Способ и система для количественной оценки сегментации изображения

Группа изобретений относится к медицинской технике, а именно к средствам определения объема и формы отклонений в конкретных областях головного мозга. Способ количественной оценки сегментации изображения содержит прием медицинского изображения физической структуры пациента, прием адаптированной сеточной модели физической структуры для медицинского изображения, определение количественного параметра изображения на основе значений интенсивности медицинского изображения в каждой из множества вершин адаптированной сеточной модели и объединение множества количественных параметров изображений для определения метрики качества адаптации. Система для осуществления способа содержит память и процессор, определяющий количественный параметр изображения на основе значений интенсивности медицинского изображения в каждой из множества вершин адаптированной сеточной модели и объединяющий множество количественных параметров изображения для определения метрики качества адаптации. Система снабжена постоянным машиночитаемым носителем данных. Использование изобретений позволяет расширить арсенал технических средств оценки сегментации изображения. 3 н. и 12 з.п. ф-лы, 4 ил.

 

Способность быстро определять объем и форму отклонений в конкретных областях головного мозга имеет решающее значение для научно-исследовательских программ с участием пациентов с неврологическими и психологическими расстройствами, такими как болезнь Альцгеймера, травматическое повреждение мозга и посттравматическое стрессовое расстройство («ПТСР»), и в выявлении пациентов, подверженных риску таких нарушений. Такие отклонения могут быть определены с помощью деформируемой модели мозга с подчиненной ограничениям формой, которая может выявить тонкие изменения в структуре областей мозга с известной предрасположенностью к повреждению, в сравнении с аналогичными данными, полученными от здоровых пациентов контрольной группы. Деформируемая модель мозга может быть адаптирована к изображениям магнитно-резонансной томографии пациента («МРТ») и может сегментировать изображения в ряд подкорковых структур. Однако для того, чтобы быть подходящим способом для исследования и/или терапии, это должно быть способно осуществляться эффективно.

Примерный вариант осуществления описывается в настоящем документе в отношении способа приема медицинского изображения, приема адаптации модели физической структуры, адаптации, относящейся к медицинскому изображению, определения количественного параметра изображения медицинского изображения в каждой из множества вершин адаптации и объединения множества количественных параметров изображений для определения метрики оценки.

Другой примерный вариант осуществления описывается в настоящем документе в отношении системы, имеющей память, хранящую медицинское изображение и адаптацию модели физической структуры, адаптацию, относящуюся к медицинскому изображению, и процессор, определяющий количественный параметр изображения медицинского изображения в каждой из множества вершин адаптации и объединяющий множество количественных параметров изображений для определения метрики оценки.

Еще один примерный вариант осуществления описывается в настоящем документе в отношении постоянного машиночитаемого носителя хранения, хранящего набор инструкций, выполняемых процессором. Инструкции, позволяющие процессору выполнять способ для приема медицинского изображения, приема адаптации модели физической структуры, адаптации, относящейся к медицинскому изображению, определения количественного параметра изображения медицинского изображения в каждой из множества вершин адаптации и объединения множества количественных параметров изображений для определения метрики оценки.

На Фигуре 1А показана примерная деформируемая модель мозга.

На Фигуре 1В показана примерная деформируемая модель мозга, представленная на Фигуре 1А, в качестве адаптированной для МРТ изображения объема мозга пациента.

На Фигуре 2А показана успешная адаптация примерной деформируемой модели мозга к МРТ изображению объема мозга пациента.

На Фигуре 2В показана неудачная адаптация примерной деформируемой модели мозга к МРТ изображению объема мозга пациента.

На Фигуре 3 показан примерный способ формирования метрики для оценки успеха или неудачи адаптации деформируемой модели мозга к изображению мозга.

На Фигуре 4 показана примерная система для реализации способа, такого как способ, показанный на Фигуре 3, для оценки успеха или неудачи адаптации деформируемой модели мозга к изображению мозга в соответствии с примерным вариантом осуществления.

Примерные варианты осуществления могут быть также поняты со ссылкой на нижеследующее описание примерных вариантов осуществления и соответствующих прилагаемых чертежей, на которых одинаковые элементы обозначены одинаковыми ссылочными позициями. В частности, примерные варианты осуществления относятся к способам и системам для проверки адаптации деформируемой модели мозга для пациента.

Способность быстро определять объем и форму отклонений в конкретных областях головного мозга имеет решающее значение для научно-исследовательских программ с участием пациентов с неврологическими и психологическими расстройствами, такими как болезнь Альцгеймера, травматическое повреждение мозга и ПТСР и в выявлении пациентов, подверженных риску таких нарушений. Такие отклонения могут быть определены с помощью деформируемой модели мозга с подчиненной ограничениям формой, которая может выявить тонкие изменения в структуре областей мозга с известной предрасположенностью к повреждению, в сравнении с аналогичными данными, полученными от здоровых пациентов контрольной группы. Деформируемая модель мозга может быть адаптирована к МРТ изображениям пациента и может сегментировать изображения в ряд подкорковых структур. Однако для того, чтобы быть подходящим способом для исследования и/или терапии, это должно быть способно осуществляться эффективно. Специалистам в данной области будет понятно, что хотя, примерные варианты осуществления будут описаны с конкретной ссылкой на МРТ изображения, те же методы, описываемые в настоящем документе, могут быть в равной степени применимы и к другим типам медицинских изображений, таких как КТ изображения, ультразвуковые изображения и т.д.

Фигура 1А иллюстрирует примерную деформируемую модель 110 мозга, в которой различные участки мозга моделируются отдельно. Деформируемая модель мозга может быть, например такой, как описана в «Evaluation of traumatic brain injury patients using a shape-constrained deformable model» L. Zagorchev, C. Meyer, T. Stehle, R. Kneser, S. Young and J. Weese, 2011, в Трудах первой международной конференции по мультимодальныму анализу изображений мозга (MBIA'll), Tianming Liu, Dinggang Shen, Luis Ibanez, and Xiaodong Tao (Eds.), Springer-Verlag, Berlin, Heidelberg, 118-125. Фигура 1B иллюстрирует адаптацию 120 модели 110, показанной на Фигуре 1А, к МРТ изображению пациента. В адаптации 120, несколько элементов 121, 122, 123, 124 и 125 модели 110 были картированы в адаптации 120, иллюстрирующий положение и размер элементов 121, 122, 123, 124 и 125 на поперечном сечении, показанном посредством МРТ. Показанная модель использует проверенные экспериментальные данные, которые представляют сегментированные вручную структуры мозга. Проверенные экспериментальные данные содержат информацию о значениях интенсивности на границе каждой структуры, которую можно использовать для получения метрики изображения, показывающий качество сегментации, как будет описано более подробно ниже.

Адаптация деформируемой модели мозга к объему мозга конкретного пациента может вестись на основании факторов, полученных из МРТ изображения пациента. Для того чтобы применить прежние методы для адаптации такой модели, медицинскому работнику требовалось загрузить МРТ изображение пациента в просмотровое устройство, загрузить окончательную адаптированную модель и визуально проверить, была ли модель правильно адаптирована. Фигура 2А иллюстрирует примерную успешную адаптацию 210, а Фигура 2В иллюстрирует примерную неудачную адаптацию 220. Для специалиста в данной области очевидно, что элементы успешной адаптированной модели 210 соответствуют элементам, показанным на расположенном ниже МРТ изображении, в то время как элементы неудачной адаптированной модели 220 - нет. Кроме того, следует отметить, что значения интенсивности в вершинах сетки, когда модель адаптируется неудачно, значительно отличаются от значений интенсивности (т.е., графической интенсивности изображений) в вершинах сетки, когда модель адаптируется правильно.

Проверка успеха или неудачи адаптации может быть утомительной и трудоемкой задачей, особенно в клинических испытаниях с участием большого числа пациентов, где этот процесс может добавить несколько дней работы. Примерные варианты осуществления представляют метрику качества адаптации, которая может преодолеть этот недостаток. Метрика может определяться автоматически в конце адаптации и может дополнительно обеспечить основу для прямого количественного сравнения результатов сегментации по сегментации у одного и того же пациента или разных пациентов.

Фигура 3 иллюстрирует примерный способ 300 для определения количественной метрики для использования, как описано выше. На этапе 310 принимаются изображение пациента (например, МРТ изображение) и данные, относящиеся к адаптированной модели мозга. Специалистам в данной области будет понятно, что до того, как этот этап будет выполнен, модель должна быть адаптирована к изображению пациента, но, что процесс адаптации выходит за пределы примерных вариантов осуществления.

На этапе 320 количественный параметр изображения определяется в каждой из вершин сетки, очерчивая структуры мозга в адаптированной модели мозга. Специалистам в данной области будет понятно, что количественный параметр изображения может иметь одно или несколько из любого количества различных значений, которые можно использовать для количественной оценки свойств изображения. Эти значения могут включать в себя, например, интенсивность изображения, градиент изображения и магнитуду градиента. Специалистам в данной области также будет понятно, что под вершиной сетки может пониматься точка, которая принадлежит к сетке из треугольников. Однако другие формы сетки, имеющие вершины, также могут использоваться, такие как прямоугольники, квадраты, восьмиугольники и т.д. Кроме того, специалистам в данной области будет понятно, что количественный параметр изображения можно определить, используя любую подходящую функцию обработки изображений.

На этапе 330, количественные параметры изображения, определенные в каждой из вершин, усредняются для получения количественной метрики, которую можно использовать для оценки адаптации модели. Как будет подробно описано ниже, способ не ограничивается усреднением количественных параметров изображения для каждой вершины, так как усреднение является лишь одним способом получения количественной метрики. В одном из вариантов осуществления метрика может быть нормализована таким образом, что полностью адаптированная модель дает упрощенное числовое значение, такое как 1 или 100, и таким образом, что модель, которая была адаптирована совершенно неправильно, дает нулевое значение. Этап 330 объединения также может содержать рассмотрение каждой из вершин в отдельности для того, чтобы определить отдельные метрики оценки для каждого из множества подмножеств медицинского изображения.

Затем, на этапе 340, адаптация модели проверяется на основе количественной метрики, определенной на этапе 330. Это может быть выполнено, например, путем сравнения метрики с пороговым значением или другими способами, известными в данной области. Например, если количественная метрика нормализована на значениях 1-100, порог может быть вначале установлен на 75, это означает, что адаптации, отмеченные 75 и выше, считается успешными, в то время как те, у которых ниже 75 неудачны. Это пороговое значение затем может быть переустановлено пользователем, например, если пользователь решит, что успешные адаптации должны быть выше или ниже начального порога. В другом примере, система может включать в себя алгоритм машинного обучения, который определяет пороговый уровень на основе различных вводов.

Если определено, что модель была адаптирована успешно, то на этапе 350 адаптация принимается для последующего использования. С другой стороны, если определено, что модель не была успешно адаптирована, то на этапе 360 адаптация отвергается и снова указывается необходимость адаптации модели. После этапа 350 или этапа 360 способ завершается.

В дополнение к проверке правильной адаптации модели мозга метрика, 'описанная выше, может дать возможность сравнить дисперсии, систематические отклонения или другие статистические данные, с границей доверительного интервала, зависящего от проблемы, который оценивается. Значимость между группами или полученными результатами также может быть установлена. Метрика качества может быть индикатором надежности или доверия; более высокое значение будет означать более точную сегментацию и наоборот. Метрика качества может быть соотнесена с полученными статистическими данными; например, она может быть использована для установления минимального качества сегментации, необходимого для получения статистической значимости.

В другом варианте осуществления модель может сохранить соответствие вершин сетки во время адаптации. В таком варианте осуществления, значение количественного параметра изображения сравнивается в соответствующих вершинах сетки, вместо того, чтобы сравнивать среднее значение. Такой вариант осуществления может обеспечить более детальную локализованную информацию о различных элементах модели (например, могли ли некоторые подобласти модели быть адаптированы неправильно), в отличие от обобщенной информации о точности, представленной примерным способом 300, описанным выше.

Иллюстративный способ 300 может быть реализован различными способами. В одном примере, примерный способ 300 может быть реализован с помощью компьютера через примерную систему 400. Система 400 схематически показана на Фигуре 4. Пользовательский интерфейс 410 выполнен с возможностью принимать различные типы пользовательского ввода, такого как выбор медицинских изображений, моделей адаптации и т.д. Специалистам в данной области будет понятно, что хотя, как показано, примерная система 400 включает в себя однопользовательский интерфейс 410, другие системы могут использовать несколько интерфейсов, таких как предоставление интерфейса для осуществления выборки медицинских изображений из других систем в рамках учреждения. Пользовательский интерфейс 410 также используется в качестве устройства вывода, например он может выводить успешные адаптации для медицинских работников, для просмотра, для дальнейшего использования или указывать медицинским работникам, что адаптация не была успешной.

Пользовательский интерфейс 410 предоставляет данные процессору 420, который может выполнить программу, реализуя примерный способ 300. Данные, относящиеся к этой задаче, могут быть сохранены в памяти 430. Память 430 может быть накопителем на жестких магнитных дисках, твердотельным накопителем, распределенным запоминающим устройством и т.д., и может хранить данные в любом формате, подходящим для использования, как описано выше. В дополнение к инструкциям, необходимым для выполнения способа 300, память 430 может хранить медицинские карты, относящиеся к пациентам больницы, размещаясь в системе 400. С другой стороны, карты пациентов могут храниться удаленно, как например, в централизованной системе для хранения таких записей.

Примерные варианты осуществления, описанные выше, делают возможной автоматическую обработку и проверку больших групп моделей мозга для клинических исследований и обеспечивают основу для количественного сравнения результатов. Такая обработка может способствовать продолжительному мониторингу структур мозга, улучшенному дифференциальному диагнозу и мониторингу результатов лечения или восстановления. Кроме того, метрика адаптации, описанная выше, может играть важную роль в анализе, понимании и интерпретации информации, которые может быть получены из деформируемой модели мозга.

Специалистам в данной области будет понятно, что хотя описанные выше примерные варианты осуществления конкретно касаются МРТ изображений головного мозга и деформируемой модели мозга, принципы, описываемые в настоящем документе, могут в равной степени применяться и к другим типам деформируемых моделей и адаптации других типов изображений для соответствия таким моделям. Кроме того, специалистам в данной области будет понятно, что вышеописанные примерные варианты осуществления могут быть реализованы из некоторого количества объектов, в том числе таких, как модуль программного обеспечения, как комбинация аппаратных средств и программного обеспечения и т.д. Например, примерный способ 300 может быть реализован в программе, сохраненной на постоянном носителе хранения и содержащей строки кода, которые, при компиляции, могут быть выполнены процессором.

Отметим, что формула изобретения может включать в себя ссылочные позиции/обозначения в соответствии с правилом РСТ 6.2(b). Однако не должно считаться, что настоящая формула изобретения ограничивается примерными вариантами осуществления, соответствующими ссылочным позициям/обозначениям.

Для специалиста в данной области очевидно, что различные модификации могут быть сделаны в примерных вариантах осуществления, не отклоняясь от сущности и не выходя за объем изобретения. Таким образом, подразумевается, что настоящее изобретение охватывает модификации и изменения согласно данному изобретению и их эквиваленты при условии, что они входят в объем прилагаемой формулы изобретения.

1. Способ количественной оценки сегментации изображения, содержащий:

прием (310) медицинского изображения физической структуры пациента;

прием (310) адаптированной сеточной модели физической структуры для медицинского изображения;

определение (320) количественного параметра изображения на основе значений интенсивности медицинского изображения в каждой из множества вершин адаптированной сеточной модели; и

объединение (330) множества количественных параметров изображений для определения метрики качества адаптации.

2. Способ по п. 1, в котором объединение (330) содержит определение среднего значения.

3. Способ по п. 1, в котором медицинское изображение является одним из следующего: MPT, КТ и ультразвуковым изображением.

4. Способ по п. 1, в котором сеточная модель является деформируемой моделью мозга.

5. Способ по п. 1, дополнительно содержащий:

сравнение (340) метрики качества адаптации с пороговым значением;

утверждение (350) адаптации, если метрика качества адаптации больше или равна пороговому значению; и

отклонение (360) адаптации, если метрика качества адаптации меньше, чем пороговое значение.

6. Способ по п. 1, в котором количественный параметр изображения дополнительно является одним из градиента изображения и магнитуды градиента.

7. Способ по п. 1, в котором объединение (330) содержит рассмотрение каждой из вершин в отдельности для того, чтобы определить отдельные метрики качества адаптации для каждого из множества подмножеств медицинского изображения.

8. Система количественной оценки сегментации изображения, содержащая:

память (430), хранящую медицинское изображение физической структуры пациента и адаптированную сеточную модель физической структуры для медицинского изображения; и

процессор (420), определяющий количественный параметр изображения на основе значений интенсивности медицинского изображения в каждой из множества вершин адаптированной сеточной модели и объединяющий множество количественных параметров изображения для определения метрики качества адаптации.

9. Система по п. 8, дополнительно содержащая:

устройство формирования изображения, формирующее медицинское изображение.

10. Система по п. 9, в которой после того, как устройство формирования изображения сформирует медицинское изображение, процессор (420) адаптирует сеточную модель к медицинскому изображению для того, чтобы сформировать адаптированную сеточную модель.

11. Система по п. 8, в которой процессор (420) дополнительно сравнивает метрику качества адаптации с пороговым значением, утверждает адаптацию, если метрика качества адаптации больше или равна пороговому значению, и отклоняет адаптацию, если метрика качества адаптации меньше, чем пороговое значение.

12. Система по п. 8, в которой количественный параметр изображения дополнительно является одним из градиента изображения и магнитуды градиента.

13. Система по п. 8, в которой процессор (420) рассматривает каждую из вершин в отдельности для того, чтобы определить отдельные метрики качества адаптации для каждого из множества подмножеств медицинского изображения.

14. Постоянный машиночитаемый носитель (430) данных, хранящий набор инструкций, выполняемых процессором (420), которые при выполнении процессором (420) побуждают процессор выполнять способ количественной оценки сегментации изображения, причем способ содержит:

прием (310) медицинского изображения физической структуры пациента;

прием (310) адаптированной сеточной модели физической структуры для медицинского изображения;

определение (320) количественного параметра изображения на основе значений интенсивности медицинского изображения в каждой из множества вершин адаптированной сеточной модели; и

объединение (330) множества количественных параметров изображений для определения метрики качества адаптации.

15. Постоянный машиночитаемый носитель (430) данных по п. 14, при этом способ дополнительно содержит:

сравнение (340) метрики качества адаптации с пороговым значением;

утверждение (350) адаптации, если метрика качества адаптации больше или равна пороговому значению; и

отклонение (360) адаптации, если метрика качества адаптации меньше, чем пороговое значение.



 

Похожие патенты:

Использование: для визуализации тканей посредством магнитно-резонансной реологии. Сущность изобретения заключается в том, что медицинский инструмент содержит систему магнитно-резонансной визуализации, преобразователь для осуществления механических вибраций по меньшей мере части субъекта в пределах зоны визуализации.

Использование: для магнитно-резонансной визуализации. Сущность изобретения заключается в том, что система магнитно-резонансной визуализации включает в себя блок шумоподавления и блок реконструкции.

В изобретении, принадлежащем к технической области обработки изображений, предложены способ и устройство для идентификации областей. Способ включает в себя: получение расположения области лица на плоскости идентификационного изображения; определение по меньшей мере одной информационной области на основе расположения области лица на плоскости; и сегментирование информационной области для получения по меньшей мере одной области символов.

Группа изобретений относится к обработке медицинских изображений, в частности к способам, устройствам и системам для реконструкции магнитно-резонансных (МР) изображений целевых объектов из недосемплированных данных.

Использование: для магнитно-резонансного формирования изображения. Сущность изобретения заключается в том, что система формирования изображений включает в себя множество катушечных канальных приемников и один или более процессоров или модулей.

Использование: для передающей или приемной антенны летательного аппарата в дециметровом диапазоне длин волн. Сущность изобретения заключается в том, что магнитно-резонансный сканер включает в себя главный магнит, градиентные катушки и контроллер градиентных катушек, одну или более РЧ катушек, РЧ передатчик, РЧ приемник и один или более процессоров.

Использование: для визуализации тела посредством магнитного резонанса (МР). Сущность изобретения заключается в том, что выполняют следующие этапы: a) генерирования, по меньшей мере, двух градиентных эхо-сигналов в два различных момента времени появления эха путем подвергания участка тела (10) воздействию визуализирующей последовательности РЧ-импульсов и переключаемых градиентов магнитного поля, при этом 0-й момент считываемого градиента магнитного поля по существу исчезает во время появления первого градиентного эха, 1-й момент считываемого градиента отличен от нуля во время появления первого градиентного эха, при этом и 0-й, и 1-й моменты считываемого градиента магнитного поля по существу исчезают во время появления второго градиентного эха; b) сбора градиентных эхо-сигналов; c) повторения этапов a) и b) для множества этапов фазового кодирования; d) реконструкции первого МР-изображения из градиентных эхо-сигналов первого градиентного эха, а также второго МР-изображения из градиентных эхо-сигналов второго градиентного эха; и e) идентификации артефактов, связанных с двоением изображения, на первом и/или втором МР-изображении путем сравнения первого и второго МР-изображений.

Использование: для МР-томографии по меньшей мере части тела. Сущность изобретения заключается в том, что выполняют следующие этапы: подвергание части тела (10) воздействию визуализирующей последовательности, содержащей один или несколько РЧ-импульсов и переключаемых градиентов магнитного поля, для получения сигналов визуализации; подвергание части тела (10) воздействию навигационной последовательности, прикладываемой по меньшей мере единожды до, во время или после визуализирующей последовательности, причем навигационная последовательность содержит один или несколько РЧ-импульсов и переключаемых градиентов магнитного поля, управляемых таким образом, что сигналы навигатора получают посредством одноточечного или многоточечного метода Диксона; извлечение данных о перемещении, и/или вращении, и/или сдвиге из сигналов навигатора, причем данные о перемещении, и/или вращении, и/или сдвиге отражают движение, происходящее внутри тела (10) во время получения сигналов визуализации; реконструирование МР-изображения из сигналов визуализации, причем данные о перемещении, и/или вращении, и/или сдвиге используются для адаптирования визуализирующей последовательности и/или для коррекции движения во время реконструкции МР-изображения.

Изобретение относится к области магниторезонансной (МР) визуализации. Способ MP визуализации по меньшей мере части тела, помещенного в основное магнитное поле В0 в пределах исследуемого объема устройства MP, содержит этапы, на которых подвергают часть тела радиочастотному импульсу насыщения при смещении частоты насыщения; подвергают часть тела последовательности визуализации, содержащей по меньшей мере один радиочастотный импульс возбуждения/перефокусировки и переключаемые градиенты магнитного поля, посредством чего от части тела получаются MP сигналы как сигналы спинового эха; повторяют предыдущие этапы два или более раз, причем смещение частоты насыщения и/или сдвиг времени эха в последовательности визуализации различаются таким образом, что в двух или более повторениях применяются различные комбинации смещения частоты насыщения и сдвига времени эха; восстанавливают MP изображение из полученных MP сигналов.

Группа изобретений относится к медицинской технике, а именно к средствам формирования магнитно-резонансного изображения. Способ формирования магнитно-резонансного (MR) изображения содержит этапы, на которых получают первый набор сигнальных данных, ограниченный центральным участком k-пространства, в котором магнитный резонанс возбуждается посредством RF-импульсов, имеющих угол отклонения α1, получают второй набор сигнальных данных, ограниченный центральным участком k-пространства, и RF-импульсы имеют угол отклонения α2, получают третий набор сигнальных данных из периферийного участка k-пространства, и RF-импульсы имеют угол отклонения α3, углы отклонения соотносятся как α1>α3>α2, реконструируют первое MR-изображение из комбинации первого набора сигнальных данных и третьего набора сигнальных данных, реконструируют второе MR-изображение из комбинации второго набора сигнальных данных и третьего набора сигнальных данных.

Изобретение относится к медицинской технике, а именно к средствам для магнитно-резонансной визуализации. Система включает в себя устройство магнитно-резонансной визуализации и устройство отображения, отображающее одно или более реконструированных изображений. В состав устройства магнитно-резонансной визуализации входят: магнит, генерирующий магнитное поле В0, градиентные катушки, применяющие градиентные поля к полю В0, одна или более радиочастотных катушек, генерирующих радиочастотный возбуждающий импульс для возбуждения магнитного резонанса и измеряющих сгенерированные градиентные эхо, один или более процессоров, выполненных с возможностью приводить в действие одну или более радиочастотных катушек для генерирования последовательности радиочастотных импульсов, разделенных временами повторения, и вызывания магнитного резонанса, управлять градиентными катушками для применения после каждого РЧ импульса, принимать и демодулировать градиентные эхо для построения линий данных k-пространства, реконструировать множество изображений из линий данных. При том после каждого РЧ импульса применяют считывающие импульсы градиентного поля, перефокусирующие резонанс в множество градиентных эхо, смещающие и перефокусирующие импульсы градиентного поля, которые смещают и перефокусируют по меньшей мере одно эхо к последующему времени повторения, при этом перефокусирующие импульсы градиентного поля включают в себя один или более первых импульсов градиентного поля и второй импульс градиентного поля противоположной полярности имеет область A(n+1)/(n)+m, где A представляет собой область одного или более первых импульсов градиентного поля, m представляет собой половину общей области импульсов, вызывающих градиентное эхо, и n представляет собой число времен повторения, при которых часть смещенного и перефокусированного резонанса должна быть смещена. Способ магнитно-резонансной визуализации осуществляется посредством системы. Система магнитно-резонансной визуализации содержит устройство магнитно-резонансной визуализации, один или более процессоров, выполненных с возможностью приводить в действие одну или более радиочастотных катушек, генерирующих радиочастотный импульс в начале каждого из множества времен повторения, приводить в действие градиентные катушки для вызывания по меньшей мере двух градиентных эхо через каждое время повторения, приводить в действие градиентные катушки для применения одного или более первых градиентных полей, смещающих по меньшей мере одно вызванное градиентное эхо от текущего времени повторения и применять одно или более вторых градиентных полей, перефокусирующих по меньшей мере одно смещенное градиентное эхо через последующее время повторения, реконструировать изображения из вызванных градиентных эхо, измеренных посредством одной тли более радиочастотных катушек, причем реконструкция включает в себя по меньшей мере одно из: Т2* карты для визуализации в зависимости в зависимости от уровня кислорода в теле (BOLD), B0 или фазовой карты, диффузионно-взвешенного изображения (DWI), использующего выбранные градиентные смещения эхо как градиенты диффузионного взвешивания, диффузионно-тензорной визуализации (DTI), перфузионного/диффузионного разделения, Q-пространства или многократного k-пространства, изображения, взвешенного по чувствительности (SWI), включающего в себя фазовую коррекцию карты B0, изображения с кодирующим коэффициентом скорости (VENC) и вычитания ультракороткого времени эхо (UTE) из более длительных времен эхо. Использование группы изобретений позволяет сократить время построения изображения. 3 н. и 13 з.п. ф-лы, 8 ил.
Наверх