Двухдиапазонная антенна

Изобретение относится к антеннам приемопередающих устройств и может использоваться в качестве навигационной и приемопередающей антенны. Устройство содержит диэлектрический корпус (ДК), первый излучающий элемент (ИЭ) и второй излучающий элемент, расположенные на продольной оси, ориентированной вертикально. Первый ИЭ установлен внутри ДК и выполнен в виде спирали из витой цилиндрической пружины. Отражатель первого ИЭ установлен внизу ДК. Устройство имеет первый и второй порты соответственно для первого ИЭ и второго ИЭ и трансформатор импеданса (ТИ). В устройство введены трубка, отрезок коаксиального кабеля (КК), проводящий диск, установленный вверху ДК. ТИ расположен внутри ДК, подсоединен к нижнему концу спирали первого ИЭ и служит для подсоединения к первому порту, расположенному снаружи отражателя. Трубка установлена внутри спирали первого ИЭ, соединена с отражателем и проводящим диском. Отрезок КК пропущен внутри трубки наружу через проводящий диск и отражатель. Конец отрезка КК, пропущенный наружу через проводящий диск, служит для подсоединения ко второму ИЭ, а конец отрезка КК, пропущенный наружу через отражатель, служит вторым портом. Технический результат заключается в улучшении развязки между излучающими элементами, расширении функциональных возможностей и полосы рабочих частот и обеспечении возможности использования любых заданных диапазонов частот для обоих диапазонов. 5 з.п. ф-лы, 1 ил.

 

Изобретение относится к радиотехнике, а именно к антеннам приемопередающих устройств для связи между стационарными объектами или наземными объектами с изменяющимся во времени их взаимным расположением, функционирующих одновременно или раздельно во времени в диапазоне от 1200 до 1700 МГц (ГЛОНАСС, GPS Галилео и др.) и в любом другом заданном диапазоне частот. Таким образом, устройство может использоваться в качестве навигационной и приемопередающей антенны. Кроме того, изобретение относится к антеннам с вертикальной поляризацией и круговой диаграммой направленности в горизонтальной плоскости.

Известны следующие технические решения построения двухдиапазонных совмещенных антенн с функцией приема навигационных сигналов:

- плоскостная антенна, или патч-антенна, встроена в основание приемопередающей антенны, например антенна AD-27/V190-3108 фирмы TRJVAL ANTENE (Словения);

- патч-антенна имеет нижнюю часть корпуса в виде шпильки с резьбой под крепление основания антенны к транспортному средству, а корпус антенны служит одновременно болтом для крепления основания (на месте головки болта расположена патч-антенна), например антенна AD-79/18D TRIVAL ANTENE (Словения).

Известные устройства имеют следующие недостатки:

- патч-антенна расположена несимметрично относительно основной антенны, что сказывается на направленных свойствах обеих антенн;

- коэффициент усиления патч-антенны невысокий, его приходится компенсировать встроенным малошумящим усилителем, который требует подачи питания по радиочастотному кабелю (в радиостанции должна быть предусмотрена подача питания на гнездо навигационной антенны с соответствующей развязкой от высокочастотного сигнала). Это не только усложняет оборудование, но и снижает уровень унификации;

- частотный диапазон патч-антенны узкий, около 1%, и не позволяет принимать сигналы всех существующих навигационных систем.

Наиболее близким аналогом заявленного технического решения является антенна, раскрытая в патенте США US 5812097 (опубликован 22.09.1998; МПК H01Q 21/30, H01Q 5/00, H01Q 9/30). Эта двухдиапазонная антенна содержит диэлектрический корпус, первый излучающий элемент и второй излучающий элемент, расположенные на продольной оси, ориентированной вертикально. Первый излучающий элемент установлен внутри диэлектрического корпуса и выполнен из спирали в виде витой цилиндрической пружины. Отражатель первого излучающего элемента установлен внизу диэлектрического корпуса. Устройство имеет первый и второй порты соответственно для первого излучающего элемента и второго излучающего элемента и трансформатор импеданса.

В известном устройстве длина спирали первого излучающего элемента выбрана кратной λ1/2, где λ1 - длина волны, соответствующая центральной частоте 1,9 ГГц диапазона. Второй излучающий элемент выполнен в виде штыря, расположенного внутри спирали первого излучающего элемента, т.е. сопряжен с ней в некоторой центральной области совмещения, и его длина выбрана кратной λ2/2, где λ2 - длина волны, соответствующая центральной частоте 800 МГц радиочастотного диапазона. Таким образом, для уменьшения наводок сигналов на совмещенные первый и второй излучающие элементы длина второго излучающего элемента всегда должна быть кратной λ1/2, т.е. соответствующей, например, 800, 400, 200 МГц.

Это является существенным недостатком известного устройства. В результате устройство становится узкополосным, при выборе центральной частоты второго излучающего элемента не кратной λ1/2 или ее отклонения в диапазоне частот от указанных выше значений возникают наводки сигналов в областях сопряжения первого и второго излучающих элементов. Это искажает диаграмму направленности излучающих элементов и приводит к помехам принимаемых (передаваемых) сигналов.

Другим ограничением известного технического решения является невозможность использования других типов приемопередающих антенн с различными характеристиками, кроме штыря (несимметричного вибратора). Помимо этого, как показано выше, такой штырь должен быть выбран определенной длины и не может быть выбран с длиной волны, например, соответствующей центральной частоте диапазона 300 МГц.

Первый и второй порты известной двухдиапазонной антенны расположены коаксиально, один в другом, и разделены конической диэлектрической вставкой. Это приводит к сложности монтажа, в частности на крыше транспортного средства, и трудности подсоединения линий связи от приемопередающих устройств с помощью стандартных коаксиальных разъемов, особенно для спирали первого излучающего элемента.

Трансформатор импеданса в соответствии с описанием патента US 5812097 для центральной частоты 1,9 ГГц расположен вне корпуса двухдиапазонной антенны, что вызывает неудобство монтажа при использовании стандартных коаксиальных разъемов.

Решаемая настоящим изобретением задача заключается в улучшении технико-эксплуатационных характеристик двухдиапазонной антенны.

Техническим результатом, достигаемым при использовании изобретения, является улучшение развязки между излучающими элементами, расширение функциональных возможностей и расширение полосы рабочих частот, возможность использования любых заданных диапазонов частот для обоих диапазонов.

Для решения поставленной задачи с достижением указанного технического результата двухдиапазонная антенна содержит диэлектрический корпус, первый излучающий элемент и второй излучающий элемент, расположенные на продольной оси, ориентированной вертикально. Первый излучающий элемент установлен внутри диэлектрического корпуса и выполнен в виде спирали из витой цилиндрической пружины. Отражатель первого излучающего элемента установлен внизу диэлектрического корпуса. Устройство имеет первый и второй порты соответственно для первого излучающего элемента и второго излучающего элемента и трансформатор импеданса. Согласно изобретению в устройство введены трубка, отрезок коаксиального кабеля, проводящий диск, установленный вверху диэлектрического корпуса. Трансформатор импеданса расположен внутри диэлектрического корпуса, подсоединен к нижнему концу спирали первого излучающего элемента и служит для подсоединения к первому порту расположенного снаружи отражателя. Трубка установлена внутри спирали первого излучающего элемента, соединена с отражателем и проводящим диском. Отрезок коаксиального кабеля пропущен внутри трубки наружу через проводящий диск и отражатель. Конец отрезка коаксиального кабеля, пропущенный наружу через проводящий диск, служит для подсоединения ко второму излучающему элементу, а конец отрезка коаксиального кабеля, пропущенный наружу через отражатель, служит вторым портом.

Под понятием излучающий элемент в настоящем изобретении понимается элемент антенны, способный функционировать как на прием радиочастотных сигналов, так и на их передачу согласно принципу взаимности.

Возможны дополнительные варианты выполнения устройства, в которых:

- трансформатор импеданса выполнен из отдельного отрезка коаксиального кабеля длиной λ/4, где λ - длина волны, соответствующая центральной частоте диапазона первого излучающего элемента;

- введены два коаксиальных разъема, которые предназначены для передачи сигналов соответственно первого и второго портов и подсоединены соответственно к концу отдельного отрезка коаксиального кабеля и к концу отрезка коаксиального кабеля, пропущенных наружу через отражатель;

- введена диэлектрическая втулка, установленная на верхнем конце трубки между ней и вторым излучающим элементом;

- второй излучающий элемент выполнен съемным;

- введен дополнительный коаксиальный разъем, который служит для подсоединения конца отрезка коаксиального кабеля, пропущенного наружу через проводящий диск, ко второму излучающему элементу.

Указанные преимущества, а также особенности настоящего изобретения поясняются с помощью варианта его выполнения со ссылками на фигуру.

Фигура 1 схематично изображает конструкцию двухдиапазонной антенны.

Двухдиапазонная антенна содержит диэлектрический корпус 1, первый излучающий элемент 2 и второй излучающий элемент 3, расположенные на продольной оси, ориентированной вертикально. Первый излучающий элемент 2 установлен внутри диэлектрического корпуса 1 и выполнен в виде спирали из витой цилиндрической пружины (типа «сжатия»). Отражатель 4 первого излучающего элемента 2 установлен внизу диэлектрического корпуса 1. Устройство имеет первый и второй порты 5, 6 соответственно для первого излучающего элемента 2 и второго излучающего элемента 3 и трансформатор 7 импеданса.

В устройство введены трубка 8, отрезок коаксиального кабеля 9 и проводящий диск 10, установленный вверху диэлектрического корпуса 1. Трансформатор 7 импеданса расположен внутри диэлектрического корпуса 1, подсоединен к нижнему концу спирали первого излучающего элемента 2 и служит для подсоединения к первому порту 5, расположенному снаружи отражателя 4. Трубка 8 (металлическая) установлена внутри спирали первого излучающего элемента 2, соединена с отражателем 4 и проводящим диском 10. Отрезок коаксиального кабеля 9 пропущен внутри трубки 8 наружу через проводящий диск 10 и отражатель 4. Конец отрезка коаксиального кабеля 9, пропущенный наружу через проводящий диск 10, служит для подсоединения ко второму излучающему элементу 3, а конец отрезка коаксиального кабеля 9, пропущенный наружу через отражатель 4, служит вторым портом 6.

Трансформатор 7 импеданса выполнен из отдельного отрезка 11 коаксиального кабеля длиной λ/4, где λ - длина волны, соответствующая центральной частоте диапазона первого излучающего элемента 2. Центральная жила отрезка 11 коаксиального кабеля соединена с нижним концом спирали первого излучающего элемента 2, а оплетка отрезка 11 коаксиального кабеля соединена с отражателем 4.

Кроме того, в устройство могут быть введены два коаксиальных разъема 12, 13, которые соответственно предназначены для передачи сигналов первого и второго портов 5, 6 и подсоединены к концу 5 отдельного отрезка 11 коаксиального кабеля и к концу 6 отрезка коаксиального кабеля 9, пропущенных наружу через отражатель 4.

Также может быть введена диэлектрическая втулка, установленная на верхнем конце трубки 8 между ней и вторым излучающим элементом 3, или может быть введен дополнительный коаксиальный разъем, который служит для подсоединения конца отрезка коаксиального кабеля 9, пропущенного наружу через проводящий диск 10, ко второму излучающему элементу 3. На фиг. 1 конструкционный элемент, схематично обозначенный позицией 14, может соответствовать указанным диэлектрической втулке или дополнительному коаксиальному разъему. В последнем варианте исполнения, т.е. когда устройство содержит дополнительный коаксиальный разъем 14, второй излучающий элемент 3 выполнен съемным.

Работает двухдиапазонная антенна следующим образом.

Первый излучающий элемент 2 представляет собой полноразмерную спиральную антенну для навигационного устройства, размещенную в диэлектрическом корпусе 1. Внутри спирали первого излучающего элемента 2 коаксиально размещена металлическая трубка 8, предназначенная для прокладки отрезка коаксиального кабеля 9 второго излучающего элемента 3, используемого для приемопередающего устройства заданного диапазона частот.

Трубка 8 в нижней части соединена с отражателем 4 в форме диска для спирали первого излучающего элемента 2, который при установке двухдиапазонной антенны, например, на транспортное средство обеспечивает контакт с корпусом объекта. Согласование спирали первого излучающего элемента 2 с входным импедансом 50 Ом навигационного устройства выполнено с помощью четвертьволнового трансформатора, также размещенного внутри диэлектрического корпуса 1. Соотношение диаметров спирали первого излучающего элемента 2 и трубки 8 выбрано из условия минимального влияния стенки трубки 8 на параметры первого излучающего элемента 2. Для этого диаметр трубки 8 выбирается минимально возможным.

Над спиралью первого излучающего элемента 2 в диэлектрическом корпусе 1 закреплен проводящий диск 10 (металлический), соединенный с трубкой 8. Над проводящим диском 10, в частных вариантах - через диэлектрическую втулку 14 или через дополнительный коаксиальный разъем 14, крепится второй излучающий элемент 3, являющийся полотном приемопередающей антенны, который запитывается отрезком коаксиального кабеля 9, проходящим внутри трубки 8.

Проводящий диск 10 уменьшает влияние размеров полотна приемопередающей антенны - второго излучающего элемента 3 - на параметры первого излучающего элемента 2 - спиральной навигационной антенны. Расстояние между верхним концом спирали первого излучающего элемента 2 и проводящим диском 10 выбрано также из соображений минимального взаимовлияния.

Нижний конец первого излучающего элемента 2 через четвертьволновый трансформатор 7 импеданса подключается к центральному контакту коаксиального разъема 12 (высокочастотного), который является портом 5 навигационной антенны. Трансформатор 7 рассчитан исходя из согласования импеданса первого излучающего элемента 2, равного 100 Ом на средней частоте рабочего диапазона частот, и импеданса 50 Ом навигационного устройства. Длина трансформатора 7 выбирается равной четверти длины волны λ на средней частоте диапазона 1200-1700 МГц.

Коаксиальный разъем 13 является портом 6 второго излучающего элемента 3 - полотна приемопередающей антенны, и расположен на расстоянии от коаксиального разъема 12, что, в отличие от ближайшего аналога, обеспечивает удобство подключения двухчастотного отдельного оборудования.

Наличие в устройстве трубки 8 и проводящего диска 10 обеспечивает улучшение развязки между первым и вторым излучающими элементами 2, 3, чем также достигается расширение полосы рабочих частот для двух взаимно несвязанных диапазонов по сравнению с ближайшим аналогом. Расширение функциональных возможностей обеспечивается за счет возможности использования в качестве второго излучающего элемента 3 любых типов антенн с вертикальной поляризацией и круговой диаграммой направленности в горизонтальной плоскости или других типов антенн, например, с заданными поляризацией и диаграммой направленности. Второй излучающий элемент 3 может быть выполнен съемным для подсоединения различных типов антенн. И, наконец, за счет развязки между первым и вторым излучающими элементами 2, 3 обеспечивается возможность использования любых заданных диапазонов частот для обоих диапазонов.

Заявленная конструкция для использования навигационной антенны, встроенной в приемопередающую антенну, обеспечивает коэффициент стоячей волны КСВ не более 2,0 в диапазоне рабочих частот от 1200 до 1700 МГц и коэффициент усиления Ку от 3 до 7 дБ (правая круговая поляризация) в направлении от 25 до 90 градусов к горизонту. Второй излучающий элемент 3 приемопередающего устройства полностью соответствует техническим характеристикам для выбранного типа антенны.

Наиболее успешно заявленная двухдиапазонная антенная применяется для любых видов связи, навигации, спутниковой связи, связи между подвижными объектами, например передвижными радиостанциями, установленными на транспортных средствах, связи со стационарными радиостанциями, например сотовой связи и т.п.

1. Двухдиапазонная антенна, содержащая диэлектрический корпус, первый излучающий элемент и второй излучающий элемент, расположенные на продольной оси, ориентированной вертикально, первый и второй порты соответственно для первого излучающего элемента и второго излучающего элемента и трансформатор импеданса, причем первый излучающий элемент установлен внутри диэлектрического корпуса и выполнен в виде спирали из витой цилиндрической пружины и внизу диэлектрического корпуса установлен отражатель первого излучающего элемента, отличающаяся тем, что введены трубка, отрезок коаксиального кабеля, проводящий диск, установленный вверху диэлектрического корпуса, причем трансформатор импеданса расположен внутри диэлектрического корпуса, подсоединен к нижнему концу спирали первого излучающего элемента и служит для подсоединения к первому порту, расположенному снаружи отражателя, трубка установлена внутри спирали первого излучающего элемента, соединена с отражателем и проводящим диском, отрезок коаксиального кабеля пропущен внутри трубки наружу через проводящий диск и отражатель, причем конец отрезка коаксиального кабеля, пропущенный наружу через проводящий диск, служит для подсоединения ко второму излучающему элементу, а конец отрезка коаксиального кабеля, пропущенный наружу через отражатель, служит вторым портом.

2. Двухдиапазонная антенна по п. 1, отличающаяся тем, что трансформатор импеданса выполнен из отдельного отрезка коаксиального кабеля длиной λ/4, где λ - длина волны, соответствующая центральной частоте диапазона первого излучающего элемента.

3. Двухдиапазонная антенна по п. 2, отличающаяся тем, что введены два коаксиальных разъема, которые предназначены для передачи сигналов соответственно первого и второго портов и подсоединены соответственно к концу отдельного отрезка коаксиального кабеля и к концу отрезка коаксиального кабеля, пропущенных наружу через отражатель.

4. Двухдиапазонная антенна по п. 1, отличающаяся тем, что введена диэлектрическая втулка, установленная на верхнем конце трубки между ней и вторым излучающим элементом.

5. Двухдиапазонная антенна по п. 1, отличающаяся тем, что второй излучающий элемент выполнен съемным.

6. Двухдиапазонная антенна по п. 5, отличающаяся тем, что введен дополнительный коаксиальный разъем, который служит для подсоединения конца отрезка коаксиального кабеля, пропущенного наружу через проводящий диск, ко второму излучающему элементу.



 

Похожие патенты:

Изобретение относится к радиотехнике, а именно к антеннам приемопередающих устройств. Антенна содержит два раздельных излучателя.

Изобретение относится к области радиосвязи, в частности к полнодуплексной антенне и мобильному терминалу. Техническим результатом является сохранение расстояния, устанавливаемого между антеннами, при изменении используемой частоты.

Изобретение относится к радиотехнике, к области антенной техники в диапазоне СВЧ-КВЧ, и предназначено для использования в системах радиосвязи, радиопеленга, радионаблюдения и радиомониторинга.

Изобретение относится к антенной технике, может быть использовано в качестве самостоятельной приемной, передающей или приемопередающей глобальной навигационной спутниковой системы (ГНСС) антенны или элемента фазированной антенной решетки и позволяет улучшить стабильность положения фазового центра и уменьшить габариты антенны.

Изобретение относится к антеннам. Совмещенная антенна включает: антенну глобальной навигационной спутниковой системы (ГНСС) с фазовым центром антенны ГНСС; и лучеобразующую антенну с фазовым центром лучеобразующей антенны.

Изобретение относится к многофункциональной цепи с многовитковой катушкой, способу управления такой цепью в мобильном устройстве. Техническим результатом является повышение стабильности работы антенны коммуникации ближнего поля (NFC).

Изобретение относится к антенной технике, в частности к антеннам с многоканальным входом и многоканальным выходом. Технический результат - повышение эффективности излучения антенны MIMO с одновременным уменьшением мариалоемкости при ее изготовлении.

Изобретение предназначено для использования в составе радиотехнических устройств для телевидения, радиовещания и радиосвязи через искусственные спутники Земли (ИСЗ), находящиеся на геостационарной орбите (ГСО), в сантиметровом и миллиметровом диапазонах волн.

Изобретение относится к антенной технике. Технический результат состоит в обеспечении широкополосного согласования импеданса антенны с выходным импедансом передатчика в полосе перекрытия 1:20; наилучшего согласования антенно-фидерного устройства (АФУ) в широком диапазоне; и наибольшей конструктивной прочности самонесущего центрального проводника.

Изобретение относится к приемопередающим антеннам, размещаемым на подвижных объектах. Технический результат - повышение стабильности входного сопротивления короткозамкнутой коаксиальной линии при работе в обоих диапазонах частот и стабильности согласования вибратора с питающим фидером, повышение механической прочности антенны, упрощение процессов изготовления и подстройки параметров штыревого вибратора.

Изобретение относится к радиотехнике, а именно к антеннам приемопередающих устройств. Антенна образована электрически раздельными излучающими элементами для каждого из двух поддиапазонов. Для первого поддиапазона первый коаксиальный кабель (КК) соединен через трансформатор импеданса с нижним краем нижнего излучающего цилиндрического элемента (ИЦЭ). Для второго поддиапазона второй КК пропущен внутри нижнего ИЦЭ и подведен к среднему ИЦЭ, выполненному в виде перевернутого стакана. Центральная жила второго КК выведена через отверстие в дне перевернутого стакана, а его оплетка соединена с дном перевернутого стакана. Верхний ИЦЭ выполнен в виде стакана с дном, обращенным к дну перевернутого стакана среднего ИЦЭ. Центральная жила второго КК соединена с дном стакана верхнего ИЦЭ, снабженного первым и вторым проводами, расположенными внутри верхнего ИЦЭ. Первый провод одним концом соединен с дном стакана верхнего ИЦЭ, а другой его конец выведен наружу. Второй провод одним концом соединен через отверстие в дне стакана верхнего ИЦЭ с дном перевернутого стакана среднего ИЦЭ, а другой его конец выведен наружу. В устройство введены несимметричный вибратор (НВ), катушка индуктивности (КИ) и конденсатор (К). Одни выводы КИ и К соединены между собой и подсоединены к НВ. Другой вывод КИ соединен с выведенным наружу концом первого провода, а другой вывод К соединен с выведенным наружу концом второго провода. Технический результат заключается в увеличении ширины диапазона частот, улучшении формы диаграммы направленности в верхнем диапазоне частот, увеличении коэффициента перекрытия по частоте, повышении коэффициента усиления. 5 з.п. ф-лы, 1 ил.

Изобретение относится к антенной технике. Мобильное устройство, содержащее: корпус, имеющий дистальный конец; электронику, расположенную в корпусе и выполненную с возможностью управления мобильным устройством, при этом электроника выполнена с возможностью обмена беспроводными сигналами, включающими в себя голосовые вызовы и текстовые сообщения; разъем, присоединенный к электронике с помощью соединения; П-образная антенна, расположенная на дистальном конце корпуса, при этом П-образная антенна имеет соединение с разъемом и выполнена с возможностью создания резонанса с использованием разъема, причем П-образная антенна и разъем выполнены с возможностью беспроводного обмена беспроводными сигналами; сеть согласования полного сопротивления, соединенная между электроникой и П-образной антенной, причем сеть согласования полного сопротивления выполнена с возможностью согласования полного сопротивления электроники с П-образной антенной. 2 н. и 22 з.п. ф-лы, 9 ил.

Изобретение относится к области спутниковой связи и может быть использовано для компенсации неидеальной поверхности рефлектора в системе спутниковой связи. Предложен способ, который включает измерение амплитуды и фазы сигналов, отраженных от рефлектора спутника, причем эти амплитуды и фазы формируют первую совокупность результатов измерения. Способ включает расчет корреляционной матрицы элементов как функции от первой совокупности результатов измерения. Корреляционная матрица элементов представляет диаграмму излучения облучающего элемента рефлектора. При этом способ включает регулирование диаграммы направленности сформированного пучка формирователя пучков на основании корреляционной матрицы элементов, что обеспечивает компенсацию неидеальной поверхности рефлектора. Технический результат – повышение точности компенсации неидеальной поверхности рефлектора. 2 н. и 10 з.п. ф-лы, 5 ил.
Наверх