Двухступенчатая вихревая горелка

Изобретение относится к области теплоэнергетики и может найти применение в любой отрасли промышленности, связанной со сжиганием угольного топлива в вихревых топках. Двухступенчатая вихревая горелка содержит камеру с тангенциальными патрубками подвода окислителя и центральной подачей пропана через газовое запальное устройство, камеру с тангенциальными патрубками подвода угольной пылевоздушной смеси, сопло, на выходе из которого реализуется закрученное течение. Вихревая горелка включает последовательно и соосно установленные три осесимметричные камеры: камеру первой ступени, камеру второй ступени и камеру сгорания, при этом камеры первой и второй ступеней соединены при помощи установленного соосно с камерами профилированного сопла, диаметр которого определяют в зависимости от соотношения мощностей первой и второй ступеней вихревой горелки с учетом параметра крутки, тангенциальные патрубки подачи пылеугольного топлива в камеру второй ступени, установленные противоположно и зеркально относительно друг друга, расположены зеркально тангенциальным патрубкам подачи окислителя в камеру первой ступени. Технический результат - создание двухступенчатой горелки с оптимизированной конструкцией, позволяющей обеспечить более эффективное и безопасное сжигание угольного топлива. 13 ил.

 

Изобретение относится к области теплоэнергетики и может найти применение в любой отрасли промышленности, связанной со сжиганием угольного топлива в вихревых топках, в частности в установках по глубокой переработке угля в другие виды топлива, например синтез-газ. Вихревые горелки заняли достаточно весомое и прочное место в энергетическом оборудовании на тепловых электростанциях.

Однако ввиду сложности комплекса аэродинамических, химических и тепловых процессов, происходящих при сжигании в вихревых горелках угольного топлива, путь их внедрения весьма трудоемок как в процессе проектирования, так и в процессе их производственной эксплуатации.

Известна вихревая горелка для сжигания пылеугольных и пылегазовых смесей, а также газа [патент РФ №131849, F23C 1/10, F23D 1/02, F23D 17/00, 17.12.2012], в которой максимально оптимизировано смешение топливного агента с воздухом, что приводит к более полному сгоранию топлива, а следовательно, повысит экономический и экологический эффект от применения предлагаемой вихревой горелки. Решается поставленная задача за счет того, что указанная вихревая горелка, содержащая корпус с соосно установленными центральной трубой и обечайками, образующими кольцевые каналы подачи топлива, растопочного воздуха, завихрители лопаточные, причем на выходе не менее чем из одного кольцевого канала, расположенного между двумя другими каналами, установлен рассекатель, состоящий из попеременно направленных конусных секторов диффузорного и конфузорного типа, причем конусные сектора диффузорного типа устанавливаются на внутреннюю стенку канала, а конусные сектора конфузорного типа устанавливаются на внешнюю стенку канала и, кроме того, между конусными секторами выполнены разделяющие перегородки, плоскости которых направлены через ось горелки.

В указанном устройстве посредством запального устройства и мазутной форсунки производят розжиг растопочного топлива в топке, такая растопка достаточно долгий процесс и занимает до 4 часов, что экономически и технически неэффективно. Также при совместной подаче мазутного и угольного топлива в топку, происходит интенсификация процессов зашлаковывания. К тому же во всех каналах, за исключением канала с установленным рассекателем, ставятся завихрители, весьма существенно влияющие на процессы возникновения нежелательных пульсаций давлений вызванных прецессирующим вихревым ядром.

Известен способ сжигания угольной пыли в вихревой топке [патент РФ №2418237, F23C 5/24, 10.05.2011], включающий помол, механоактивацию и сжигание, в котором уголь микропомола используют для подсветки вихревых потоков угля обычного помола, вращающихся в противоположных направлениях относительно друг друга. При этом зону, в которую направляют факел сгорания угля микропомола, формируют за счет тангенциального подвода вдуваемого воздуха и изменения направления тангенциальный составляющей скорости вихревого потока на противоположное.

К причинам, препятствующим достижению указанного технического результата, при использовании известного способа, относится то, что такая подсветка экономически выгодна и эффективна для поддержания уже горящего факела угля обычного помола, но практически непригодна для поджига и разогрева основного потока угля обычного помола при запуске вихревой горелки в работу.

Наиболее близким по совокупности признаков к заявляемому устройству является пылеугольная горелка [патент РФ №2294486, F23D 1/00, 26.07.2005], включающая камеру поджига с тангенциальным вводом пылевоздушной смеси и устройством поджига, смесительную камеру с коаксиальными каналами и тангенциальным вводом вторичного воздуха и угольного топлива и завихритель с турбулизатором потока, выполненным в виде цилиндрической шайбы с диаметром отверстия, меньшим диаметров каналов камеры поджига и смесительной камеры.

В указанном устройстве используют многокамерную схему сжигания угольного топлива. При всех прочих равных условиях такая схема сжигания угольного топлива менее эффективна из-за повышенного сопротивления горячему потоку, а следовательно, и из-за большего зашлаковывания. К тому же при больших расходах топлива совместный ввод вторичного воздуха и топлива через единый канал весьма существенно влияет на процесс сжигания и предварительной подготовки угольного топлива, а следовательно, увеличивает суммарные энергозатраты в процессе эксплуатации. Эффективность вышеуказанной горелки в большей степени подтвердилась только при розжиге топки или ее подсветке, но все попытки использовать ее в качестве основной горелки пока не принесли желаемого результата.

Задачей настоящего изобретения является создание двухступенчатой горелки с оптимизированной конструкцией, позволяющей обеспечить более эффективное и безопасное сжигание угольного топлива.

Технический результат - двухступенчатая вихревая горелка с улучшенными технико-экономическими показателям. Использование такой вихревой горелки позволит достичь более эффективного и безопасного сжигания угольного топлива и, как следствие, снижения общих затрат при внедрении данного типа вихревых горелок на тепловых электростанциях.

Двухступенчатая вихревая горелка, согласно изобретению, содержит последовательно и соосно установленные три осесимметричные камеры: камеру первой ступени, представляющую собой камеру с тангенциальными патрубками подачи окислителя, расположенными противоположно и зеркально относительно друг друга, и центральной подачей пропана через газовое запальное устройство, камеру второй ступени, представляющую собой камеру с тангенциальными патрубками подачи пылеугольного топлива, расположенными противоположно и зеркально относительно друг друга, и камеру сгорания, при этом камеры первой и второй ступеней соединены при помощи установленного соосно с камерами профилированного сопла, диаметр которого определяют в зависимости от соотношения мощностей первой и второй ступеней вихревой горелки с учетом параметр крутки, тангенциальные патрубки подачи пылеугольного топлива в камеру 2-й ступени расположены зеркально патрубкам подачи окислителя в камеру 1-й ступени.

В заявленном устройстве поджигание газа осуществляют с помощью запального устройства, работающего, как защитное, на случай потухания факела в первой ступени. В условиях горения в первой ступени за счет заполнения центральной рециркуляционной зоны горячими продуктами горения, выполняющими функцию поджога свежей топливно-воздушной смеси, существенно подавляется сильная неустойчивость течения в форме прецессирующего вихревого ядра. Определяющими параметрами такого течения являются конструктивный параметр крутки, S, и число Рейнольдса, Re=DeU0/ν, где De - диаметр выходного сопла камеры, U0 - среднерасходная скорость на срезе сопла, ν - кинематическая вязкость.

В первой ступени реализуется устойчивое горение, в том числе в случае обедненных режимов, которые представляют интерес с точки зрения достижения низких выбросов оксидов азота. Первая ступень вихревой горелки служит для воспламенения угольного топлива, которое подают во вторую ступень.

Закрутка потока во второй ступени противоположна закрутке потока в первой ступени. Противокрутка способствует более быстрому смешению горелочной струи первой ступени с потоком пылеугольной смеси, которую подают во вторую ступень, и более эффективному поджигу пылеугольной смеси. Преимуществами данной горелки является более равномерное заполнение объема рабочей камеры в сочетании с выраженной умеренной закруткой потока и устойчивость течения, что позволяет обеспечить более эффективное и безопасное сжигание угольного топлива.

Сущность технического решения поясняется рисунками.

Продольное сечение устройства - фиг. 1;

Поперечное сечение устройства - фиг. 2;

где 1 - газовое запальное устройство; 2 - основная камера первой ступени вихревой горелки; 3, 8 - патрубки подачи окислителя; 4, 7 - патрубки подачи пылеугольного топлива; 5 - основная камера второй ступени вихревой горелки; 6 - смотровые окна; 9 - профилированное сопло; 10 - цилиндрический корпус; 11 - камера сгорания.

Заявляемое устройство состоит из двух ступеней:

Первой ступенью является вихревая газовая горелка, представляющая собой осесимметричную камеру 2 с двумя входными тангенциальными патрубками 3 и 8 подвода окислителя и центральной подачей пропана через газовое запальное устройство 1 с соплом 5, на выходе из которого реализуется закрученное течение.

Второй ступенью является вихревая пылеугольная горелка, представляющая собой осесимметричную камеру 5 с двумя входными тангенциальными патрубками 4 и 7 подвода угольной пылевоздушной смеси, с камерой сгорания 11, смотровыми окнами 6 и цилиндрическим корпусом 10. Закрутка потока во второй ступени противоположна закрутке потока в первой ступени.

Устройство работает следующим образом.

Сначала производят подачу окислителя через тангенциальные патрубки 3 и 8 в камеру 2 первой ступени вихревой горелки. После подают пропан в центральную часть первой ступени через газовое запальное устройство 1, которое производит поджигание пропана. Факел выходит из профилированного сопла 9 во вторую ступень вихревого горелочного устройства. Первая ступень вихревой горелки начинает работать.

В камере первой ступени реализуется закрученный реагирующий поток, выходящий через сопло во вторую ступень. Для создания стабильного реагирующего потока во второй ступени диаметр сопла вычисляют как функцию мощностей первой и второй ступеней и параметра крутки,

,

где w1, w2 - мощности первой и второй ступеней, S - параметр крутки.

Производят подачу пылеугольной смеси в камеру второй ступени вихревого горелочного устройства 5 через тангенциальные патрубки 4 и 7, закручивающие поток противоположно закрутке потока первой ступени. Производится поджигание пылеугольной смеси факелом, выходящим из профилирующего сопла 9. Вихревое горелочное устройство начинает работать.

Для обоснования достижимости технического результата были выполнены экспериментальные исследования.

На фиг. 3 показан вид обедненного пламени реагирующего потока с коэффициентом избытка воздуха φ=0.5.

По фотографии, фиг. 3, видно, что нижняя часть факела, выходящая из сопла, имеет четкую границу конической формы. Как было установлено из анализа средних распределений аксиальной компоненты скорости при изотермических условиях, область рециркуляции проникает глубоко внутрь сопла, что и обеспечивает надежную стабилизацию факела.

Верхняя часть факела представляет собой M-образный фронт с размытыми границами из-за турбулентного смешения с окружающем воздухом.

Таким образом, в первой ступени вихревой горелки реализуется устойчивое горение, в том числе в случае обедненных режимов, которые представляют интерес с точки зрения достижения низких выбросов оксидов азота.

Для получения информации о пульсациях давления были использованы сигналы от двух акустических датчиков, размещенных в диаметрально противоположных направлениях на срезе сопла горелочного устройства.

Результаты исследований.

На фиг. 4 и 5 показаны профили, соответственно, средней и пульсационной составляющих скорости для изотермического и реагирующего потока: 1, 2 - аксиальная, 3, 4 - тангенциальная; светлые символы - изотермический поток, темные - реагирующий поток; x/De - отношение точки замера на выходе из сопла к полному выходному диаметру сопла тангенциальной вихревой камеры; U - средняя аксиальная скорость [м/с]; W/U0 - средняя тангенциальная скорость [м/с].

На фиг. 6 и 7 приведены энергетические спектры пульсаций, соответственно, давления и кросскорреляционные функции акустических сигналов датчиков, где 1 - изотермические условия, 2 - реагирующий поток, 3 - максимумы, соответствующие прецессионному вихревому ядру (ПВЯ); вертикальные оси даны в относительных единицах.

Из спектров разностного сигнала пульсаций давления (фиг. 6) видно, что в изотермических условиях и реагирующем потоке присутствуют выделенные частоты (138 и 177 Гц соответственно), которые связаны с ПВЯ. Этот вывод подтверждают также кросскорреляционные функции акустических сигналов датчиков, размещенных в диаметрально противоположных направлениях (фиг. 7). Видно, что первый максимум корреляционной функции в изотермическом случае приходится на периода пульсаций Т1, который может быть определен на основе спектра разностного сигнала (фиг. 6), т.е. сигналы изменяются в противофазе, что характерно для неосесимметричной винтовой моды возмущений. Максимум корреляционной функции в реагирующем потоке приходится на нулевой сдвиг фаз, что отражает вклад осесимметричных пульсаций, возможным источником которых является верхняя часть пламени (фиг. 3). Эти пульсации, регистрируемые датчиками в одной фазе, удаляются из разностного сигнала и поэтому не видны в спектре на фиг. 6. Прецессия центра вихря, которая была определена на основе распределения пульсаций тангенциальной скорости, в условиях реагирующего потока дает второй пик в корреляционной функции, сдвинутый примерно на половину периода прецессии Т2, который также можно определить на основе спектра. Таким образом, можно сказать, что условия реагирующего потока оказывают существенное влияние на параметры ПВЯ, уменьшая амплитуду (отклонение вихря от центра горелки) и увеличивая частоту прецессии. При этом акустические датчики регистрируют снижение уровня пульсаций давления, генерируемых ПВЯ, почти на порядок, на основании чего можно сделать вывод, что условия реагирующего потока приводят к подавлению ПВЯ.

Важным результатом является тот факт, что в условиях горения за счет заполнения центральной рециркуляционной зоны горячими продуктами горения, выполняющими функцию поджога свежей топливно-воздушной смеси, существенно подавляется сильная неустойчивость течения в форме ПВЯ.

Из измеренных энергетических спектров сигналов акустических датчиков следует, что подавление ПВЯ в условиях горения приводит к существенному снижению уровня пульсаций давления.

Были проведены эксперименты по оценке эффективности работы горелки в разных режимах, с созакруткой и с противокруткой потоков первой и второй ступеней.

На фиг. 8 показана схема расположения измерительных сечений 1-3.

На фиг. 9, 10, 11, 12 приведены профили скоростей для различных режимов работы вихревой горелки с измерительными сечениями 1-3. Где r/R - отношение положения точки замера к полному радиусу камеры, Uaxial/U - средняя осевая скорость, Utang/U - средняя тангенциальная скорость.

На фиг. 9, 10 показаны осевая и тангенциальная компоненты скорости, соответственно, для режима с созакруткой потоков.

На фиг. 11, 12 показаны осевая и тангенциальная компоненты, соответственно, для режима с противокруткой потоков.

Можно видеть сильно неоднородное распределение осевой скорости для режима с созакруткой потоков и равномерное распределение в осевой скорости для противокрутки.

Таким образом, в отличие от режима с созакруткой, режим с противокруткой показал эффективное смешение закрученных потоков первой и второй ступеней. Результирующий поток характеризовался равномерным распределением осевой скорости вдоль поперечного сечения в сочетании с достаточной выраженным общим вращательным движением потока в рабочем участке. Отличием является также отсутствие формирования крупномасштабных нестационарных структур и, соответственно, интенсивных пульсаций течения. Исходя из результатов проведенных изотермических опытов можно заключить, что вариант с противокруткой является более предпочтительным для использования в двухступенчатой горелке в плане возможности более быстрого смешения горелочной струи первой ступени с потоком пылеугольной смеси, которая должна подаваться во вторую ступень, более эффективным поджигом последней.

На фиг. 13 представлены графики изменения температуры воспламенения пылеугольной смеси в разных точках по длине горелочного устройства (нумерация от завихрителя к выходу, где линии 1-8 - это показания датчиков температуры в камере сгорания, расположенных на расстоянии 10 см друг от друга) в процессе двухступенчатого горения.

График демонстрируют следующие стадии проведения опытов:

I - Включение первой ступени воздух - 4,49 л/с, газ (пропан) - 5 л/мин, вторая ступень подачи угольного топлива отключена. Стабильное воспламенение газового факела, длина факела 30 мм, рост температуры в реакционной камере до 700°C.

II - Открытие второй ступени без угольного топлива, расход воздуха 5,17 л/с.

III - Включение подачи угольного топлива через вторую ступень горелочного устройства с начальным расходом 4 кг/ч и дальнейшим увеличением до 14 кг/ч. В процессе подачи пылевзвеси наблюдается рост температуры с 550°C до 1100°C. Эффективное воспламенение и устойчивое горение пылеугольного факела.

VI - Выключение второй и первой ступени горелочного устройства.

Огневые исследования показали, что в двухступенчатой горелке с противокруткой потоков первой и второй ступеней происходит эффективное воспламенение пылеугольной смеси и ее устойчивое горение. Полнота выгорания угольного топлива составляет 98,9%.

Двухступенчатая вихревая горелка, включающая камеру с тангенциальными патрубками подвода окислителя и центральной подачей пропана через газовое запальное устройство, камеру с тангенциальными патрубками подвода угольной пылевоздушной смеси, сопло, на выходе из которого реализуется закрученное течение, отличающаяся тем, что вихревая горелка включает последовательно и соосно установленные три осесимметричные камеры: камеру первой ступени, камеру второй ступени и камеру сгорания, при этом камеры первой и второй ступеней соединены при помощи установленного соосно с камерами профилированного сопла, диаметр которого определяют в зависимости от соотношения мощностей первой и второй ступеней вихревой горелки с учетом параметра крутки, тангенциальные патрубки подачи пылеугольного топлива в камеру второй ступени, установленные противоположно и зеркально относительно друг друга, расположены зеркально тангенциальным патрубкам подачи окислителя в камеру первой ступени.



 

Похожие патенты:

Изобретение относится к области теплоэнергетики и может быть использовано в любой энергетической установке по переработке угля в другие виды топлива. Способ сжигания угля, подвергнутого механической и плазменной обработке, включает механическую активацию, воспламенение и сжигание, уголь предварительно дробят и разделяют на мелкодисперсную и крупнодисперсную фракции, из которых мелкодисперсную фракцию угля подвергают механической активации и доводке тонины до размера частиц зерна 40 мкм и менее, затем полученный уголь микропомола вводят тангенциально за счет инжекции в первую газификационную ступень и воспламеняют с помощью стартового плазмотрона, причем ввод осуществляют в направлении, противоположном направлению тангенциального впрыска плазменной струи из стартового плазмотрона, крупнодисперсную фракцию угля, воздушный поток и продукты сгорания угля микропомола из первой газификационной ступени одновременно вводят во вторую газификационную ступень по касательной к ее продольной оси и в одной плоскости, перпендикулярной продольной оси второй газификационной ступени, пылеугольную смесь воспламеняют с помощью продуктов сгорания угля микропомола, используя теплоту сгорания угля микропомола, при этом эффективность процесса газификации и сжигания пылеугольной смеси во второй газификационной ступени обеспечивают за счет импульсного включения дополнительного управляющего плазмотрона, причем впрыск плазменной струи из дополнительного управляющего плазмотрона осуществляют вдоль оси второй газификационной ступени, перпендикулярно плоскости ввода пылеугольной смеси и в направлении, совпадающем с направлением осевого перемещения продуктов сгорания пылеугольной смеси внутри второй газификационной ступени.

Изобретение относится к области энергетики. Горелка (1) для топлива в форме частиц, в частности из биомассы, с первичной трубой (3) и расположенной в первичной трубе (3) центральной трубой (2), причем первичная труба (3) и центральная труба (2) образуют зазор (4) для обеспечения направления потока из топлива в форме частиц и газообразного средства для горения от конца со стороны входа к отверстию первичной трубы (3) со стороны выхода, центральная труба (2), в продольном направлении горелки (1), заканчивается перед первичной трубой (3), при этом предусмотрено по меньшей мере одно устройство для центрирования потока внутри первичной трубы (3) в области конца первичной трубы (3) со стороны выхода.

Изобретение относится к энергетике. Вихревое горелочное устройство сжигания твердого пылевидного топлива, содержащее патрубок подвода первичного воздуха, камеру сгорания, патрубок подвода вторичного воздуха, отверстия для подвода вторичного воздуха, перегородку, дополнительно содержит форсунку подачи топливной пыли, электрический нагреватель, камеру смешения пылевидного топлива с окислителем и конфузорно-диффузорный переход, причем отверстия для подвода вторичного воздуха выполнены на входе в цилиндрический участок камеры сгорания, головная часть камеры сгорания совместно с форсункой подачи топливной пыли и участком смешения пылевидного топлива с окислителем представляет собой вихревой эжектор прямоточного типа, электрический нагреватель выполнен в виде цилиндрического стержня и установлен осесимметрично внутри форсунки подачи топливной пыли, конфузорно-диффузорный переход выполнен перед цилиндрическим участком камеры сгорания.

Техническое решение относится к теплоэнергетике и может быть использовано на тепловых электрических станциях для безмазутной растопки котлов. Горелочное устройство содержит трубу с горелочным насадком, установленные горизонтально, на входной вертикальной стенке которой размещены под острым углом к стенке тангенциальные патрубки подачи высоконапорного воздуха и аксиальное сопло подачи пыли высокой концентрации, а также обечайку и электронагреватели, установленные между трубой и обечайкой.

Группа изобретений относится к теплоэнергетике и касается технологии получения, транспортировки, раздельного и совместного сжигания механоактивированного угля микропомола и угля штатной системы пылеприготовления в вихревой растопочной горелке при растопке пылеугольного котла и стабилизации горения с целью замещения дорогостоящего мазута или природного газа.

Изобретение относится к области энергетики. Горелка для пылевидного или в форме частиц топлива, с проточным каналом для транспортировки, по меньшей мере одного газового потока, в камеру горения, причем проточный канал имеет кольцеобразное поперечное сечение и устройство для завихрения, придающее завихрение газовому потоку в окружном направлении.

Изобретение относится к энергетике и может быть использовано для растопки пылеугольных котлов и стабилизации горения факела (подсветки), для воспламенения мелкодисперсного твердого топлива с предварительной электротермохимической подготовкой (ЭТХП).

Изобретение относится к области энергетики, в частности к пылеугольному концентратору. .

Изобретение относится к теплоэнергетике и может быть использовано на тепловых электростанциях, в котельных и печном хозяйстве предприятий при сжигании распыленного водоугольного топлива или пылевоздушной смеси.

Изобретение относится к области теплоэнергетики - способу и устройству для сжигания угля микропомола и угля обычного помола в пылеугольной горелке. .

Изобретение относится к энергетике и может быть использовано при организации сжигания угольной пыли в топках котлов, камер сгорания и печах. Вихревая пылеугольная горелка содержит центральный канал 2 для размещения растопочного устройства, вокруг которого последовательно расположены кольцевые каналы: растопочного воздуха 3, по меньшей мере один кольцевой канал 4 подачи аэросмеси и два кольцевых канала вторичного воздуха - внутренний 6 и внешний 7, а в выходной части канала 4 аэросмеси установлены рассекатели потока 11, имеющие форму секторных участков утолщения внешней обечайки канала 4 аэросмеси с односторонним косым срезом входной части и расположенные равномерно по окружности канала 4 аэросмеси, в кольцевых каналах вторичного воздуха установлены лопаточные завихрители воздуха 14 и 15. Новым, согласно изобретению, является расположение рассекателей потока 11 на внешней обечайке кольцевого канала 4 аэросмеси, причем высота Н кольцевого канала аэросмеси 4 и высота h рассекателей потока 11 имеет соотношение: а перед рассекателями потока 11 в кольцевом канале 4 аэросмеси расположен лопаточный завихритель 12, причем направление односторонних косых срезов входных участков рассекателей потока 11 совпадает с направлением крутки лопаток завихрителя 12, направление крутки лопаточных завихрителей 14 и 15 воздуха, установленных в кольцевых каналах 6 и 7 вторичного воздуха, совпадает с направлением крутки в кольцевом канале 4 аэросмеси. Изобретение позволяет снизить эмиссию оксидов азота NOx (повышение экологических характеристик котельной установки) при сохранении экономичного выгорания топлива (низкого уровня механического недожога), а также уменьшить абразивный износ рассекателей потока в выходной части канала подачи аэросмеси. 1 з.п. ф-лы, 3 ил.

Изобретение относится к устройствам сжигания твердого пылевидного топлива и может быть использовано в процессах различного технологического назначения в энергетике, ЖКХ, металлургии, в паровых котлах, сушильных установках и т.д. Противоточное вихревое горелочное устройство для сжигания твердого пылевидного топлива содержит камеру сгорания, состоящую из диффузорного и конфузорного участков, закручивающее поток устройство, патрубок подвода вторичного воздуха, форсунку подачи топливной пыли и воспламенитель, дополнительно содержит камеру смесеподготовки и выходной диффузор, причем камера смесеподготовки состоит из патрубка подачи топливно-воздушной смеси, тангенциального соплового ввода, корпуса и крышки и соединена с форсункой подачи топливной пыли, установленной на оси конфузорного участка камеры сгорания. Выходной диффузор установлен напротив форсунки подачи топливной пыли соосно с ней, а также с закручивающим поток устройством и расположен радиально внутри него. Технический результат - снижение гидравлических потерь в форсунке подачи топливной пыли и камере сгорания, увеличение полноты сгорания, повышение качества смешения топлива и воздуха, расширение рабочего диапазона по коэффициенту избытка воздуха. 2 з.п. ф-лы, 3 ил.
Наверх