Ингибиторы образования конечных продуктов гликирования на основе азопроизводных фенилсульфокислот



Ингибиторы образования конечных продуктов гликирования на основе азопроизводных фенилсульфокислот
Ингибиторы образования конечных продуктов гликирования на основе азопроизводных фенилсульфокислот
Ингибиторы образования конечных продуктов гликирования на основе азопроизводных фенилсульфокислот
Ингибиторы образования конечных продуктов гликирования на основе азопроизводных фенилсульфокислот
Ингибиторы образования конечных продуктов гликирования на основе азопроизводных фенилсульфокислот
Ингибиторы образования конечных продуктов гликирования на основе азопроизводных фенилсульфокислот
Ингибиторы образования конечных продуктов гликирования на основе азопроизводных фенилсульфокислот
Ингибиторы образования конечных продуктов гликирования на основе азопроизводных фенилсульфокислот

Владельцы патента RU 2634594:

федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) (RU)
федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО ВолгГМУ Минздрава России) (RU)

Изобретение относится к области медицины, а именно к области лечения социально значимых заболеваний, таких как сахарный диабет, атеросклероз, ревматоидный артрит, остеоартрит, нейродегенеративные заболевания, включая болезни Альцгеймера и Паркинсона и другие. Сущностью изобретения являются физиологически активные вещества гетероциклического ряда, обладающие высокой антигликирующей активностью и представляющие собой производные 4-((пиридин-2-ил)диазенил)фенилсульфокислот и их солевые формы общей формулы I, где R1=Н, CH3; R2=Н, CH3, C3H7, i-C3H7, C5H11, C7H15, C8H17; X+=Н, катионы щелочных металлов, такие как Na+, K+, Соединения формулы I являются эффективными ингибиторами образования конечных продуктов гликирования. 2 табл., 8 пр.

 

Изобретение относится к физиологически активным веществам гетероциклического ряда, обладающим высокой антигликирующей активностью (блокируют неферментативное взаимодействие белков с глюкозой и образование конечных продуктов гликирования) и представляющим собой производные 4-((пиридин-2-ил)диазенил)фенилсульфокислот и их солевые и сокристальные формы общей формулы I:

,

где R1=Н, СН3; R2=Н, СН3, С3Н7, i-C3H7, C5H11, С7Н15, C8H17;

X+ = катионы щелочных металлов, такие как Na+и K+.

Соединения формулы I являются эффективными ингибиторами образования конечных продуктов гликирования (далее КПГ) и могут найти широкое применение в медицине в области лечения социально-значимых заболеваний, а именно - осложнения сахарного диабета, атеросклероз, ревматоидный артрит, остеоартрит, нейродегенеративные заболевания, включая болезни Альцгеймера и Паркинсона.

Гликирование (неферментативное гликозилирование, реакция Майяра) - химическая реакция, в которой карбонильные группы восстановленных сахаров связываются с аминогруппами долгоживущих белков, липидов или пептидов, с образованием конечных продуктов гликирования (КПГ) ([1] S. Khangholi, F.A. Abdul Majid, N.J.A. Berwary, F. Ahmad, R. Bin Abd Aziz, Planta Med., 2016; 82: 32-45; [2] V.P. Singh, A. Bali, N. Singh, A.S. Jaggi, Korean J. Physiol. Pharmacol., 2014, 18: 1-14).

Внутри- и внеклеточное накопление КПГ считают важным фактором патогенеза таких заболеваний, как атеросклероз ([3] М. Busch, S. Franke, С. Ruster, G. Wolf, European Journal of Clinical Investigation, 2010, 40 (8): 742-755), сердечная недостаточность, воспаление, ревматоидный артрит и остеоартрит, нейродегенеративные заболевания, включая болезни Альцгеймера и Паркинсона ([4] J. Li, D. Liu, L. Sun, Y. Lu, Z. Zhang, Journal of the Neurological Sciences, 2012, 317: 1-5).

Особенно интенсивно данный процесс протекает при сахарном диабете, при этом скорость образования КПГ зависит от уровня и длительности экспозиции глюкозы ([5] R. Ramasamy, S.F. Yan, A.M. Schmidt, Ann. N.Y. Acad Sci., 2011, 1243: 88-102; [6] М.И. Балаболкин. Сахарный Диабет, 2002, 4: 8-16).

Эффекты КПГ могут быть классифицированы как рецептор-независимые или -зависимые, и КПГ могут действовать внутриклеточно или циркулировать и действовать на рецепторы клеточной поверхности, такие как рецептор для КПГ (РКПГ). Поскольку гликирование происходит в течение длительного периода времени, КПГ влияют на долгоживущие белки. Например, главными мишенями для них являются структурные компоненты соединительной ткани, и в частности коллаген типа IV, а также другие долгоживущие белки, в том числе миелин, тубулин, кристаллин, активатор плазминогена 1, фибриноген, которые могут также подвергаться гликированию ([7] S.-Y. Goh, М.Е. Cooper. J Clin Endocrinol Metab, 2008, 93 (4): 1143-1152).

Связываясь с мембранными РКПГ, конечные продукты гликирования активируют некоторые внутриклеточные сигнальные пути. Например, усиливают транскрипцию ядерного фактора NF-кВ и его генов-мишеней, активируют протеинкиназу С и NADPH-оксидазу, что приводит к увеличению образования провоспалительных цитокинов, свободных радикалов, хемоаттрактантов ([1], [8] S.C. Но, P.W. Chang, Am. J. Plant. Sci., 2012, 3: 995 - 1002). Все вышеперечисленное лежит в основе патогенеза таких последствий сахарного диабета, как диабетические атеросклероз, нефро-, нейро-, ретино-, кардио-, ангиопатии, которые являются причиной высокого риска инвалидизации и смертности среди пациентов с сахарным диабетом.

Применение соединений, обладающих высокой антигликирующей активностью, позволит уменьшить образование КПГ в организме, тем самым улучшая качество жизни пациентов, снижая риск возникновения атеросклероза, ревматоидного артрита, остеоартрита, нейродегенеративных заболеваний, включая болезни Альцгеймера и Паркинсона, а также таких осложнений сахарного диабета, как диабетические атеросклероз, нефро-, нейро-, ретино-, кардио-, ангиопатии, которые являются причиной высокого риска инвалидизации и смертности среди пациентов с сахарным диабетом.

Все вышеперечисленное обусловливает повышенный интерес в мире к поиску ингибиторов образования конечных продуктов гликирования, поскольку препаратов, специфически угнетающих образование КПГ и разрешенных для клинического применения, на сегодняшний день в мире на дату представления настоящей заявки не существует.

Проведенный заявителем анализ российских и зарубежных патентных баз данных, научной литературы и Интернет-ресурсов показал, что существуют аналоги заявленного технического решения по назначению, способные ингибировать образование КПГ, которые, однако, обладают значительными недостатками, а именно недостаточно высокой эффективностью и/или существенными побочными эффектами, например высокой токсичностью и т.д.

Далее заявителем приведена информация о выявленных препаратах, вышедших на стадию клинических испытаний. Первым и наиболее изученным веществом, ингибирующим гликирование белков, является аминогуанидин (АГ) ([9] A. Cerami, Р.С. Ulrich, М. Brownlee, Pat US 4758583 A, опубл. 19.07.1988). Он предназначен для предотвращения формирования КПГ и глюкозопроизводных поперечносшитых молекул коллагена. Механизм антигликирующего действия аминогуанидина связывают с его способностью захватывать реактивные дикарбонильные интермедиаты. Однако клинические испытания данного препарата были остановлены в связи с его недостаточной эффективностью и наличием побочных эффектов.

В настоящее время проводятся клинические испытания пиридоксамина ([10] R. Khalifah, B.G. Hudson, Pat US 6716858B1, опубл. 06.04.2004), также обладающего антигликирующими свойствами, но он тоже проявляет невысокую активность, сопоставимую с аминогуанидином, снятым с клинических испытаний. Других аналогов заявленного технического решения, используемых по назначению и вошедших на стадию клинических исследований, на дату предоставления настоящей заявки заявителем не выявлено.

Таким образом, на дату представления заявочных материалов, проблема создания высокоактивных ингибиторов образования КПГ, разрешенных к клиническому применению, остается нерешенной не только в РФ, но и за рубежом.

Заявленное техническое решение иллюстрируется следующими материалами: схемой, на которой представлена схема синтеза целевых веществ, таблицами 1, 2, на которых представлены результаты определения антигликирующей активности заявленного технического решения по сравнению с прототипом (аминогуанидином).

Задачей заявленного технического решения является создание соединений, обладающих высокой антигликирующей активностью, которые обеспечивают возможность вывода на рынок новых лекарственных средств, не имеющих аналогов в мире.

Техническим результатом предлагаемого изобретения является создание соединений, обладающих значительно более высокой антигликирующей активностью по сравнению с ингибиторами образования КПГ, вышедшими на стадию клинических исследований.

Сущность предлагаемого изобретения состоит в том, что получают производные 4-(пиридин-2-илдиазенил)фенилсульфокислот общей формулы I, обладающие более высокой (до 19 раз и более) антигликирующей активностью по сравнению с прототипом (аминогуанидином).

,

где R1=Н, СН3; R2=Н, СН3, С3Н7, i-C3H7, С5Н11, С7Н15, С8Н17;

X+ = катионы щелочных металлов, такие как Na+и K+.

Заявленные соединения синтезируют по реакции азосочетания семичленных ацеталей пиридоксина 1(а-з) с диазониевой солью, полученной из 4-аминобензол-1,3-дисульфоксилоты при температуре 0-5°C согласно нижеприведенной схеме:

Синтез и физико-химические характеристики новых соединений I(а-з) приведены в примерах конкретного выполнения. Спектры ЯМР 1Н зарегистрированы на приборе «Bruker» AVANCE 400 (400 МГц). Химический сдвиг определяют относительно сигналов остаточных протонов дейтерированного растворителя. Эксперимент ВЭЖХ/МС сверхвысокого разрешения проведен с использованием масс-спектрометра TripleTOF 5600, АВ Sciex (Германия). Температуру плавления веществ определяют на приборе OptiMelt МРА100 (Stanford Research Systems).

Примеры конкретного выполнения заявленного технического решения

Пример 1. Синтез 4-((9-гидрокси-8-метил-1,5-дигидро-[1,3]диоксепино[5,6-с]пиридин-6-ил)диазенил)фенил-1,3-дисульфоната натрия (Ia)

К раствору 1,27 г (5 ммоль) 4-аминофенил-1,3-дисульфокислоты в 50 мл 0.2 М соляной кислоты, предварительно охлажденному до 5°C, добавляют 0.35 г (5 ммоль) нитрита натрия в 5 мл воды. Полученную реакционную массу перемешивают 5 мин, затем переливают ее к раствору 0.90 г (5 ммоль) ацеталя 1а и 0.8 г (20 ммоль) гидроксида натрия в 50 мл воды. Реакционную массу перемешивают 1 ч при комнатной температуре, после чего нейтрализуют 1 М соляной кислотой до pH 8. Затем растворитель отгоняют в вакууме, сухой остаток последовательно промывают 50 мл ацетона, 10 мл этилового спирта и растворяют в 20 мл ДМСО. Нерастворившийся остаток отфильтровывают. К фильтрату добавляют 150 мл хлороформа, выпавший осадок отфильтровывают, промывают хлороформом и высушивают в вакууме.

Выход 28%. Т. пл 250°C (с разложением). ЯМР 1H (400 МГц, ДМСО-d6), δ, м.д.: 2.20 (с, CH3., 3Н); 4.78 (с, CH2, 2Н); 4.92 (с, CH2, 2Н); 5.30 (с, CH2, 2Н); 7.50, 7.58 (АВХ, 3JAB=8.0 Гц, 4JAX=-1.8 Гц, 2СН., 2Н); 7.65 (с, ОН, 1H); 8.13 (д. АВХ, 4JAX=-1.8 Гц, СН, 1Н). ЯМР 13С {Н} (100 МГц, D2O), δ, м.д: 18.80 (с, CH3.); 65.81 (с, CH2); 66.02 (с, CH2); 97.51 (с, С); 119.64 (с, Car.); 125.54 (с, Car.); 129.80 (с, Car.); 133.70 (с, Car.); 138.39 (с, Car.); 138.73 (с, Car.); 142.23 (с, Car.); 144.10 (с, Car.); 151.05 (с, Car..); 152.47 (с, Car.); 166.30 (с, Car.). HRMS-ESI: найдено [M-2Na+H]- 444.0177, C15H14N3O9S2, рассчитано [M-2Na+H]- 444.0177.

Пример 2. Синтез 4-((9-гидрокси-3,8-диметил-1,5-дигидро-[1,3]диоксепино[5,6-с]пиридин-6-ил)диазенил)фенил-1,3-дисульфоната натрия (Iб)

Синтезируют и разрабатывают аналогично соединению Ia, используя ацеталь Iб вместо ацеталя 1а. Выход 46%. ЯМР 1H (400 МГц, ДМСО-d6), δ, м.д.: 1.30 (д, 3J=5.0 Гц., CH3., 3Н); 2.19 (с, CH3., 3Н); 4.53, 5.02 (АВ, 2Jнн=-15 Гц, CH2, 2Н); 5.03, 5.54 (АВ, 2Jнн=-14.8 Гц, CH2, 2Н); 5.10 (к, 3J=5.0 Гц., СН., 1Н); 7.50, 7.58 (АВХ, 3JAB=8.4 Гц, 4JAX=-1.7 Гц, 2СН, 2Н); 8.13 (АВХ, 4JAX=-1.7 Гц, СН., 1H). ЯМР 13С {Н} (100 МГц, D2O), δ, м.д: 19.46 (с, CH3.); 20.08 (с, CH3.); 62.74 (с, CH2); 63.05 (с, CH2); 101.92 (с, С); 116.09 (с, Car.); 125.51 (с, Car.); 127.11 (с, Car.); 129.77 (с, Car.); 139.58 (с, Car.), 139.89 (с, Car.); 140.56 (с, Car.); 145.10 (с, Car.); 150.38 (с, Car.); 151.10 (с, Car.); 170.30 (с, Car.).

Пример 3. Синтез 4-((9-гидрокси-3-пропил-8-метил-1,5-дигидро-[1,3]диоксепино[5,6-с]пиридин-6-ил)диазенил)фенил-1,3-дисульфоната натрия (Iв)

Синтезируют и разрабатывают аналогично соединению Ia, используя ацеталь Iв вместо ацеталя 1а. Выход 24%. Т. пл. 250°C (с разложением). ЯМР 1Н (400 МГц, ДМСО-d6), δ, м.д.: 0.92 (т, 3Jнн=7.1 Гц, CH3, 3Н); 1.34-1.43 (м, CH2, 2Н); 1.58-1.64 (м, CH2, 2Н); 2.20 (с, CH3, 3Н); 4.54, 5.02 (АВ, 2Jнн=-16 Гц, CH2, 2Н); 5.03, 5.55 (АВ, 2Jнн=-14 Гц, CH2, 2Н); 4.90 (т, 3Jнн=5.6 Гц, СН, 1H); 7.50, 7.56 (АВХ, 3JAB=10.0 Гц, 4JAX=-2.0 Гц, 2CHar., 2Н); 7.65 (с, OH, 1Н); 8.13 (АВХ, 4JAX=-2.0 Гц, CHar., 1Н). ЯМР 13С {Н} (100 МГц, D2O), δ, м.д.: 13.33 (с, CH3); 17.61 (с, CH2); 19.05 (с, CH3); 34.78 (с, CH2); 63.75 (с, CH2); 63.92 (с, CH2); 106.61 (с, С); 117.19 (с, Car.); 125.52 (с, Car.); 129.86 (с, Car.); 133.35 (с, Car.); 136.95 (с, Car.); 138.55 (с, Car.); 144.14 (с, Car.); 147.38 (с, Car.); 151.22 (с, Car.); 154.40 (с, Car.); 165.16 (с, Car.). HRMS-ESI: найдено [М-2Na+H]- 486.0646, C18H20N3O9S2, вычислено [M-2Na+H]- 486.0646.

Пример 4. Синтез 4-((9-гидрокси-3-изо-пропил-8-метил-1,5-дигидро-[1,3]диоксепино [5,6-с]пиридин-6-ил)диазенил)фенил-1,3-дисульфоната натрия (Ir)

Синтезируют и разрабатывают аналогично соединению Ia, используя ацеталь 1г вместо ацеталя 1а. Выход 32%. Т.пл. 243°C (с разложением). ЯМР 1H (400 МГц, ДМСО-d6), δ, м.д.: 0.91 (д, 3Jнн=6.8 Гц, CH3, 3Н); 0.93 (д, 3Jнн=6.8 Гц, CH3, 3Н); 1.91-2.03 (м, СН, 1Н); 2.29 (с, CH3, 3Н); 4.55, 4.82 (AB, 2Jнн=-14 Гц, CH2, 2Н); 4.97, 5.29 (AB, 2Jнн=-16 Гц, CH2, 2Н); 4.52 (д, 3Jнн=6.9 Гц, СН, 2Н); 7.49, 7.57 (АВХ, 3JAB=8.0 Гц, 2CHar., 2Н); 7.98 (д. АВХ, CHar., 1Н). ЯМР 13С {Н} (100 МГц, ДМСО-d6), δ, м.д.: 18.04 (с, CH3); 19.91 (с, CH3); 30.10 (с, СН); 61.13 (с, CH2); 61.90 (с, CH2); 108.69 (с, С); 114.32 (с, Car.); 125.46 (с, Car.); 127.77 (с, Car.); 133.54 (с, Car.); 134.24 (с, Car.); 137.24 (с, Car.); 137.40 (с, Car.); 143.08 (с, Car.); 145.35 (с, Car.); 160.45 (с, Car.); 176.81 (с, Car.). HRMS-ESI: найдено [M-2Na+H]- 486.0646, C18H20N3O9S2, вычислено [M-2Na+H]- 486.0646.

Пример 5. Синтез 4-((9-гидрокси-3-пентил-8-метил-1,5-дигидро-[1,3]диоксепино [5,6-с]пиридин-6-ил)диазенил)фенил-1,3-дисульфоната натрия (Iд)

Синтезируют и разрабатывают аналогично соединению Ia, используя ацеталь 1д вместо ацеталя 1а. Выход 21%. Т.пл. 280°C (с разложением). ЯМР 1Н (400 МГц, ДМСО-d6), δ, м.д.: 0.88 (т, 3Jнн=6.7 Гц, CH3., 3Н); 1.25-1.42 (м, 3CH2, 6Н); 1.55-1.66 (м, CH2, 2Н); 2.19 (с, CH3, 3Н); 4.53, 5.01 (AB, 2Jнн=-16 Гц, CH2, 2Н); 5.01, 5.55 (AB, 2Jнн=-16 Гц, CH2, 2Н); 4.88 (т, 3Jнн=5.8 Гц, СН, 1H); 7.50, 7.58 (АВХ, 3JAB=8.0 Гц, 4JAX=-1.9 Гц, 2CHar., 2Н); 8.12 (д. АВХ, 4JAX=-1.9 Гц, CHar., 1Н). ЯМР 13С {Н} (100 МГц, D2O), δ, м.д.: 13.51 (с, CH3); 18.81 (с, CH3); 22.12 (с, CH2); 23.76 (с, CH2); 30.95 (с, CH2); 32.69 (с, CH2); 63.72 (с, CH2); 63.91 (с, CH2); 106.84 (с, С); 119.56 (с, Car.); 125.53 (с, Car.); 129.75 (с, Car.); 133.31 (с, Car.); 138.47 (с, Car.); 138.76 (с, Car.); 142.32 (с, Car.); 144.17 (с, Car.); 151.24 (с, Car.); 152.48 (с, Car.); 166.36 (с, Car.). HRMS-ESI: найдено [M-2Na+H]- 514.0959, C20H24N3O9S2, вычислено [M-2Na+H]- 514.0959.

Пример 6. Синтез 4-((9-гидрокси-3-гептил-8-метил-1,5-дигидро-[1,3]диоксепино [5,6-с]пиридин-6-ил)диазенил)фенил-1,3-дисульфоната натрия (Ie)

Синтезируют и разрабатывают аналогично соединению Ia, используя ацеталь 1е вместо ацеталя 1а. Выход 30%. Т.пл. 290°C (с разложением). ЯМР 1Н (400 МГц, ДМСО-d6), δ, м.д.: 0.87 (т, 3Jнн=6.8 Гц, CH3, 3Н); 1.22-1.42 (м, 5CH2, 10Н); 1.57-1.65 (м, CH2, 2Н); 2.19 (с, CH3, 3Н); 4.53, 5.00 (AB, 2Jнн=-16 Гц, CH2, 2Н); 5.00, 5.54 (АВ, 2Jнн=-14 Гц, CH2, 2Н); 4.88 (т, 3Jнн=6.3 Гц, СН, Н); 7.49, 7.57 (АВХ, 3JAB=8.0 Гц, 4JAX=-2.3 Гц, 2CHar., 2Н); 8.13 (д. АВХ, 4JAX=-2.3 Гц, CHar., 1H). ЯМР 13С {Н} (100 МГц, ДМСО-d6), δ, м.д.: 13.99 (с, CH3); 19.42 (с, CH3); 22.10 (с, CH2); 24.38 (с, CH2); 28.68 (с, CH2); 28.84 (с, CH2); 31.24 (с, CH2); 33.11 (с, CH2); 63.05 (с, CH2); 63.17 (с, CH2); 105.20 (с, С); 116.01 (с, Car.); 125.49 (с, Car.); 127.03 (с, Car.); 129.68 (с, Car.); 139.59 (с, Car.); 139.75 (с, Car.); 140.52 (с, Car.); 145.21 (с, Car.); 150.31 (с, Car.); 151.07 (с, Car.); 170.42 (с, Car.). HRMS-ESI: найдено [M-2Na+H]- 542.1272, C22H28N3O9S2, вычислено [M-2Na+H]- 542.1272.

Пример 7. Синтез 4-((9-гидрокси-3-октил-8-метил-1,5-дигидро-[1,3]диоксепино [5,6-с]пиридин-6-ил)диазенил)фенил-1,3-дисульфоната натрия (Iж)

Синтезируют и разрабатывают аналогично соединению Ia, используя ацеталь 1ж вместо ацеталя 1а. Выход 29%. Т.пл. 300°C (с разложением). ЯМР 1Н (400 МГц, ДМСО-d6), δ, м.д.: 0.86 (т, 3Jнн=7.5 Гц, CH3, 3Н); 1.24-1.40 (м, 6CH2, 12Н); 1.57-1.65 (м, CH2,2Н); 2.19 (с, CH3, 3Н); 4.53, 5.00 (AB, 2Jнн=-14 Гц, CH2, 2Н); 5.01, 5.54 (АВ, 2Jнн=-14 Гц, CH2, 2Н); 4.88 (т, 3Jнн=5.8 Гц, СН, 1H); 7.50, 7.57 (АВХ, 3JAB=8.4 Гц, 4JAX=-2.2 Гц, 2CHar., 2Н); 8.12 (д. АВХ, 4JAX=-2.2 Гц, CHar., 1H). ЯМР 13С {Н} (100 МГц, ДМСО-d6), δ, м.д.: 13.99 (с, CH3); 19.44 (с, CH3); 22.12 (с, CH2); 24.37 (с, CH2); 28.66 (с, CH2); 28.89 (с, CH2); 28.99 (с, CH2); 31.30 (с, CH2); 33.12 (с, CH2); 63.04 (с, CH2); 63.17 (с, CH2); 105.20 (с, С); 116.05 (с, Car.); 125.50 (с, Car.); 127.06 (с, Car.); 129.77 (с, Car.); 139.60 (с, Car.); 139.83 (с, Car.); 140.54 (с, Car.); 145.16 (с, Car.); 150.33 (с, Car.); 151.08 (с, Car.); 170.35 (с, Car.). HRMS-ESI: найдено [M-2Na+H]- 556.1429, C23H30N3O9S2, вычислено [M-2Na+H]- 556.1429.

Пример 8. Синтез 4-((9-гидрокси-3,3,8-триметил-1,5-дигидро-[1,3]диоксепино [5,6-с]пиридин-6-ил)диазенил)фенил-1,3-дисульфоната натрия (Iз)

Синтезируют и разрабатывают аналогично соединению Ia, используя ацеталь 1з вместо ацеталя 1а. Выход 28%. Т.пл. 264°C (с разложением). ЯМР 1Н (400 МГц, ДМСО-d6), δ, м.д.: 1.42 (с, 2CH3, 6Н); 2.18 (с, CH3, 3Н); 4.69 (с, CH2, 2Н); 5.24 (с, CH2, 2Н); 7.75, 7.82 (АВХ, 3JAB=8.0 Гц, 4JAX=-1.9 Гц, 2CHar., 2Н), 7.65 (с, OH, 1H), 8.13 (д. АВХ, 4JAX=-1.9 Гц, CHar., 1Н). ЯМР 13С {Н} (100 МГц, D2O), δ, м.д.: 18.42 (с, CH3); 23.14 (с, CH3); 59.99 (с, CH2); 60.53 (с, CH2); 103.76 (с, С); 119.60 (с, Car.); 125.53 (с, Car.); 129.80 (с, Car.); 133.12 (с, Car.); 137.39 (с, Car.); 138.41 (с, Car.); 142.29 (с, Саг.); 144.16 (с, Car.); 149.95 (с, Car.); 152.56 (с, Car.); 166.16 (с, Car.). HRMS-ESI: найдено [M-2Na+H]- 472.0490, C17H18N3O9S2, вычислено [M-2Na+H]- 472.0490.

Пример 9. Определение антигликирующей активности.

Реакцию гликирования воспроизводят по методу A. Jedsadayanmata ([11] А. Jedsadayanmata, Naresuan University Journal, 2005, 13(2): 35-41). Реакционная смесь содержит растворы бычьего сывороточного альбумина (1 мг/мл) и глюкозы (500 мМ) в фосфатном буфере (pH 7.4). Для предупреждения бактериального роста в буферный раствор вносят азид натрия в конечной концентрации 0.02%. Все вещества растворяют в диметилсульфоксиде (ДМСО). В экспериментальные образцы добавляют 30 мкл раствора изучаемых веществ в различных концентрациях, в контрольные образцы добавляют ДМСО в аналогичном объеме. Все экспериментальные образцы инкубируют в течение 24 часов при 60°C. По истечении срока инкубации проводят определение специфической флуоресценции гликированного бычьего сывороточного альбумина (БСА) на спектрофлуориметре F-7000 (Hitachi, Япония) при длине волны возбуждения 370 нм и испускания 440 нм. В качестве вещества сравнения используют известный ингибитор гликирования аминогуанидин (таблица 1) ([12] P.J. Thornalley, Archives of Biochemistry and Biophysics, 2003, 419: 31-40).

Статистическую обработку результатов проводят с использованием непараметрического критерия Манна-Уитни, табличного редактора Microsoft Excel 2007 и программы GraphPad Prism 5.0. Расчет показателя IC50 проводят методом регрессионного анализа (таблица 2).

Анализ данных, приведенных в таблице 1 и таблице 2, позволяет сделать вывод, что заявленные вещества проявляют высокий уровень антигликирующей активности (таблица 1), что позволяет определить зависимость их эффекта от концентрации и рассчитать показатель IC50 (таблица 2).

Таким образом, полученные результаты свидетельствуют о том, что все заявленные вещества по активности превосходят прототип аминогуанидин в 7-19 раз.

Исходя из вышеизложенного, можно сделать вывод, что заявленное техническое решение позволяет создать новые высокоэффективные и безопасные лекарственные средства профилактики и лечения микро- и макрососудистых осложнений сахарного диабета, атеросклероза, нейродегенеративных заболеваний, тем самым улучшая качество жизни пациентов.

Заявленное техническое решение соответствует критерию «новизна», предъявляемому к изобретениям, так как из исследованного уровня техники не выявлены технические решения, обладающие заявленной совокупностью отличительных признаков, обеспечивающих достижение заявленных результатов.

Заявленное техническое решение соответствует критерию «изобретательский уровень», предъявляемому к изобретениям, так как не является очевидным для специалиста в данной области науки и техники.

Заявленное техническое решение соответствует критерию «промышленная применимость», т.к. может быть реализовано на любом специализированном предприятии с использованием стандартного оборудования, известных отечественных материалов и технологий.

Производные 4-((пиридин-2-ил)диазенил)фенилсульфокислот и их солевые формы общей формулы I

где R1=Н, СН3;

R2=Н, СН3, С3Н7, i-C3H7, С5Н11, C7H15, C8H17;

X+ = катионы щелочных металлов, такие как Na+и K+,

обладающие антигликирующей активностью.



 

Похожие патенты:

Изобретение относится к применению производных 4-((пиридин-2-ил)диазенил)фенилсульфокислот и их солевых форм общей формулы I: ,где R1=R2=Н, или R1 и R2 вместе образуют заместитель вида CR3R4, где R3=Н, СН3, R4=Н, СН3, С2Н5, i-C3H7, С7Н15, C8H17, или R4 R5 вместе образуют спироциклоалкильную группу, где R3, R4 = цикло-C5H8, цикло-С6Н10; Х+=Н, катионы щелочных и щелочноземельных металлов, такие как Na+, K+, Mg2+, Са2+ и др., NH4+ и другие фармацевтически приемлемые катионы органической и неорганической природы, в качестве ингибиторов образования конечных продуктов гликирования (далее КПГ).

Изобретение относится к новым противоопухолевым средствам на основе производных ванилина общей формулы I, где R=H, CH3, обладающим высокой противоопухолевой активностью по отношению к клеткам рака молочной железы (MCF-7) и низкой токсичностью.

Изобретение относится к области органической химии, а именно к гетероциклическим соединениям, выбранным из 7-[2-(5,8-диметил-[1,2,4]триазоло[1,5-а]пиразин-2-ил)-этил]-2,3-дигидро-[1,4]диоксино[2,3-g]хинолина и 6-[2-(5,8-диметил-[1,2,4]триазоло[1,5-а]пиразин-2-ил)-этил]-[1,3]диоксоло[4,5-g]хинолина, а также к их фармацевтически приемлемым солям.

Изобретение относится к соединению формулы I ,которые используются в качестве ингибиторов фосфоинозитид-3-киназы (PI3-киназы), обладающие противораковой активностью, противовоспалительной активностью или иммунорегуляторными свойствами.

Изобретение относится к новым производным витамина В6 общей формулы (I), обладающим высокой антибактериальной активностью. где при R1=R4=N+(CH3)2C8H17, R2+R3=-С(СН3)2O-, R5=Н, n=2, m=0; при R1=R4=N+(CH3)2C12H25, R2+R3=-C(CH3)2O-, R5=H, n=2, m=0; при R1=R4=N+(CH3)2C18H37, R2+R3=-C(CH3)2O-, R5=H, n=2, m=0; при R1=R4=N+(CH3)2C8H17, R2=R5=H, R3=OH, n=2, m=1; при R1=R4=N+(CH3)2C12H25, R2=R5=H, R3=OH, n=2, m=1; при R1=R4=N+(СН3)2C18H37, R2=R5=H, R3=OH, n=2, m=1; при R1=R5=H, R2+R3=-CH(C2H5)O-, R4=N+(CH3)2C18H37, n=1, m=0; при R1=R5=H, R2+R3=-CH(C3H7)O-, R4=N+(CH3)2C18H37, n=1, m=0; при R1=R5=H, R2+R3=-CH(C4H9)O-, R4=N+(CH3)2C18H37, n=1, m=0; при R1=R5=H, R2+R3=-CH(C(CH3)3)O-, R4=N+(CH3)2C18H37, n=1, m=0; при R1=R5=H, R2+R3=-CH(C8H17)O-, R4=N+(CH3)2C18H37, n=1, m=0; при R1=R5=H, R2+R3=-CH(CH2CH(CH3)C9H19)O-, R4=N+(CH3)2C18H37, n=1, m=0; при R1=R5=H, R2+R3=-CH2O-, R4=N+(CH3)2C18H37, n=1, m=0; при R1=R5=H, R2+R3=-С(цикло-С4Н8)О-, R4=N+(СН3)2С18Н37, n=1, m=0; при R1=R5=H, R2+R3=-CH(C3H7)O-, R4=N+(CH3)2C8H17, n=1, m=0; при R1=R5=H, R2+R3=-CH(C3H7)O-, R4=N+(CH3)2C12H25, n=1, m=0; при R1=R5=H, R2+R3=-CH2O-, R4=N+(CH3)2C8H17, n=1, m=0; при R1=R5=H, R2+R3=-CH2O-, R4=N+(CH3)2C12H25, n=1, m=0; при R1=R5=H, R2+R3=-C(CH3)2O-, R4=N+(CH3)2C12H25, n=1, m=0; при R1=R2=R5=H, R3=OH, R4=N+(CH3)2C12H25, n=1, m=1; при R1=R3=R5=H, R2=C(O)CH3, R4=N+(СН3)2С8Н17, n=1, m=0; при R1=R3=R5=H, R2=C(O)CH3, R4=N+(СН3)2С12Н25, n=1, m=0; при R1=R3=R5=H, R2=C(O)CH3, R4=N+(СН3)2С18Н37, n=1, m=0; при R1=R2=R3=R5=H, R4=N+(CH3)2C8H17, n=1, m=1; при R1=R2=R3=R5=H, R4=N+(CH3)2C12H25, n=1, m=1; при R1=R2=R3=R5=H, R4=N+(CH3)2C18H37, n=1, m=1; при R1=N+(СН3)2С8Н17, R2+R3=-C(CH3)2O-, R4+R5=-OC(CH3)2OCH2-, n=1, m=0; при R1=N+(CH3)2C18H37, R2+R3=-C(CH3)2O-, R4+R5=-OC(CH3)2OCH2-, n=1, m=0; при R1=N+(CH3)2C8H17, R2+R3=-C(CH3)2O-, R4=OH, R5=CH2OH, n=1, m=1; при R1=N+(СН3)2С18Н37, R2=H, R3=R4=OH, R5=CH2OH, n=1, m=1.

Изобретение относится к соединению формулы I и его фармацевтически приемлемым солям , где R представляет собой водород, РО(ОН)2, Р(=O)(O-(С1-С6)алкиленфенил)2 или Р(=O)(ОМ)2; W представляет собой 2-галогенофенил, 3-галогенофенил или 4-галогенофенил; R5 представляет собой (С1-С6)алкокси, гидроксил или OR8; R6 представляет собой гидроксил или (С1-С6)алкокси; R7 представляет собой водород, гидроксил или O-(С1-С6)алкиленфенил; R8 представляет собой РО(ОН)2, Р(=O)(O-(С1-С6)алкиленфенил)2 или Р(=O)(ОМ)2, и М представляет собой моновалентный ион металла; или где R представляет собой водород, РО(ОН)2, Р(=O)(O-(С1-С6)алкиленфенил)2 или Р(=O)(ОМ)2; W представляет собой 2-галогенофенил, 3-галогенофенил или 4-галогенофенил; R5 представляет собой водород, (С1-С6)алкокси, гидроксил или OR8; R6 представляет собой (С1-С6)алкокси; R7 представляет собой гидроксил или O-(С1-С6)алкиленфенил; R8 представляет собой РО(ОН)2, Р(=O)(O-(С1-С6)алкиленфенил)2 или Р(=O)(ОМ)2, и М представляет собой моновалентный ион металла.

Изобретение относится к соединению, которое имеет изображенную ниже формулу (I), или к его фармакологически приемлемой соли. Данное соединение может ингибировать киназы семейства рецептора фактора роста фибробластов (FGFR) в раковых тканях.

Изобретение относится к cоединениям формулы А, В или С, где каждый из R1 и R2 независимо представляет собой метил, этил, пропил или изопропил; или R1 и R2 вместе с атомом N, к которому они присоединены, образуют 3-7-членное кольцо, которые являются промежуточными соединениями для получения икотиниба-ингибитора тирозинкиназы, а также изобретение относится к способам получения икотиниба, гидрохлорида икотиниба и указанных соединений.

Изобретение относится к синтетическим биологически активным веществам гетероциклического ряда, обладающим высокой антиадренергической активностью, представляющим собой бета-замещенные спирты, содержащие фрагмент пиридоксина общей формулы 1: , где: Соединения общей формулы 1 обладают высокой эффективностью и продолжительностью антиадренергических свойств на фоне короткого времени наступления действия и низкой токсичности.

Изобретение относится к новым производным пиридоксина общей формулы (I), обладающим высокой антибактериальной активностью. где при R1+R2=-С(СН3)2-, R3+R4=-CH2N+(C8H17)2CH2-, n=1, X=Cl, m=0, при R1=R2=Η, R3+R4=-CH2N+(C8H17)2CH2-, n=1, Χ=Cl, m=1, при R1+R2=-С(СН3)2-, R3=R4=CH2N+(CH3)2C8H17, n=2, Χ=Cl, m=0, при R1=R2=Η, R3+R4=CH2N+(CH3)2C8H17, n=2, X=Cl, m=1, при R1+R2=-C(CH3)2-, R3=CH2OH, R4=CH2N+(CH3)2C8H17, n=1, X=Br, m=0, при R1+R2=-C(CH3)2-, R3=CH2OH, R4=CH2N+(CH3)2C18H37, n=1, X=Br, m=0, при R1=R2=H, R3=CH2OH, R4=CH2N+(CH3)2C8H17, n=1, X=Br, m=1, при R1=R2=H, R3=CH2OH, R4=CH2N+(CH3)2C18H37, n=1, X=Br, m=1, при R1+R2=-C(CH3)2-, R3=CH2N+(CH3)2C8H17, R4=Η, n=1, X=Cl, m=0, при R1+R2=-C(CH3)2-, R3=CH2N+(CH3)2C18H37, R4=Η, n=1, X=Cl, m=0, при R1=R2=R4=H, R3=CH2N+(CH3)2C8H17, n=1, X=Cl, m=1, при R1=R2=R4=H, R3=CH2N+(CH3)2C18H37, n=1, X=Cl, m=1. Изобретение может найти применение в медицине и ветеринарии.

Изобретение относится к фармацевтической промышленности, к области медицины, конкретно к гематологии, а именно к средству для фармакологической коррекции нарушений эритропоэза, развивающихся при цитостатических воздействиях.
Группа изобретений относится к медицине и диетическому питанию. Предложены композиции (варианты) для энтерального применения для лечения и/или профилактики нарушенного метаболизма кетонов и лактата, т.е.

Настоящее изобретение относится к новым дейтерированным диаминопиримидинам общей формулы (I) и их фармацевтически приемлемым солям. Соединения обладают свойствами ингибирования ALK протеинкиназ и могут быть использованы для лечения и/или предупреждения онкологических заболеваний, нарушения пролиферации клеток, сердечнососудистых заболеваний, воспаления, инфекции, аутоиммунных заболеваний, трансплантации органов, вирусных заболеваний, сердечнососудистых заболеваний или метаболических заболеваний.

Изобретение относится к фармацевтической промышленности и касается технологии изготовления лекарственного средства для регуляции метаболических процессов, связанных с дефицитом калия и магния в организме.

Изобретение относится к фармацевтической промышленности и касается изготовления лекарственного средства для регуляции метаболических процессов, связанных с дефицитом калия и магния в организме.

Группа изобретений относится к области фармацевтики и медицины и касается водно-гелевого состава инверсного агониста VDR, имеющего водобарьерные свойства, для лечения заболеваний, связанных с VDR, где инверсный агонист VDR представляет собой поликосанол, состав содержит поликосанол в виде наночастиц в концентрации 0,5-1 мас.%, водорастворимый полимер - карбопол в концентрации 0,5-3 мас.%, воду, состав является наногелем.

Изобретение относится к способам получения азометинов на основе α-аминопиридина и замещенных бензальдегидов со структурной формулой где R означает м-NO2, о-ОН группы, реакцию проводят при температуре 75-80°С в течение 2,5 часов.

Изобретение относится к соединению формулы (I), где один из А1 и А2 представляет собой -NR9-, а другой представляет собой -СН2-; R1 представляет собой галоген; R2 представляет собой водород; R3 представляет собой водород, галоген; R4 и R5 вместе с атомом углерода, к которому они присоединены, образуют С3-С6-циклоалкил; R6 представляет собой галоген; R7 представляет собой водород; R8 представляет собой водород, галоген, С1-С6-алкокси, гало-С1-С6-алкокси или замещенный гетероциклил, где гетероциклил представляет собой пиридинил, пиразолил, где замещенный гетероциклил представляет собой гетероциклил, замещенный одним-тремя заместителями, независимо выбранными из С1-С6-алкила; и R9 представляет собой водород, С1-С6-алкил, гало-С1-С6-алкил, формил или С1-С6-алкоксикарбонил.

Изобретения касаются способа получения липопротеинового комплекса, использования совокупности полученных липопротеиновых комплексов в получении фармацевтической композиции и применении для лечения и/или предупреждения дислипидемических расстройств.

Изобретение относится к области биотехнологии, конкретно к мутеинам белка липокалина, а также к полученным на их основе специфично связывающимся терапевтическим или диагностическим белкам, направленным против гепсидина, и может быть использовано в медицине.

Изобретение относится к метаболитам (1R-транс)-N-[[2-(2,3-дигидро-4-бензофуранил)циклопропил]-метил]пропанамида, представленным соединениями формулы II или формулы III. Также изобретение относится к фармацевтической композиции, обладающей агонистической активностью в отношении рецепторов мелатонина, включающей по крайней мере одно, соединение выбранное из группы, состоящей из соединения формулы II, соединения формулы III, и фармацевтически приемлемый носитель.
Наверх