Устройство управления турбонаддувом двигателя внутреннего сгорания

Изобретение относится к области утилизации тепла отработавших газов (ОГ) в двигателях внутреннего сгорания. Техническим результатом является повышение КПД и улучшение приемистости двигателя. Сущность изобретения заключается в том, что устройство содержит турбонагнетатель (1) с турбиной (2) и компрессором (3), выход которого через охладитель (4) и дроссельную заслонку (5) сообщен с входным коллектором (6) двигателя, катализатор (9), установленный после турбины (2) и перед теплообменником (10), паровую турбину (15), впуск которой сообщен с выходом теплообменника (10), а выпуск – с входом конденсатора (16), выход которого сообщен с входом резервуара (18), насос (19), включенный между резервуаром (18) и теплообменником (10). Устройство также включает соединенный с выходом теплообменника (10) сепаратор (20), выход конденсата которого соединен с резервуаром (18), а выход пара через обратный клапан (21) соединен с аккумулятором (22) пара, первый выход которого через регулируемую паровую заслонку (23) сообщен с впуском паровой турбины (15), а второй выход через обратный клапан (17) сообщен с входом конденсатора (16). Паровая турбина (15) размещена на общем валу с турбонагнетателем (1). Для управления турбонаддувом устройство содержит объединенные информационной магистралью (26) блок (11) управления и контроллер (25) управления паровой турбиной, на которые поступают информационные сигналы от датчика (27) акселератора и датчиков (12, 28) температуры и давления, на основании которых формируются управляющие сигналы, поступающие на дроссельную заслонку (5), регулируемую паровую заслонку (23) и насос (15). 1 ил.

 

Изобретение относится к двигателестроению, а именно к двигателям внутреннего сгорания, работающих с управляемым турбонаддувом.

Применение турбонаддува, основанного на использовании энергии отработавших газов двигателя, приводящих во вращение турбину турбонагнетателя и установленный с ней на одном валу компрессор, который сжимает воздух и нагнетает его во входной коллектора двигателя, является весьма эффективным решением. Благодаря использованию турбонаддува можно, например, увеличивать мощность и коэффициент полезного действия двигателя. Однако на практике турбонаддув является малоэффективным при условиях работы двигателя с низкой нагрузкой, что приводит к необходимости управлять турбонаддувом в зависимости от режимов работы двигателя.

Управление турбонаддувом в общем случае позволяет оптимизировать функционирование двигателя внутреннего сгорания во всех режимах работы, повысить надежность путем снижения механических и тепловых перегрузок, в частности, при увеличении давления на выходе компрессора выше предельно допустимого вследствие резкого закрытия дроссельной заслонки или значительного увеличения числа оборотов двигателя.

Из уровня техники известно применение турбонаддува в двигателях внутреннего сгорания (патент RU 2450133, патент RU 2520132, патент RU 2511878, патентная заявка US 20140325983 А1, патентная заявка US 20120109490 А1, патент US 8561403 В2, патент US 8406983 В2), направленного на увеличение выходной удельной мощности, уменьшение расхода потребляемого топлива и повышение коэффициента полезного действия двигателя.

Однако известные устройства имеют ряд негативных особенностей, характерных для двигателей с турбонаддувом, среди которых можно назвать эффект «турбоямы», под которым подразумевается запаздывание роста давления воздуха во входном коллекторе двигателя вследствие инерции нарастания давления выхлопных газов в турбине при резком нажатии на педаль акселератора. С другой стороны, после преодоления «турбоямы» имеет место резкое увеличение давления воздуха во входном коллекторе двигателя - так называемый «турбоподхват», также обусловленный инертностью турбонагнетателя.

Как известно, температура отработавших газов на выходе турбины турбонагнетателя может составлять несколько сот градусов, а их энергия используется неэффективно вследствие выброса в атмосферу. В соответствии с публикациями двигатели внутреннего сгорания преобразуют приблизительно две трети энергии топлива в тепло, которое либо поглощается системой охлаждения двигателя внутреннего сгорания либо выводится через выхлопную систему.

Известна система наддува впускного тракта двигателя внутреннего сгорания с использованием энергии отработавших газов (патент RU 2572154), в состав которой входит трубчатый спиральный теплообменник, размещенный в выпускном тракте двигателя внутреннего сгорания, и насос, подающий в теплообменник жидкость (воду) из резервуара. За счет передачи тепловой энергии отработавших газов воде происходит ее нагрев и дальнейший переход в состояние перегретого пара высокого давления. Выпускной конец трубчатого спирального теплообменника снабжен установленным в рабочей полости турбины соплом, через которое струя пара высокого давления направляется на лопасти турбины и вращает его.

Такое техническое решение позволяет использовать не только кинетическую энергию движения отработавших газов в выпускном тракте, но и их тепловую энергию.

Кроме того, по мнению автора изобретения, предложенное техническое решение позволяет исключить эффект «турбоямы» в двигателе.

Однако при функционировании известного устройства может возникнуть ряд проблем.

Прежде всего, это обусловлено тем, что трубчатый спиральный теплообменник расположен в патрубке на входе турбины, что значительно снижает энергию отработавших газов (как за счет аэродинамики, так и за счет работы, производимой для преобразования воды в пар. Это может привести к снижению скорости вращения турбины и, возможно, на малых оборотах это снижение не будет компенсировано увеличением скорости ее вращения за счет энергии пара.

В известном устройстве энергия пара, попадающего на лопасти турбины, определяется температурой отработавших газов. Поэтому при резком нажатии на педаль акселератора также, как и в описанных выше турбонагнетателях, не произойдет необходимого адекватного увеличения скорости вращения турбины, то есть эффект «турбоямы» не снижается. Одновременно, в силу инерционности процесса преобразования воды в пар в известном устройстве возрастет негативный эффект «турбоподхвата».

Кроме того, для поддержания функционирования известного устройства необходимо периодическое пополнение резервуара водой, так как пар вместе с отработавшими газами выбрасывается в атмосферу.

Известен ряд устройств турбонаддува двигателя внутреннего сгорания (ЕР 2492458 A1, US 20120198840 A1, US 8281589 A1, US 20130186087 A1, US 20060232071 A1, US 20050262842), с турбонагнетателем, включающим турбину и компрессор, парогенератор, установленный в выходном трубопроводе двигателя внутреннего сгорания, и паровую турбину, приводимую во вращение паром, генерируемым парогенератором. Такое техническое решение позволяет повысить коэффициент полезного действия двигателя за счет дополнительного использования тепловой энергии отработавших газов и преобразования ее в механическую или электрическую энергию. Однако ввиду инерционности тепловых процессов, происходящих в парогенераторе, известные технические решения не позволяют обеспечить исключение эффекта «турбоямы» и «турбоподхвата» в двигателях внутреннего сгорания с турбонаддувом.

Известно устройство управления турбонаддувом двигателя внутреннего сгорания (US 8789370 В2), которое является наиболее близким по технической сущности к заявленному и выбрано в качестве прототипа. Известное устройство содержит турбонагнетатель, включающий турбину, впуск которой соединен с выходным коллектором двигателя внутреннего сгорания, и компрессор, выход которого через последовательно включенные охладитель и дроссельную заслонку сообщен с входным коллектором двигателя внутреннего сгорания, воздушный фильтр, выход которого соединен с входом компрессора, катализатор, вход которого сообщен с выпуском турбины, а выход соединен с теплообменником. Устройство также содержит паровую турбину и вспомогательный компрессор, установленный на одном валу с паровой турбиной, конденсатор, резервуар для жидкости и насос. Устройство оснащено блоком управления, информационные входы которого электрически связаны с датчиками температуры и давления, установленными на входе компрессора, входе дроссельной заслонки, на входном и выходном коллекторах двигателя внутреннего сгорания и блоке цилиндров двигателя внутреннего сгорания, управляющий вход блока управления подключен к датчику акселератора, а управляющий выход подключен к дроссельной заслонке.

В данном устройстве наддув воздуха во входной коллектор двигателя обеспечивается как традиционным турбонагнетателем, так и вспомогательным компрессором, приводимым в действие паровой турбиной, которая является элементом замкнутого парового контура, по сути играющего роль устройства утилизации отводящего тепла, которое включает теплообменник, размещенный на выходном патрубке двигателя, конденсатор, резервуар для жидкости и насос.

Такое решение позволяет использовать остаточную тепловую энергию отработавших газов и уменьшить требования к производительности и размерам основного турбонагнетателя. Управление производительностью перепускного канала производится управляемыми заслонками путем направления части отработавших газов по обводному патрубку.

Несмотря на отмеченные преимущества известного устройства, оно характеризуется недостаточной динамикой управления. Это обусловлено тем, что регулировка скорости вращения паровой турбины определяется, прежде всего, скоростью изменения температуры пара в теплообменнике в зависимости от регулируемой заслонками (в соответствии с положением педали акселератора) плотности потока отработавших газов, проходящих через теплообменник. Данный процесс является весьма инерционным, так как температура пара, а следовательно, и скорость вращения паровой турбины не могут мгновенно изменить значение, соответствующее положению педали акселератора в конкретный момент времени. Вследствие этого в известном устройстве не может быть полностью исключен эффект «турбоямы».

В процессе работы устройства паровая турбина обеспечивает вращение вспомогательного компрессора, поток наддувочного воздуха с которого через обратный клапан смешивается с потоком наддувочного воздуха из турбонагнетателя. Это приводит к усложнению реализации устройства наддува и периодическому «отсеканию» потока надувочного воздуха, идущего от вспомогательного компрессора, что снижает эффективность работы устройства.

Вследствие того, что часть выхлопных газов проходит по обводному патрубку, минуя теплообменник, снижается динамика управления парообразованием и, как следствие, общая динамика контура управления турбонаддувом.

В основу изобретения положена задача создать устройство управления турбонаддувом двигателя внутреннего сгорания, в котором за счет управления утилизацией тепла отработавших газов обеспечивалось улучшение динамики управления, в частности достигалась компенсация эффектов «турбоямы» и «турбоподхвата», и, как следствие, повышалась приемистость двигателя внутреннего сгорания, что привело бы к повышению общего коэффициента полезного действия.

Поставленная задача решается тем, что в устройстве управления турбонаддувом двигателя внутреннего сгорания, содержащем турбонагнетатель, содержащем турбонагнетатель, включающий турбину, впуск которой соединен с выходным коллектором двигателя внутреннего сгорания, и компрессор, выход которого через последовательно включенные охладитель и дроссельную заслонку сообщен с входным коллектором двигателя внутреннего сгорания, воздушный фильтр, выход которого соединен с входом компрессора, катализатор, вход которого сообщен с выпуском турбины, а выход соединен с теплообменником, паровую турбину, впуск которой через первый обратный клапан сообщен с выходом теплообменника, а выпуск соединен со входом конденсатора, выход которого сообщен с первым входом резервуара, насос, включенный между выходом резервуара и выходом теплообменника, и блок управления, информационные входы которого электрически связаны с датчиками температуры и давления, установленными на входе компрессора, входе дроссельной заслонки, на входном и выходном коллекторах двигателя внутреннего сгорания и блоке цилиндров двигателя внутреннего сгорания, управляющий вход блока управления подключен к датчику акселератора, а его управляющий выход подключен к дроссельной заслонке, согласно изобретению, содержит сепаратор, соединенный с выходом теплообменника и имеющий выход конденсата соединенный со вторым входом резервуара, и выход пара, аккумулятор пара, вход которого через первый обратный клапан соединен с выходом пара сепаратора, первый выход аккумулятора пара сообщен с впуском паровой турбины, а его второй выход сообщен с входом конденсатора, регулируемую паровую заслонку, установленную между аккумулятором пара и впуском паровой турбины, между выпуском которой и входом конденсатора установлен второй обратный клапан, байпасный клапан, установленный между вторым выходом аккумулятора пара и входом конденсатора, дополнительные датчики температуры и давления, установленные на выходе компрессора, аккумуляторе пара и теплообменнике, и контроллер управления паровой турбиной, информационные входы которого подключены к датчику акселератора и дополнительным датчикам температуры и давления, первый управляющий выход подключен к управляющему входу регулируемой паровой заслонки, а второй управляющий выход подключен ко входу насоса, который выполнен электрически регулируемым, при этом паровая турбина размещена на валу турбонагнетателя, а блок управления и контроллер управления паровой турбиной объединены информационной магистралью.

Технический результат настоящего изобретения заключается в улучшении динамики управления, а именно минимизации эффектов «турбоямы» и «турбоподхвата», что повышает приемистость двигателя внутреннего сгорания и общий коэффициент полезного действия. Названный технический результат достигается за счет организации быстродействующего замкнутого парового контура управления турбонаддувом, функционирующего совместно с турбонагнетателем двигателя внутреннего сгорания, что позволяет обеспечить необходимое давление наддувочного воздуха на входе дроссельной заслонки при любых положениях педали акселератора.

По сравнению с прототипом, в котором инерционность управления вспомогательного контура с паровой турбиной выше, чем основного турбонагнетателя из-за инерционности теплообменника, используемого в качестве единственного исполнительного элемента дополнительной системы автоматического регулирования парового контура, в заявленном изобретении предложенная структура парового контура обеспечивает практически мгновенное увеличение или уменьшение крутящего момента компрессора, соответствующее текущему значению положения педали акселератора.

Предложенное устройство имеет более простое конструктивное выполнение по сравнению с прототипом, так как в нем отсутствует дополнительный компрессор наддувочного воздуха, и предложена более технологичная система регулировки смешивания двух потоков наддувочного воздуха благодаря размещению паровой турбины на общем валу турбонагнетателя.

Настоящее изобретение поясняется сопровождающим чертежом, который не охватывает и, тем более, не ограничивает весь объем притязаний данного технического решения, а является лишь иллюстрирующим материалом частного случая выполнения, на котором представлена функциональная схема устройства управляемого турбонаддува двигателя внутреннего сгорания согласно изобретению.

Связи, указанные между функциональными блоками, в общем случае являются многоканальными для обеспечения алгоритма работы заявленного изобретения. Электропитание функциональных блоков осуществляться от бортового аккумулятора (на схеме не показан).

Устройство управления турбонаддувом двигателя внутреннего сгорания содержит турбонагнетатель 1, включающий турбину 2 и компрессор 3, выход которого через последовательно включенные охладитель 4 и дроссельную заслонку 5 сообщен с входным коллектором 6 двигателя внутреннего сгорания 7. Вход компрессора 3 соединен с воздушным фильтром 8, который соединен с атмосферой, а на выпуске турбины 2 установлен катализатор 9, с выходом которого соединен вход отработавших газов теплообменника 10, выход которого сообщен с атмосферой.

Устройство содержит блок 11 управления, информационные входы которого электрически связаны с датчиками 12 температуры и давления, установленными на входе компрессора 3, входе дроссельной заслонки 5, на входном коллекторе 6, блоке 13 цилиндров и выходном коллекторе 14 двигателя 7 внутреннего сгорания.

Кроме того, устройство содержит паровую турбину 15, установленную на одном валу с турбонагнетателем 1, конденсатор 16, вход которого через обратный клапан 17 сообщен с выпуском паровой турбины 15, а выход соединен с резервуаром 18 для жидкости (теплоносителя), в качестве которой может быть использована, например, вода. Выход резервуара 18 посредством трубопровода, на котором установлен насос 19, сообщен с входом жидкости теплообменника 10, выход которого сообщен с сепаратором 20, имеющим выход конденсата, который сообщен со вторым входом резервуара 18 для жидкости. Выход пара сепаратора 20 через обратный клапан 21 сообщен с аккумулятором 22 пара, первый выход которого через регулируемую паровую заслонку 23 сообщен с впуском паровой турбины 15, а его второй выход через байпасный клапан 24 сообщен с входом конденсатора 16. В описываемом варианте насос 19 выполнен электрически управляемым.

Организованный в предложенном устройстве замкнутый паровой контур, включающий паровую турбину 15, конденсатор 16, резервуар 18 для жидкости, теплообменник 10, сепаратор 20 и аккумулятор 22 пара, по сути представляет собой средство утилизации отводящего тепла от двигателя 7 внутреннего сгорания. Управление турбонаддувом, реализуемое за счет управления утилизацией отводящего тепла, осуществляется посредством контроллера 25 управления паровой турбиной и блока 11 управления, объединенными информационной магистралью 26. К управляющему входу блока 11 управления и к одному из информационных входов контроллера 25 управления паровой турбиной подключен датчик 27 акселератора. Заявляемое устройство снабжено дополнительными датчиками 28 температуры и давления, установленными на выходе компрессора 3, аккумуляторе 22 пара и теплообменнике 10. Названные датчики 27 и 28 подключены к другим информационным входам контроллера 25 управления паровой турбиной, первый и второй управляющие выходы которого подключены к управляющему входу регулируемой паровой заслонки 23 и к насосу 19 соответственно.

Устройство управления турбонаддувом двигателя внутреннего сгорания работает следующим образом.

При запуске двигателя 7 внутреннего сгорания поток атмосферного воздуха через фильтр 8 поступает на вход компрессора 3 турбонагнетателя 1, где происходит сжатие воздуха, проводящее к его нагреву. Далее воздушный поток через охладитель 4 и дроссельную заслонку 5 поступает во входной 6 коллектор и далее в блок цилиндров 13 двигателя 7 внутреннего сгорания. Количество поступающего воздуха регулируется блоком 11 управления по сигналам датчика 27 акселератора и датчиков 12 температуры и давления путем управления дроссельной заслонкой 5.

Отработавшие газы, поступающие из выходного коллектора 13 двигателя внутреннего сгорания, направляются в турбонагнетатель 1, раскручивая установленные на общем валу турбину 2 и компрессор 3. Далее отработавшие газы, проходя через катализатор 9 и теплообменник 10, выбрасываются в атмосферу. В катализаторе 9 осуществляется очистка отработавших газов от вредных примесей. В теплообменнике 10 обеспечивается передача тепла от отработавших газов жидкости. По команде контроллера 25 насос 19 находится в отключенном положении, а жидкость из резервуара 18 в теплообменник 10 не поступает, который, соответственно, не генерирует пар.

Если на момент запуска двигателя 7 внутреннего сгорания пар в аккумуляторе 22 пара отсутствует, например после длительной стоянки автомобиля, то паровая турбина 15 свободно вращается на валу турбонагнетателя 1. Если в аккумуляторе 22 пара имеется остаточный пар, то через регулируемую паровую заслонку 23 пар поступает на лопасти паровой турбины 15, создавая крутящий момент на валу турбонагнетателя 1.

По мере прогрева двигателя 7 внутреннего сгорания и, как следствие, увеличения температуры отработавших газов, повышается температура газов, поступающих на вход теплообменника 10. При нагреве теплообменника 10 до температуры, достаточной для парообразования жидкости, по сигналу датчика 28, установленного на теплообменнике 10, контроллер 25 управления паровой турбиной формирует управляющий сигнал на включение насоса 19, который обеспечивает подачу жидкости в теплообменник 10. Интенсивность подачи жидкости на начальном этапе регулируется контроллером 25 посредством изменения уровня управляющего сигнала, подаваемого на электрически управляемый насос 19 в соответствии с текущей температурой теплообменника 10, обеспечивая оптимальный процесс парообразования. Пар, который может содержать остаточное количество жидкости, поступает в сепаратор 20, где происходит разделение на фракции - жидкость и пар, при этом пар через обратный клапан 21 поступает в аккумулятор 22 пара, а жидкость возвращается в резервуар 18.

В результате происходит наполнение паром аккумулятора 22 пара, который через регулируемую паровую заслонку 23 подается на лопасти паровой турбины 15, создавая дополнительный крутящий момент на валу турбокомпрессора 1.

Пар с выпуска паровой турбины 15 поступает в конденсатор 16, где преобразуется в жидкость, которая поступает в резервуар 18. При достижении заданных значений температуры и давления пара в аккумуляторе 22 пара по сигналам датчика 28, установленного на аккумуляторе 22 пара, контроллер 25 управления паровой турбиной формирует управляющий сигнал, который подается на электрически управляемый насос 19 на снижение скорости перекачивания жидкости из резервуара 18 в теплообменник 10.

Таким образом обеспечивается автоматическое поддержание температуры и давления пара в заданном рабочем диапазоне в аккумуляторе 22 пара и, соответственно, на входе регулируемой паровой заслонки 23.

Управление крутящим моментом паровой турбины 15 осуществляет контроллер 25 управления паровой турбиной путем изменения положения регулируемой паровой заслонки 23 по сигналам датчика 27 акселератора, датчика 28 на выходе компрессора 3, а также управляющих команд, поступающих из блока 11 управления по информационной магистрали 26.

При резком нажатии на педаль акселератора и при наличии соответствующего сигнала с датчика 27 акселератора давление и температура отработавших газов и связанный с ними крутящий момент турбины 2 в силу тепловой инерции не может адекватно резко измениться. Отличительной особенностью заявляемого устройства по сравнению с прототипом является то, что по управляющему сигналу с контроллера 25 управления паровой турбиной в соответствии с информационным сигналом с датчика 27 акселератора и командам с блока 11 управления происходит практически мгновенное увеличение (от номинального значения) пропускной способности регулируемой паровой заслонки 23 и соответствующее увеличение крутящего момента паровой турбины 15, что позволяет минимизировать эффект «турбоямы» в двигателе 7 внутреннего сгорания.

В большинстве известных устройств управляемого турбонаддува после ответной реакции двигателя на нажатие педали акселератора, которая осуществляется с запаздыванием, имеет место чрезмерное увеличение скорости вращения турбины, что приводит к резкому возрастанию давления наддувочного воздуха на выходе компрессора.

В отличие от известных конструктивных решений в предлагаемом устройстве в соответствии с информационным сигналом с датчика 28 на выходе компрессора 3 и командам с блока 11 управления по управляющему сигналу с контроллера 25 управления паровой турбиной, будет произведено практически мгновенное снижение (от номинального значения) пропускной способности регулируемой паровой заслонки 23 и соответствующее уменьшение крутящего момента паровой турбины 15, что практически позволит исключить эффект «турбоподхвата» в двигателе 7 внутреннего сгорания.

В некоторых случаях возможно возрастание давления пара в аккумуляторе 22 пара выше заданного значения. Для этого предусмотрен байпасный клапан 24, через который избыток пара, минуя паровую турбину 15, сбрасывается в конденсатор 16. Второй обратный клапан 17 препятствует прохождению избытка пара к выпуску паровой турбины 15.

Организованный в предложенном устройстве замкнутый паровой контур представляет собой быстродействующую петлю автоматического регулирования наддувочным воздухом двигателя, что обеспечивает улучшение динамики управления наддувом.

Следует также отметить, что в отличие от прототипа в предложенном устройстве паровая турбина непрерывно создает крутящий момент на валу турбокомпрессора и постоянно участвует в подаче наддувочного воздуха в двигатель внутреннего сгорания, увеличивая отбор тепла от отработавших газов, что повышает общий коэффициент полезного действия двигателя.

Устройство управления турбонаддувом двигателя внутреннего сгорания, содержащее турбонагнетатель, включающий турбину, впуск которой соединен с выходным коллектором двигателя внутреннего сгорания, и компрессор, выход которого через последовательно включенные охладитель и дроссельную заслонку сообщен с входным коллектором двигателя внутреннего сгорания, воздушный фильтр, выход которого соединен с входом компрессора, катализатор, вход которого сообщен с выпуском турбины, а выход соединен с теплообменником, паровую турбину, впуск которой через первый обратный клапан сообщен с выходом теплообменника, а выпуск соединен со входом конденсатора, выход которого сообщен с первым входом резервуара, насос, включенный между выходом резервуара и выходом теплообменника, и блок управления, информационные входы которого электрически связаны с датчиками температуры и давления, установленными на входе компрессора, входе дроссельной заслонки, на входном и выходном коллекторах двигателя внутреннего сгорания и блоке цилиндров двигателя внутреннего сгорания, управляющий вход блока управления подключен к датчику акселератора, а его управляющий выход подключен к дроссельной заслонке, отличающееся тем, что содержит сепаратор, соединенный с выходом теплообменника и имеющий выход конденсата, соединенный со вторым входом резервуара, и выход пара, аккумулятор пара, вход которого через первый обратный клапан соединен с выходом пара сепаратора, первый выход аккумулятора пара сообщен с впуском паровой турбины, а его второй выход сообщен с входом конденсатора, регулируемую паровую заслонку, установленную между аккумулятором пара и впуском паровой турбины, между выпуском которой и входом конденсатора установлен второй обратный клапан, байпасный клапан, установленный между вторым выходом аккумулятора пара и входом конденсатора, дополнительные датчики температуры и давления, установленные на выходе компрессора, аккумуляторе пара и теплообменнике, контроллер управления паровой турбиной, информационные входы которого подключены к датчику акселератора и дополнительным датчикам температуры и давления, первый управляющий выход подключен к управляющему входу регулируемой паровой заслонки, а второй управляющий выход подключен к насосу, при этом паровая турбина размещена на валу турбонагнетателя, а блок управления и контроллер управления паровой турбиной объединены информационной магистралью.



 

Похожие патенты:

Изобретение относится к машиностроению, а более конкретно, к двигателям внутреннего сгорания. Благодаря стандартной конструкции коленчатого вала (6), имеющего противовесы (30), при его вращении постоянно изменяется расстояние от поверхности противовеса (30) до обмотки переменного тока (31), поэтому магнитное сопротивление также изменяется по периодическому закону.

Изобретение относится к двигателестроению, в частности к двигателям внутреннего сгорания с распределенным рабочим циклом. Техническим результатом является улучшение экономичности при упрощении конструкции.

Изобретение относится к двигателестроению, а именно к управлению двигателей с наддувом. Техническим результатом является повышение эффективности работы двигателя и снижение выброса вредных веществ.

Настоящее изобретение относится к машиностроению, а именно к системам регенерации тепла двигателя. Способ регенерации тепла для двигателя включает уменьшение объема циркулирующей теплопередающей текучей среды.

Система с замкнутым циклом для утилизации отработанного тепла содержит теплообменник, детандер, рекуператор, конденсаторный узел и насос. Теплообменник выполнен с возможностью передачи тепла от внешнего источника тепла к рабочей текучей среде.

Изобретение относится к способу и устройству для регенерации тепла и его преобразования в механическую мощность в системе привода транспортных средств. Проходящее в циркуляционном контуре рабочее средство испаряют с помощью по меньшей мере одного интегрированного в циркуляционный контур рабочего средства испарителя с помощью отходящего тепла двигателя внутреннего сгорания транспортного средства, при этом созданный пар подают в соединенный с двигателем внутреннего сгорания детандер, а затем отходящий пар из детандера переводят обратно по меньшей мере в одном конденсаторе снова в жидкую фазу.

Изобретение относится к машиностроению, а именно к системе обогрева ассенизаторских машин (например, КО-505А), в частности к обогреву предохранительных клапанов бака.

Предлагаемое изобретение относится к машиностроению, а именно к устройствам для повторного использования сбросного тепла. Двигатель-генераторное устройство типа блок-контейнера содержит контейнер 20 для генератора, включающий в себя двигатель 21 и генератор 22.

Предлагаемое изобретение относится к машиностроению, а именно к устройствам для повторного использования сбросного тепла. Контейнер 1 для повторного использования сбросного тепла расположен рядом с контейнером для выработки энергии.

Предлагаемое изобретение относится к машиностроению, а именно к устройствам для повторного использования сбросного тепла. Блок-контейнер содержит контейнер 20 для генератора.

Изобретение может быть использовано в турбокомпаундных двигательных установках с наддувом. Способ управления предназначен для турбокомпаундной двигательной установки, содержащей двигатель (1) внутреннего сгорания (ДВС), имеющий впускную линию (2) и выпускную линию (20), компрессор (11) низкого давления и компрессор (5) высокого давления, установленные в упомянутой впускной линии (2) по ходу потока воздуха, турбину (6) высокого давления и турбину (7) низкого давления, установленные в выпускной линии по ходу потока газов.

Изобретение может быть использовано в турбокомпаундных двигательных установках. Двигательная установка содержит двигатель (1) внутреннего сгорания, включающий в себя впускную и выпускную линии (2) и (20), компрессор (11) низкого давления, компрессор (5) высокого давления, турбину (6) высокого давления, турбину (7) низкого давления и первый байпасный механизм (3, 4).

Изобретение может быть использовано в двигателестроении. Тепловая машина (100) содержит двигатель (10) внутреннего сгорания со стороной (AG) выпуска отработавших газов и стороной (LL) наддувочной текучей среды и систему наддува.

Изобретение может быть использовано в двигателях с наддувом, содержащих турбонагнетатели. Способ эксплуатации двигателя (10) с турбонагнетателем (164, 161, 162) заключается в том, что осуществляют вращение турбонагнетателя в первом направлении для увеличения времени нахождения выхлопных газов двигателя в выпускном (48) коллекторе.

Изобретение относится к приводу турбонагнетателей двигателей внутреннего сгорания ДВС, работающих автономно. .

Изобретение относится к двигателестроению. Техническим результатом является повышение коэффициента полезного действия двигателя внутреннего сгорания. Сущность изобретения заключается в том, что в двигателе, содержащем как минимум два цилиндра, воздух сжимается в компрессорном цилиндре, перепускается через теплообменник, где осуществляется регенерация тепла от продуктов сгорания, в рабочий цилиндр, в котором осуществляется впрыск топлива, его сгорание с совершением работы расширения. Новым для осуществления термодинамического цикла и обеспечения работоспособности двигателя является наличие системы контроля и поддержания давления в воздушном контуре теплообменника. Система поддержания давления в воздушном контуре теплообменника включает подкачивающий компрессор эпизодического действия, ресивер сжатого воздуха и аппаратуру контроля и управления системой. 2 н. и 2 з.п. ф-лы, 3 ил.
Наверх