к предсварочной термообработке компонента турбины. Способ предварительной термообработки перед сваркой компонента турбины из никелевого сплава Inconel 939 включает нагрев компонента турбины до первой температуры в диапазоне от температуры на 35°F (19,4°C) ниже температуры растворения фазы γ' и до температуры начала плавления сплава и выдержку при этой температуре, охлаждение со скоростью 1°F (0,56°C) в минуту до температуры 1900°F(±25°F) (1038±15°C) и выдержку при этой температуре, охлаждение со скоростью 1°F в минуту до температуры 1800°F(±25°F) (982±15°C) и выдержку при этой температуре.

Изобретение относится к области металлургии, в частности, к составам сплавов на основе никеля, которые могут быть использованы, например, для изготовления деталей двигателей, труб.

Изобретение относится к области металлургии, в частности к жаропрочным сплавам, и может быть использовано при изготовлении труб, листа, поковок и другого оборудования, работающего в коррозионных средах, а также для сосудов и аппаратов, работающих при высоком давлении в диапазоне температур от минус 196°C до плюс 790°C и давлении до 50 атм. Жаропрочный сплав содержит, мас. %: углерод ≤0,06; хром 17,5÷22,5; кобальт ≤0,85; кремний ≤0,45; марганец 2,45÷3,51; ниобий 1,9÷3,1; титан ≤0,70; медь ≤0,30; иттрий >0÷0,001; кислород >0,0005÷0,018; водород >0,0005÷0,0017; азот >0,0005÷0,050; сера ≤0,015; фосфор ≤0,015; свинец ≤0,009; олово ≤0,009; мышьяк ≤0,009; цинк ≤0,009; сурьма ≤0,009; железо ≤3,0; никель – остальное. Обеспечивается увеличение структурной стабильности сплава в процессе старения, а также снижение склонности сплава к образованию горячих трещин при сварке. 1 з.п. ф-лы.

Изобретение относится к металлургии, в частности к литейным жаропрочным коррозионностойким сплавам на основе никеля, и может быть использовано для изготовления литьем сопловых (направляющих) лопаток газотурбинных установок с равноосной и монокристаллической структурами, работающих в агрессивных средах при температурах 700-1000°С. Жаропрочный сплав на основе никеля для литья сопловых лопаток газотурбинных установок содержит, мас. %: углерод 0,02-0,10; хром 18,3-19,5; кобальт 3,7-4,7; вольфрам 5,8-6,4; титан 3,7-4,3; тантал 1,3-1,7; алюминий 2,8-3,3; бор 0,002-0,020; ниобий 0,15-0,4; цирконий ≤ 0,03; иттрий ≤ 0,03; молибден 0,15-0,35; гафний 0,10-0,20; марганец ≤ 0,03; кремний ≤ 0,3; железо ≤ 0,5; медь ≤ 0,05; сера ≤ 0,005; фосфор ≤ 0,008; азот ≤ 15 ppm; кислород ≤ 20 ppm и никель - остальное, при этом суммарное содержание алюминия и титана составляет 6,5-7,6 мас. %, а отношение содержания титана к содержанию алюминия ≥ 1,3. Сплав характеризуется повышенной длительной прочностью при рабочих температурах 700-1000°С в сочетании с высоким сопротивлением усталости, окислению и коррозионным воздействиям, а также повышенной структурной стабильностью на ресурс и улучшенными технологическими характеристиками. 2 табл.

Изобретение относится к металлургии, в частности к составу жаропрочного коррозионно-стойкого сплава на основе никеля для изготовления деталей котлов и паровых турбин (труб, роторов, дисков), работающих при ультрасверхкритических параметрах пара при температурах до 760°С, методами литья с последующим горячим деформированием или методами порошковой металлургии. Жаропрочный сплав на основе никеля для изготовления деталей котлов и паровых турбин содержит, мас. %: углерод 0,015-0,10; хром 19,0-21,5; кобальт 18,0-20,0; молибден 4,1-4,8; алюминий 1,2-1,8; титан 2,5-3,2; бор 0,003-0,05; цирконий 0,01-0,06; кремний 0,05-0,3; марганец 0,05-0,3; железо ≤0,5; сера ≤0,007; фосфор ≤0,007; вольфрам 1,1-1,8; ниобий 0,15-0,35; гафний 0,15-0,30; кислород ≤20 ppm; медь ≤0,05; ванадий 0,1-0,25; азот ≤30 ppm; скандий 0,002-0,005; барий и/или стронций 0,0001-0,01; никель остальное, при этом суммарное содержание титана и алюминия составляет ≤4,4 мас. %, а соотношение содержания титана к содержанию алюминия - 1,9-2,1. Сплав характеризуется повышенной структурной стабильностью на ресурс и высокими значениями длительной прочности изделий, работающих при температурах до 760°С на ресурс 2×105 часов. 2 з.п. ф-лы, 2 табл.

Группа изобретений касается разделительного стакана, размещенного в зазоре между ведущей и ведомой частями насоса с магнитной муфтой. Зазор должен быть как можно более узким для обеспечения хорошего КПД насоса, что может реализовываться только с тонкой боковой стенкой стакана. При этом стакан должен обладать достаточно высокой прочностью, в частности выдерживать разности давления в насосе, и одновременно простым образом изготавливаться заданной геометрии и обладать высокой устойчивостью формы. Предлагается выполнить разделительный стакан (1) с боковой стенкой (3), которая по меньшей мере частично состоит из материала, содержащего никелевый компонент, причем этот материал представляет собой никелево-хромовый сплав, который содержит по меньшей мере 50 весовых процентов никеля и от 17 до 21 весовых процентов хрома, и осуществлять твердение боковой стенки (3) термообработкой. Благодаря этому простым образом может создаваться разделительный стакан (1), очень устойчивый к коррозии и/или высоким температурам. 2 н. и 9 з.п. ф-лы, 3 ил.

Изобретение относится к области металлургии, а именно никель-кобальтовым сплавам. Ni-Co сплав содержит, вес. %: Fe от >0 до максимум 10, Со от >12 до <35, Cr от 13 до 23, Мо от 1 до 6, Nb + Та от 4,7 до 5,7, Al от >0 до <3, Ti от >0 до <2, C от >0 до максимум 0,1, P от >0 до максимум 0,03, Mg от >0 до максимум 0,01, В от >0 до максимум 0,02, Zr от >0 до максимум 0,1, Ni остальное, при необходимости: V до 4, W до 4, возможно, примесные элементы: Cu максимум 0,5, S максимум 0,015, Mn максимум 1,0, Si максимум 1,0, Са максимум 0,01, N максимум 0,03, О максимум 0,02. Температура растворения γ' составляет 900-1030°C при 3 ат. % ≤ Al + Ti ≤ 5,6 ат. % и 11,5 ат. % ≤ Со ≤ 35 ат. %, устойчивая микроструктура после дисперсионного твердения при 800°С в течение 500 ч и отношение содержаний алюминий и титана в ат.% Al/Ti ≥ 5. Сплав характеризуется высокими механическими свойствами, хорошей формуемостью и устойчивой микроструктурой до температуры 750°C. 6 н. и 7 з.п. ф-лы, 7 ил., 8 табл.

Изобретение относится к области металлургии, а именно никель-кобальтовым сплавам. Ni-Co сплав содержит, вес. %: Fe от >0 до максимум 10, Со от >12 до <35, Cr от 13 до 23, Мо от 1 до 6, Nb + Та от 4,7 до 5,7, Al от >0 до <3, Ti от >0 до <2, C от >0 до максимум 0,1, P от >0 до максимум 0,03, Mg от >0 до максимум 0,01, В от >0 до максимум 0,02, Zr от >0 до максимум 0,1, Ni остальное, при необходимости: V до 4, W до 4, возможно, примесные элементы: Cu максимум 0,5, S максимум 0,015, Mn максимум 1,0, Si максимум 1,0, Са максимум 0,01, N максимум 0,03, О максимум 0,02. Температура растворения γ' составляет 900-1030°C при 3 ат. % ≤ Al + Ti ≤ 5,6 ат. % и 11,5 ат. % ≤ Со ≤ 35 ат. %, устойчивая микроструктура после дисперсионного твердения при 800°С в течение 500 ч и отношение содержаний алюминий и титана в ат.% Al/Ti ≥ 5. Сплав характеризуется высокими механическими свойствами, хорошей формуемостью и устойчивой микроструктурой до температуры 750°C. 6 н. и 7 з.п. ф-лы, 7 ил., 8 табл.
Наверх