Способ термической обработки быстрорежущих сталей с интерметаллидным упрочнением



Способ термической обработки быстрорежущих сталей с интерметаллидным упрочнением
Способ термической обработки быстрорежущих сталей с интерметаллидным упрочнением
Способ термической обработки быстрорежущих сталей с интерметаллидным упрочнением
C21D1/18 - Изменение физической структуры черных металлов; устройства общего назначения для термообработки черных или цветных металлов или сплавов; придание ковкости металлам путем обезуглероживания, отпуска или других видов обработки (цементация диффузионными способами C23C; поверхностная обработка металлов, включающая по крайней мере один процесс, предусмотренный в классе C23, и по крайней мере другой процесс, охватываемый этим подклассом, C23F 17/00; однонаправленное отвердевание эвтектики или однонаправленное разделение эвтектик C30B)

Владельцы патента RU 2634548:

федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) (RU)

Изобретение относится к области металлургии. Для повышения твердости и ударной вязкости, а также стойкости быстрорежущей стали с интерметаллидным упрочнением сначала производят закалку стали с температуры 850-860°C и последующий отпуск при 560-570°C в течение одного часа, затем осуществляют закалку с температуры 1200-1240°C и отпуск при 590-600°C в течение двух часов. 3 ил., 1 табл.

 

Изобретение относится к области металлургии, а именно, к термической обработке быстрорежущих сталей с интерметаллидным упрочнением, применяемых для режущего и штампового инструмента, работающего при повышенном разогреве.

Известен способ термической обработки быстрорежущих сталей с карбидным упрочнением, в частности стали Р6М5, заключающийся в том, что перед закалкой по стандартным режимам производят предварительную закалку с температуры 850°C и последующий отпуск при 560°C в течение одного часа (Демидов А.С. Повышение эксплуатационных характеристик сборных протяжек совершенствованием конструкции и технологии изготовления: автореф. … дис. канд. техн. наук / Демидов А.С. - Рубцовск: РИО Рубцовского индустриального института, 2003. - С. 15).

Известен способ термической обработки быстрорежущих сталей с карбидным упрочнением, в частности стали Р6М5, заключающийся в закалке с температуры 1225°C и последующем тройном отпуске при 540-560°C. Быстрорежущая сталь после данной термической обработки имеет твердость HRC 63, ударную вязкость - 470 кДж/м2 (Геллер Ю.А. Инструментальные стали / Ю.А. Геллер. - М.: Металлургия, 1975. - С. 376-377).

Общим недостатком описанных способов является пониженная стойкость быстрорежущих сталей с карбидным упрочнением, изготовленных с использованием данных процессов термической обработки, обусловленная низкими показателями твердости и ударной вязкости, которые резко снижаются при нагреве более 600°C, что не позволяет использовать стали с карбидным упрочнением для эксплуатации при повышенных температурах.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату (прототипом) является способ термической обработки быстрорежущей стали В3М12К23 с интерметаллидным упрочнением, заключающийся в закалке от 1200-1240°C с последующим отпуском при 580-610°C в течение 2,5 часов. Быстрорежущая сталь после данной термической обработки имеет твердость HRC 67, ударную вязкость 147 кДж/м2 (Бутыгин В.Б. Исследование инструментальных сталей и сплавов высокой теплостойкости с интерметаллидным упрочнением: автореф. … дис. канд. техн. наук / Бутыгин В.Б. - Москва: ХЭЗУ Миннефтепрома, 1975. - С. 24).

Недостатком описанного способа является пониженная стойкость быстрорежущей стали с интерметаллидным упрочнением, реализующей данный процесс термической обработки, обусловленная пониженной твердостью и ударной вязкостью.

В основе изобретения лежит техническая проблема обеспечения повышения стойкости быстрорежущей стали с интерметаллидным упрочнением, реализующей предложенный процесс термической обработки.

Решение этой технической проблемы достигается тем, что в способе термической обработки быстрорежущих сталей с интерметаллидным упрочнением, включающем закалку с температуры 1200-1240°C и отпуск при 590-600°C в течение двух часов, согласно изобретению предварительно производят закалку с температуры 850-860°C и последующий отпуск при 560-570°C в течение одного часа.

Повышение стойкости быстрорежущей стали с интерметаллидным упрочнением, реализующей предложенный процесс термической обработки, обусловлено повышением твердости и ударной вязкости стали (см. Таблицу).

Температура предварительной закалки, составляющая 850-860°C, является оптимальной, так как температура менее 850°C не приводит к увеличению плотности стали, потому что нет закрытия части микропор и дефектов, обуславливающих появление сжимающих напряжений, а при температуре более 860°C не реализуется магнитострикционный эффект.

Температура отпуска, составляющая 560-570°C, является оптимальной, так как при температуре менее 560°C дисперсионное твердение происходит не полностью, а температура более 570°C приводит к коагуляции интерметаллидной фазы, а следовательно, к снижению механических свойств.

Время отпуска после предварительной закалки, составляющее один час, является оптимальным, так как при отпуске менее одного часа не происходит полное выделение упрочняющей фазы, а отпуск более одного часа экономически нецелесообразен, так как в течение одного часа дисперсионное твердение происходит полностью.

Температура закалки, составляющая 1200-1240°C, является оптимальной, так как при температуре менее 1200°C не достигается полной растворимости легирующих элементов в аустените, а это может привести к снижению количества упрочняющей фазы, а при температуре более 1240°C происходит рост зерна аустенита, что снижает прочностные свойства.

Способ термической обработки быстрорежущих сталей с интерметаллидным упрочнением поясняется фигурой 1, на которой представлена микроструктура стали В3М12К23 после предварительной закалки с температуры 850°C, отпуска при температуре 560°C в течение одного часа и последующей закалки с температуры 1210°C; фигурой 2, на которой представлена микроструктура стали В3М12К23 после предварительной закалки с температуры 850°C, отпуска при температуре 560°C в течение одного часа, последующей закалки с температуры 1210°C и отпуска при температуре 600°C в течение 2 часов; фигурой 3, на которой приведен сравнительный анализ стойкости образцов из быстрорежущей стали В3М12К23 с интерметаллидным упрочнением, изготовленных в соответствии с предлагаемым способом термической обработки и в соответствии со способом термической обработки, выбранным в качестве прототипа, после цикла испытаний при нагрузке 490 Н; таблицей, в которой приведены показатели твердости и ударной вязкости образцов из быстрорежущей стали В3М12К23 с интерметаллидным упрочнением, изготовленных в соответствии с предлагаемым способом термической обработки, и в соответствии со способом термической обработки, выбранным в качестве прототипа.

Кроме того, на фигуре 3 цифрой 2 обозначена стойкость образца из быстрорежущей стали В3М12К23 с интерметаллидным упрочнением, изготовленного в соответствии с предлагаемым способом термической обработки, а цифрой 1 - стойкость образца из быстрорежущей стали В3М12К23 с интерметаллидным упрочнением, изготовленного в соответствии со способом термической обработки, выбранным в качестве прототипа.

Способ термической обработки быстрорежущих сталей с интерметаллидным упрочнением осуществляется следующим образом.

Сначала производят закалку с температуры 850-860°C и последующий отпуск при 560-570°C в течение одного часа. Затем осуществляют закалку с температуры 1200-1240°С и отпуск при 590-600°C в течение двух часов.

Пример выполнения способа

Предварительно производилась закалка образца размерами 10×10×55 мм быстрорежущей стали В3М12К23 с интерметаллидным упрочнением с температуры 850°C и отпуск в течение 1 часа при 560°C. Затем осуществлялась закалка этого образца с температуры 1210°C с последующим отпуском при 600°C в течение 2 часов.

Также производилась термическая обработка образца размерами 10×10×55 мм быстрорежущей стали В3М12К23 с интерметаллидным упрочнением согласно способу, выбранному в качестве прототипа.

Далее следовал комплекс механических испытаний. Измерение твердости производили по методу Роквелла алмазным конусом при нагрузке 1,47 кН. Испытания на ударный изгиб проводились по ГОСТ 9454-78, используя копер марки ПСВО-30, с максимальной нагрузкой удара 150,0 Дж на образцах 10×10×55 мм с концентратором напряжения U (тип 1 ГОСТ 9454-78). Температура испытания комнатная. Для определения действительного размера зерна производили травление. Для рассмотрения использовали оптический микроскоп МИМ-7. Износостойкость определяли в условиях сухого трения на машине трения СМЦ-2 по схеме "диск-колодка".

Микроструктура стали В3М12К23 на различных этапах предлагаемой термической обработки: предварительная закалка с температуры 850°C, отпуск при температуре 560°C в течение одного часа и последующая закалка с температуры 1210°C; предварительная закалка с температуры 850°C, отпуск при температуре 560°C в течение одного часа, последующей закалки с температуры 1210°C и отпуск при температуре 600°C в течение 2 часов имеет вид, изображенный на фигурах 1 и 2 соответственно. Представленные металлографические исследования шлифов окончательной закалочной структуры, изображенные на фигурах 1 и 2, свидетельствуют о наличии зерна балла 10-11, что говорит о достаточно хорошем наличии мелкозернистых структур после термической обработки по предлагаемому способу, что является показателем эффективности данной термической обработки.

Как следует из таблицы, твердость HRC и ударная вязкость образцов из быстрорежущей стали В3М12К23 с интерметаллидным упрочнением, изготовленных в соответствии с предлагаемым способом термической обработки, возрастают на HRC 2 и 29 кДж/м2 соответственно по сравнению с твердостью HRC и ударной вязкостью образцов из быстрорежущей стали В3М12К23 с интерметаллидным упрочнением, изготовленных в соответствии со способом термической обработки, выбранным в качестве прототипа.

Как показано на фигуре 3, приведенные данные испытаний износа по весовому принципу (при нагрузке 490 Н на машине трения СМЦ-2) образцов из стали В3М12К23, обработанных по режиму прототипа, относительно образцов, обработанных по предлагаемому способу, имеют больший износ (на 0,4 грамма), что свидетельствует об увеличении стойкости стали В3М12К23, реализующей процесс термической обработки по предлагаемому способу, в 1,2 раза по сравнению со стойкостью стали В3М12К23, реализующей процесс термической обработки, выбранный в качестве прототипа.

Улучшение механических свойств быстрорежущей стали с интерметаллидным упрочением, реализующей предлагаемый способ термической обработки, объясняется тем, что с использованием предлагаемого способа происходит реализация магнитострикционного эффекта, обуславливающего перекрытие микродефектов и обеспечивающего большую ударную вязкость структурам отпуска.

Таким образом, предлагаемое изобретение позволяет обеспечить повышенную стойкость быстрорежущей стали с интерметаллидным упрочнением за счет повышения твердости и ударной вязкости.

Способ термической обработки быстрорежущих сталей с интерметаллидным упрочнением, включающий закалку с температуры 1200-1240°C и отпуск при 590-600°C в течение двух часов, отличающийся тем, что предварительно производят закалку с температуры 850-860°С и отпуск при 560-570°С в течение одного часа.



 

Похожие патенты:

Изобретение относится к области термической обработки резцов, имеющих поликристаллическую структуру. Для уменьшения остаточных напряжений получают один или более резцов, каждый из которых содержит основание, поликристаллическую структуру, присоединенную к нему, и остаточные напряжения.

Изобретение может быть использовано для упрочняющей обработки наплавленной быстрорежущей стали при изготовлении биметаллического инструмента. После механической и термической обработки заготовки корпуса инструмента осуществляют дуговую наплавку при токе от 50 до 56 А и напряжении дуги от 5 до 6 В с управлением процессом переноса электродного металла в дуге посредством импульсной подачи проволоки и синхронизированного с ней импульсного режима тока и образованием наплавленного слоя толщиной от 1 до 2 мм.
Изобретение относится к машиностроению и может быть использовано при изготовлении режущего и штампового инструмента, быстро изнашиваемых изделий и технологической оснастки из конструкционных и инструментальных сталей, а также из металлокерамических твердых сплавов.

Изобретение относится к машиностроению, в частности к области термической обработки сталей, и может быть использовано на машиностроительных заводах в инструментальном производстве при изготовлении режущего и штампового инструмента.

Изобретение относится к области металлургии и может быть использовано при термической обработке режущих инструментов. Для повышения надежности и долговечности протяжек с плоскими гранями её подвергают трехступенчатому нагреву, при этом на первой ступени нагревают не менее 1 часа в камерной печи с температурой менее 600°С, но превышающей 560°С, на второй ступени - в соляном расплаве с температурой свыше 850°С, но не превышающей 900°С, в течение времени, определяемого из соотношения 15-25 секунд на миллиметр ширины корпуса протяжки, на третьей ступени - в соляном расплаве с температурой ниже 1270°С, но не менее 1160°С, в течение времени, определяемого из соотношения 10-15 секунд на миллиметр ширины корпуса протяжки, проводят охлаждение на воздухе до 980-1020°С, а затем в минеральном масле в течение 45-60 с до 590-610°С, определяют величину и направление продольного прогиба протяжки, укладывают горячую протяжку выпуклой гранью на поверочную плиту и совершают перемещения протяжки по поверочной плите до снижения ее прогиба до заданной величины, затем протяжку охлаждают в подвешенном положении до температуры мартенситного превращения металла протяжки.

Изобретение относится к упрочняющей обработке металлов с использованием концентрированных потоков энергии, в частности к получению на техническом титане ВТ1-0 поверхностных слоев с градиентной многофазной структурой, которые могут быть использованы для повышения ресурса работы деталей машин и механизмов, работающих в условиях многоциклового усталостного разрушения.
Изобретение относится к области металлургии, в частности к химико-термической обработке изделий из инструментальных сталей. Для увеличения глубины азотируемого слоя за короткий промежуток времени, повышения износостойкости перетачиваемого инструмента, изготовленного из отожженной заготовки, инструмент нагревают в вакуумной камере в среде аргона при давлении 0,2-0,67 Па до температуры не ниже 450° и не выше Ac1-(50-70)°C с обеспечением ионной очистки поверхности, затем при указанной температуре нагрева осуществляют ионно-плазменное азотирование в плазме азота или смеси газов аргона и азота с концентрацией азота не менее 20% путем двухступенчатого вакуумно-дугового разряда, при этом сила тока дуги составляет (80-100)±0,5А, а сила тока дополнительного анода - (70-90)±0,5 А при подаче на инструмент напряжения смещения в диапазоне от -50 В до -900 В в течение 0,5-2 час, охлаждение ведут в камере, а закалку и отпуск проводят по стандартному режиму для данной стали с получением азотированного слоя глубиной 2-2,5 мм.

Изобретение относится к области упрочняющей обработки изделий из твердых сплавов. Техническим результатом изобретения является повышение ресурса работы инструментов, деталей машин и механизмов, работающих в условиях резания, трения и абразивного износа.
Изобретение относится к области обработки черных металлов, а более конкретно к обработке металлорежущего инструмента из быстрорежущей стали. Для повышения стойкости инструмента рабочую часть стандартно термоупрочненного инструмента из быстрорежущей стали подвергают воздействию пульсирующего дозвукового воздушного потока, имеющего частоту 1130-2100 Гц и звуковое давление 120-140 дБ при комнатной температуре в течение 10-20 мин.

Изобретение относится к машиностроению, в частности к области термической обработки инструмента. Способ упрочнения разделительного штампа включает лазерную закалку боковых рабочих поверхностей путем оплавления припусков за один проход при перемещении луча лазера по стыку припусков и последующий лазерный отпуск.

Изобретение относится к металлургии, в частности к обработке поверхности циркониевых сплавов для повышения коррозионной стойкости поверхности. Способ обработки поверхности пластины из циркониевого сплава включает нанесение порошка оксида магния на поверхность пластины и лазерную обработку, которую осуществляют за 1-10 проходов при средней мощности лазерного излучения 10-60 Вт, частоте импульсов 20-100 кГц, скорости сканирования луча лазера 100-1000 мм/с.

Изобретение относится к области металлургии, а именно к термической обработке литых боковых рам или надрессорных балок тележек грузовых вагонов из низкоуглеродистых сталей Для повышения усталостной прочности детали и сопротивления разрушению при циклическом нагружении деталь из стали 20ГЛ нагревают до температуры, не превышающей Ac3+150°C, с выдержкой в течение 30-120 мин, затем перемещают её в защитном кожухе в закалочное устройство за время, не превышающее 5 мин.

Изобретение относится к области металлургии, а именно к получению горячепрессованной стальной листовой детали, используемой в автомобилестроении. Сталь имеет следующий химический состав, в мас.%: C: от 0,10 до 0,34; Si: от 0,5 до 2,0; Mn: от 1,0 до 3,0; растворимый Al: от 0,001 до 1,0; P: 0,05 или менее; S: 0,01 или менее; N: 0,01 или менее; Ti: от 0 до 0,20; Nb: от 0 до 0,20; V: от 0 до 0,20; Cr: от 0 до 1,0; Mo: от 0 до 1,0; Cu: от 0 до 1,0; Ni: от 0 до 1,0; Ca: от 0 до 0,01; Mg: от 0 до 0,01; REM: от 0 до 0,01; Zr: от 0 до 0,01; B: от 0 до 0,01; Bi: от 0 до 0,01; остальное: Fe и примеси.

Изобретение относится к линии и способу термообработки бесшовной трубы из высокопрочной нержавеющей стали. Способ включает термообработку трубы в линии для термической обработки, которая содержит соединенные между собой нагревательную печь для закалки, оборудование для закалки и печь для отпуска.

Изобретение относится к системам для термической обработки рельсов. Система содержит охлаждающие приспособления (4), выполненные с возможностью распыления охлаждающей среды (8) на рельс и приспособления (18, 22, 28) для вертикального перемещения охлаждающих приспособлений (4) для регулирования положения охлаждающего приспособления (4) относительно рельса.

Изобретение относится к фиксирующему инструменту (100) для фиксации, по меньшей мере, одной металлической детали (150), подлежащей термообработке или формованию в горячем состоянии.
Изобретение относится к металлургии, в частности к термодеформационной обработке ферритно-перлитных сталей для формирования гетерогенной структуры «субмикрокристаллическая ферритная матрица - наноразмерные карбиды».

Изобретение относится к области металлургии, а именно к горячештампованной толстолистовой стали, предназначенной для получения штампованных изделий. Сталь содержит, мас.%: С: от 0,15 до 0,5, Si: от 0,2 до 3, Mn: от 0,5 до 3, Р: 0,05 или менее (за исключением 0), S: 0,05 или менее (за исключением 0), Al: от 0,01 до 1, В: от 0,0002 до 0,01, N: от 0,001 до 0,01%, Ti: в количестве, равном или большем чем 3,4[N]+0,01% и равном или меньшем чем 3,4[N]+0,1%, где [N] обозначает содержание (мас.%) N, остальное железо и неизбежные примеси.

Изобретение относится к обработке стального листа перед нанесением покрытия методом погружения. Для улучшения адгезии покрытия из металла или сплава металла со стальными листами, содержащими значительное количество легко окисляемых элементов, способ включает стадию погружения движущегося листа в ванну с расплавленными окислами, имеющую вязкость между 0.3⋅10-3 Па⋅с и 3⋅10-1 Па⋅с, при этом поверхность ванны находится в контакте с неокислительной атмосферой, и расплавленные окислы являются инертными по отношению к железу.

Изобретение относится к области металлургии, а именно к предсварочной термообработке компонента турбины. Способ предварительной термообработки перед сваркой компонента турбины из никелевого сплава Inconel 939 включает нагрев компонента турбины до первой температуры в диапазоне от температуры на 35°F (19,4°C) ниже температуры растворения фазы γ' и до температуры начала плавления сплава и выдержку при этой температуре, охлаждение со скоростью 1°F (0,56°C) в минуту до температуры 1900°F(±25°F) (1038±15°C) и выдержку при этой температуре, охлаждение со скоростью 1°F в минуту до температуры 1800°F(±25°F) (982±15°C) и выдержку при этой температуре.

Изобретение относится к области металлургии, а именно к производству рельсов из перлитной стали. Сталь имеет химический состав, содержащий, в мас.%: С 0,71-0,82, Si 0,25-0,45, Mn 0,75-1,05, V 0,03-0,15, Р≤0,030, S≤0,035, Al≤0,040, Fe и неизбежные примеси – остальное. Межпластиночное расстояние перлита составляет 0,05-0,09 мкм, а работа разрушения при нормальной температуре составляет 30-35 Дж. Получаемые рельсы обладают высокой прочностью и вязкостью, а также высокими показателями усталостной прочности при качении и износостойкости в процессе использования. 2 н. и 9 з.п. ф-лы, 1 ил., 4 табл., 5 пр.
Наверх