Лабораторная флотационная машина

Изобретение относится к устройствам, предназначенным для проведения исследовательских работ, связанных с обогащением полезных ископаемых методом пенной флотации, и может быть использовано для исследования на обогатимость различных типов руд, а также самих процессов флотации в лабораторных условиях. Лабораторная флотационная машина содержит корпус, съемную камеру с приводом подъема, подвижную платформу, аэрационный узел, состоящий из импеллера, вала импеллера и статора, серводвигатель привода вала импеллера, редуктор, блок управления серводвигателем. Машина дополнительно содержит программируемый логический контроллер, сенсорную панель оператора, маршрутизатор беспроводной сети, микрокомпрессор сжатого воздуха, датчик расхода сжатого воздуха в аэрационный узел, клапан регулирования расхода сжатого воздуха в аэрациолнный узел, не менее двух микронасосов дозирования флотореагентов, устройство регулирования уровня пульпы во флотомашине, включающее вытеснительный конус с приводным механизмом, обсадную трубу, датчик уровня пульпы и воздушную форсунку подачи сжатого воздуха на обдув датчика уровня пульпы. Выходы датчиков расхода сжатого воздуха и уровня пульпы связаны с соответствующими входами программируемого логического контроллера. Выходы программируемого логического контроллера связаны с информационным входом сенсорной операторской панели и управляющими входами блока управления серводвигателя привода вала импеллера, микрокомпрессора сжатого воздуха, микронасосов дозирования флотореагентов, клапана регулирования расхода сжатого воздуха в аэрационный узел, приводного механизма вытеснительного конуса и привода подъема съемной камеры. Вход маршрутизатора беспроводной связи связан с интерфейсными выходами программируемого контроллера и сенсорной операторской панели. Съемная камера выполнена в виде сосуда в форме прямой восьмигранной призмы, содержащего не менее двух рукавов для отвода пены и карман для размещения датчика уровня пульпы во флотационной машине. Съемная камера выполнена или в виде цилиндра, или в виде усеченного конуса, или в виде прямоугольного параллепипеда. Технический результат - улучшение качества проведения экспериментов, а также повышение степени автоматизации работы машины. 4 з.п. ф-лы, 5 ил.

 

Изобретение относится к устройствам, предназначенным для проведения исследовательских работ, связанных с обогащением полезных ископаемых методом пенной флотации, и может быть использовано для исследования на обогатимость различных типов руд, а также самих процессов флотации в лабораторных условиях.

Из предшествующего уровня техники известны изобретения, реализующие возможность проведения флотационных экспериментов над пробами руд для их испытания на обогатимость.

Известна лабораторная флотационная машина, содержащая станину, аэрационный блок, состоящий из импеллера, выполненного в виде полого усеченного конуса с лопатками, и полого вала со стаканом, размещенным между подшипниками, камеру с отбойником и пеногоном, привод вала импеллера и приспособление для определения и регулирования расхода воздуха, установленного в стакане. В отбойнике выполнены отверстия для установки датчиков параметров процесса. Приспособление для регулирования расхода воздуха выполнено из подшипника с установленной в нем иглой и регулировочного винта со стопорной гайкой (SU. а.с. №1103903, кл. B013D 1/14, 1983 г.).

Данная машина обладает рядом существенных недостатков, таких как отсутствие возможности регулирования скорости вращения импеллера и скорости пеносьема. Также к недостаткам данной модели следует отнести и отсутствие привода подъема съемной камеры и, как следствие, необходимость фиксировать камеру с продуктом в рабочем положении вручную.

Наиболее близкой по технической сущности и достигаемому результату является лабораторная флотационная машина, содержащая корпус, съемную камеру с приводом подъема, подвижную платформу, аэрационный узел, состоящий из импеллера, вала импеллера и статора, серводвигатель привода вала импеллера, редуктор, блок управления серводвигателем (флотационная машина, производимая компанией ТВЭЛЛ (http://www.twellgroup.ru/floto_lab.html).

Достоинствами флотомашины являются возможность регулирования таких параметров процесса, как скорость вращения вала импеллера, скорость пеногона и величины расхода воздуха, подаваемого в аэрационный узел. Кроме того, флотомашина оснащена приводом подъема съемной камеры, а также встроенным электронным устройством управления, позволяющим задавать режимные параметры.

Недостатками известной лабораторной флотационной машины являются: отсутствие системы автоматической подачи флотореагентов, отсутствие встроенного автономного источника сжатого воздуха, что приводит к необходимости подвода сжатого воздуха от удаленных источников, регулирование расхода воздуха в камеру флотомашины производится путем изменения степени открытия ручного вентиля по показаниям поплавкового ротаметра, регулирование уровня пульпы в камере флотомашины осуществляется за счет разбавления находящегося в ней продукта водой для компенсации количества снимаемого во время флотации материала, что приводит к изменению условий эксперимента. Кроме того, отсутствует возможность автоматического сбора информации для обработки результатов экспериментов.

Технический результат, на достижение которого направлено настоящее изобретение, заключается в расширении функциональных возможностей лабораторной флотомашины, повышении степени автоматизации ее работы и улучшении качества проведения экспериментов.

Указанный технический результат достигается тем, что лабораторная флотационная машина, содержащая корпус, съемную камеру, подвижную платформу с приводом подъема, аэрационный узел, состоящий из импеллера, вала импеллера и статора, серводвигатель привода вала импеллера, редуктор, блок управления серводвигателем, согласно изобретению, дополнительно содержит программируемый логический контроллер, сенсорную панель оператора, маршрутизатор беспроводной сети, микрокомпрессор сжатого воздуха, датчик расхода сжатого воздуха в аэрационный узел, клапан регулирования расхода сжатого воздуха в аэрационный узел, не менее двух микронасосов дозирования флотореагентов, устройство регулирования уровня пульпы во флотомашине, включающее вытеснительный конус с приводным механизмом, обсадную трубу, датчик уровня пульпы и воздушную форсунку подачи сжатого воздуха на обдув датчика уровня пульпы, при этом выходы датчиков расхода сжатого воздуха и уровня пульпы связаны с соответствующими входами программируемого логического контроллера, а выходы программируемого логического контроллера связаны с информационным входом сенсорной операторской панели и управляющими входами блока управления серводвигателя привода вала импеллера, микрокомпрессора сжатого воздуха, микронасосов дозирования флотореагентов, клапана регулирования расхода сжатого воздуха в аэрационный узел, приводного механизма вытеснительного конуса и привода подъема съемной камеры, кроме того, вход маршрутизатора беспроводной связи связан с интерфейсными выходами программируемого контроллера и сенсорной операторской панели.

Кроме того, указанный технический результат достигается тем, что съемная камера может быть выполнена в виде сосуда в форме прямой восьмигранной призмы.

А так же тем, что съемная камера так же может быть выполнена в виде цилиндра, в виде усеченного конуса или в виде прямоугольного параллелепипеда.

На фиг. 1 изображена схема лабораторной флотационной машины.

На фиг. 2 изображено выполнение съемной камеры в виде сосуда в форме прямой восьмигранной призмы.

На фиг. 3 изображено выполнение съемной камеры в виде сосуда в форме цилиндра.

На фиг. 4 изображено выполнение съемной камеры в виде сосуда в форме усеченного конуса.

На фиг. 5 изображено выполнение съемной камеры в виде сосуда в форме прямоугольного параллелепипеда

Лабораторная флотационная машина содержит корпус флотомашины 1, съемную камеру 2, с рукавами 3 для отвода пены и карманом 4 для размещения датчика 5 уровня пульпы в съемной камере 2, подвижную платформу 6 с приводом 7 подъема, аэрационный узел, состоящий из импеллера 8, закрепленного на полом приводном вале 9, проходящем через обсадную трубу 10, и статора 11, закрепленного на дне съемной камеры 2, вытеснительный конус 12 с приводом 13 подъема, ручной вентиль 14 и форсунку 15 для подачи сжатого воздуха на обдув датчика 5 уровня пульпы в съемной камере 2, серводвигатель 16 с редуктором 17 вращения приводного вала 9 импеллера 8, блок 18 управления серводвигателем 16, микрокомпрессор 19 сжатого воздуха, клапан 20 регулирования и датчик 21 контроля расхода сжатого воздуха через полый приводной вал 9 в съемную камеру 2, микронасосы 22 дозирования флотореагентов в съемную камеру 2, емкости 23 для хранения флотореагентов, программируемый логический контроллер 24, сенсорную панель 25 оператора, кнопку-индикатор 26 «Пуск/Стоп Импеллер», кнопку-индикатор 27 «Воздух», кнопку-индикатор 28 «Вверх/Вниз Камера», кнопку-индикатор 29 «Вверх/Вниз Вытеснитель» и маршрутизатор 30 беспроводной сети.

Съемная камера 2 может быть выполнена в виде сосуда в форме прямой восьмигранной призмы, что уменьшает трудоемкость ее изготовления, например, из органического стекла.

Съемная камера 2 также может быть выполнена в виде сосуда в форме цилиндра, что позволяет получить более адекватные результаты при переносе разработанных в результате исследований технологий на промышленные флотомашины с цилиндрической формой камеры.

Съемная камера 2 может быть выполнена в виде сосуда в форме усеченного конуса, что позволяет повысить эффективность флотации за счет более концентрированного насыщения воздухом пенного слоя флотомашины при сопоставимом по отношению к другим формам съемной камеры объеме исследуемой пробы.

Съемная камера 2 так же может быть выполнена в виде сосуда в форме прямоугольного параллелепипеда, что позволяет получить более адекватные результаты при переносе разработанных в результате исследований технологий на промышленные флотомашины с прямоугольной формой камеры.

Лабораторная флотационная машина работает следующим образом.

В исходном состоянии подвижная платформа 6 с установленной на ней съемной камерой 2 находится в крайнем нижнем положении для удобства заполнения ее исследуемой пробой пульпы. Вытеснительный конус 12 поднят. Микрокомпрессор 19 сжатого воздуха отключен, серводвигатель 16 остановлен, ручной вентиль 14 и клапан 20 регулирования сжатого воздуха закрыт.Напряжение питания программируемого логического контроллера 24, блока 18 управления серводвигателем 16 и микронасосов 22 дозирования флотореагентов отключено.

Дальнейшая работа флотомашины осуществляется в следующей последовательности.

1. Подают напряжение питания программируемого логического контроллера 24, блока 18 управления серводвигателем 16 и микронасосов 22 дозирования флотореагентов.

2. Съемную камеру 2 заполняют исследуемым материалом до требуемого объема.

3. Нажимают кнопку-индикатор 28 «Вверх/Вниз Камера», команда XI от которой поступает на вход программируемого контроллера 24, вследствие чего последний выдает команду Y1 на включение привода 7 подъема подвижной платформы 6 с установленной на ней съемной камерой 2. Подъем съемной камеры 2 осуществляют до достижения ей рабочего положения, определяемого уровнем установки датчиком 5 уровня пульпы. В момент касания пульпы чувствительным элементом датчика 5 уровня вырабатывается сигнал Х2, в соответствии с которым программируемый контроллер 24 выдает команду Y1 на останов механизма 7 подъема подвижной платформы 6.

4. На сенсорной панели 25 оператора задают требуемые для проведения исследования значения скорости вращения полого приводного вала 9 импеллера 8, расхода сжатого воздуха через полый приводной вал 9 в съемную камеру 2, режим вытеснения, объем доз флотореагентов, подаваемых микронасосами 22 и временные циклы режимов работы флотомашины - «Агитация» и «Флотация».

5. На первом этапе работы флотомашины в режиме «Агитация» нажимают кнопку-индикатор 26 «Пуск/Стоп Импеллер», по команде Х3 от которой программируемый контроллер 24 вырабатывает команду Y2, соответствующую заданной скорости вращения полого приводного вала 9 импеллера 8, поступающую на блок 18 управления серводвигателем 16. Серводвигатель 16 начинает свое вращение с заданной скоростью и через редуктор 17 приводит в движение вал 9 импеллера 8. Исследуемый материал в съемной камере 2 начинает перемешиваться. Одновременно с выхода программируемого контроллера 24 на управляющие входы микронасосов 22 поступает команда Y3 на их включение и реагенты из емкости 23 для хранения флотореагентов начинают поступать в съемную камеру 2. Длительность включения микронасосов 22, вычисляется программируемым контроллером 24 в зависимости от требуемого объема доз подаваемых флотореагентов, заданных ранее на сенсорной панели 25 оператора.

6. По истечении заданного времени реализации режима «Агитация», либо по нажатию на кнопку-индикатор 27 «Воздух», команда Х6 от которой поступает на вход программируемого контроллера 24, последний переводит работу флотомашины в режим «Флотация» путем подачи команды Y4 на включение микрокомпрессора 19. Сжатый воздух через клапан 20 регулирования, датчик 21 контроля расхода, полый приводной вал 9, обсадную трубу 10 поступает в аэрационный узел. Регулирование расхода Х5 сжатого воздуха осуществляется путем изменения степени открытия клапана 20 по команде Y5, формируемой в программируемом контроллере 24 в соответствии со значением, заданным на сенсорной панели 25 оператора. Подаваемый сжатый воздух благодаря вращающемуся импеллеру 8 и неподвижному статору 11 диспергируется в объеме исследуемого материала, находящегося в съемной камере 2 флотомашины. Степень диспергации задается скоростью вращения серводвигателя 16 путем формирования программируемым контроллером 24 управляющей команды Y2, соответствующей скорости вращения, заданной на сенсорной панели 25 оператора. Поступление сжатого воздуха в съемную камеру 2 инициирует начало процесса флотации. Образующийся в процессе флотации пенный продукт по рукавам 3 самотеком отводится за пределы съемной камеры 2 для дальнейшей обработки. Компенсация с целью стабилизации условий протекания процесса флотации уменьшения уровня заполнения материалом съемной камеры 2 вследствие вывода пенного продукта обеспечивается погружением в пульпу вытеснительного конуса 12. Управление погружением вытеснительного конуса 12 осуществляется в двух режимах, задаваемых с сенсорной панели 25 оператора - ручном и автоматическом. В ручном режиме нажимают кнопку-индикатор 29 «Вверх/Вниз Вытеснитель» и удерживают ее до погружения вытеснительного конуса 12 в исследуемый материал на необходимую глубину. В автоматическом режиме в случае понижения уровня пульпы в съемной камере 2 ниже заданного значения так же нажимают кнопку-индикатор 29 «Вверх/Вниз Вытеснитель». Генерируемый вследствие этого сигнал Х4 поступает на вход программируемого контроллера 24, который в свою очередь посылает команду Y6 соответствующей полярности на управляющий вход механизма 13 подъема вытеснительного конуса 12. Вытеснительный конус 12 начнет движение вниз вдоль обсадной трубы 10. Вследствие погружения вытеснительного конуса 12 в пульпу, уровень последней будет повышаться до момента касания чувствительного элемента датчика 5. В момент касания датчиком 5 уровня вырабатывается сигнал Х2, в соответствии с которым программируемый контроллер 24 выдает команду Y6 на останов механизма 13 подъема вытеснительного конуса 12. В дальнейшем при уменьшении уровня пульпы вследствие вывода пенного продукта контакт между чувствительным элементом датчика 5 уровня и пульпой нарушается, датчиком 5 формируется соответствующий сигнал Х2, в соответствии с которым программируемый контроллер 24 выдает команду Y6 на продолжение движения вытеснительного конуса 12 вниз и далее процедура стабилизации уровня пульпы повторяется аналогично описанному выше.

С целью избежания ложного срабатывания датчика уровня 5 вследствие загрязнения его чувствительный элемент в процессе всего эксперимента обдувается сжатым воздухом, подводимым через ручной вентиль 14 и форсунку 15.

Команды управления Х1, Х3, Х4, Х6, инициируемые кнопками-индикаторами 26-29, могут дублироваться на входе в программируемый контроллер 24 командами с внешнего компьютера через маршрутизатор беспроводной сети 30.

После выхода заданного времени цикла флотации программируемым контроллером 24 выдаются команды Y4 на останов работы микрокомпрессора 19, Y2 на останов серводвигателя 16, Y6 на подъем вытеснительного конуса 12 и Y1 на опускание подъема подвижной платформы 6. На этом работа флотомашины заканчивается.

Во время проведения исследований все режимные параметры флотомашины архивируются. Запись данных может осуществляться на внутреннюю память сенсорной панели 25 оператора. Кроме того, через маршрутизатор беспроводной сети 30 данные могут передаваться для архивации и обработки на внешнем компьютере.

Таким образом, предложенная лабораторная флотационная машина обладает расширенными функциональными возможностями благодаря автоматизации функций ее контроля и управления, включая возможность архивации и обработки данных на внешнем компьютере, а также повышению качества проведения экспериментов за счет стабилизации уровня пульпы без изменения характеристик исследуемого материала.

1. Лабораторная флотационная машина, содержащая корпус, съемную камеру с приводом подъема, подвижную платформу, аэрационный узел, состоящий из импеллера, вала импеллера и статора, серводвигатель привода вала импеллера, редуктор, блок управления серводвигателем, отличающаяся тем, что она дополнительно содержит программируемый логический контроллер, сенсорную панель оператора, маршрутизатор беспроводной сети, микрокомпрессор сжатого воздуха, датчик расхода сжатого воздуха в аэрационный узел, клапан регулирования расхода сжатого воздуха в аэрационный узел, не менее двух микронасосов дозирования флотореагентов, устройство регулирования уровня пульпы во флотомашине, включающее вытеснительный конус с приводным механизмом, обсадную трубу, датчик уровня пульпы и воздушную форсунку подачи сжатого воздуха на обдув датчика уровня пульпы, при этом выходы датчиков расхода сжатого воздуха и уровня пульпы связаны с соответствующими входами программируемого логического контроллера, а выходы программируемого логического контроллера связаны с информационным входом сенсорной операторской панели и управляющими входами блока управления серводвигателя привода вала импеллера, микрокомпрессора сжатого воздуха, микронасосов дозирования флотореагентов, клапана регулирования расхода сжатого воздуха в аэрационный узел, приводного механизма вытеснительного конуса и привода подъема съемной камеры, кроме того, вход маршрутизатора беспроводной связи связан с интерфейсными выходами программируемого контроллера и сенсорной операторской панели.

2. Лабораторная флотационная машина по п. 1, отличающаяся тем, что съемная камера выполнена в виде сосуда в форме прямой восьмигранной призмы, содержащего не менее двух рукавов для отвода пены и карман для размещения датчика уровня пульпы во флотационной машине.

3. Лабораторная флотационная машина по п. 1, отличающаяся тем, что съемная камера выполнена в виде цилиндра.

4. Лабораторная флотационная машина по п. 1, отличающаяся тем, что съемная камера выполнена в виде усеченного конуса.

5. Лабораторная флотационная машина по п. 1, отличающаяся тем, что съемная камера выполнена в виде прямоугольного параллелепипеда.



 

Похожие патенты:

Изобретение относится к обогащению полезных ископаемых, в частности к подготовке пульпы перед процессом флотации, и может быть использовано при переработке рудного и нерудного сырья.

Изобретение относится к очистке сточных вод. Установка включает флотокамеру 1 с нерастворимыми электродами 2, плавающую фильтрующую загрузку 3, плавающую сорбционно-активную загрузку, растворимый электрод 4.

Изобретение относится к обогащению полезных ископаемых флотационным способом, в частности к устройствам для подготовки пульпы к процессу флотации, и может быть использовано при переработке рудного и нерудного сырья.

Изобретение относится к области обогащения полезных ископаемых, в частности к системам автоматизированного регулирования процессов пенной флотации и флотоклассификации.

Изобретение относится к обогащению руд флотацией. Флотационный классификатор содержит цилиндрическую камеру с нижней конической частью, соединенной с разгрузителем песков, установленный внутри камеры соосно с ней открытый сверху цилиндрический сборник слива мелких частиц с наклонным сливным патрубком и регулятором уровня пульпы, аэраторы, установленные между стенками камеры и цилиндрическим сборником слива мелких частиц, сборник нижнего продукта, установленные в верхней части камеры сужающиеся желоба, выполненные с нижней узкой частью днища и регуляторами расхода нижнего продукта и соединенные в нижней узкой части днища со сборником нижнего продукта посредством патрубков, установленный внутри камеры пеносборный желоб для верхнего продукта сужающихся желобов и тангенциальный патрубок для подачи исходной пульпы, установленный с обеспечением вращательного движения пульпы в камере.

Изобретение относится к водоочистке. Флотационная установка для очистки сточных вод содержит корпус 1 с перегородками 12, 14, 16, камеру очищенной воды 21, устройство для насыщения исходной воды пузырьками воздуха, состоящее из насоса 24, эжектора 27 и пневмогидравлического диспергатора.

Группа изобретений относится к управлению флотационными камерами для разделения веществ в загружаемом материале в линии пенной флотации для отделения веществ, например минералов, содержащих ценный материал, из загружаемого материала в виде руды, содержащей пустую породу.

Изобретение относится к системам очистки воды и может быть использовано для очистки нефтесодержащих и сточных вод. Устройство для очистки нефтесодержащих и сточных вод содержит ступени очистки, соединенные последовательно вдоль потока очищаемой воды и отделенные между собой посредством перегородок 7, насос, аэрирующие узлы 12, 13, 14, трубопровод подвода очищаемой 15 и трубопровод отвода очищенной 16 воды.

Изобретение относится к системам очистки воды и может быть использовано для очистки нефтесодержащих и сточных вод. Установка для очистки нефтесодержащих и сточных вод содержит по меньшей мере две ступени очистки, соединенные последовательно вдоль потока очищаемой воды и разделенные между собой посредством перегородок 7.

Изобретение относится к очистке сточных вод с использованием пневматической флотации и может быть применено при очистке промышленных сточных вод, полученных при мойке средств хранения нефти и нефтепродуктов.

Предложенная группа изобретений относится к системе разделения множества частиц, содержащихся в пульпе, может быть использована в горнодобывающей промышленности для классификации и разделения по плотности во взвешенном слое. Система разделения множества частиц, содержащихся в пульпе, содержит резервуар для разделения, устройство подачи пульпы, разветвленный трубопровод для псевдоожиженного потока, систему введения газа и трубопровод нижнего отвода, которые все предназначены для создания псевдоожиженного слоя в упомянутом резервуаре для разделения путем подачи пульпы через устройство подачи пульпы и предоставления пульпе возможности взаимодействовать с псевдоожиженным потоком из разветвленного трубопровода для псевдоожиженного потока. Резервуар для разделения содержит лоток для забора частиц, перемещенных в верхнюю часть резервуара для разделения. Система введения газа выполнена с возможностью регулирования размеров пузырьков газа в псевдоожиженном потоке и содержит трубопровод для введения газа, перепускной трубопровод для потока воды для восходящего потока с целью обхода упомянутого трубопровода для введения газа. Система введения газа является регулируемой для изменения размеров пузырьков газа путем изменения расхода воды для восходящего потока через упомянутый трубопровод для введения газа. Трубопровод для введения газа и перепускной трубопровод сходятся в одном месте для создания псевдоожиженного потока. Объем псевдоожиженного потока является регулируемым путем изменения расхода воды для восходящего потока через систему введения газа. По другому варианту выполнения система разделения содержит линию подачи воды для восходящего потока, присоединенную выше по течению относительно системы введения газа, и реагент, введенный в упомянутую линию подачи воды для обработки частиц. Способ регулирования размеров пузырьков газа в псевдоожиженном потоке, направленном в разветвленный трубопровод для псевдоожиженного потока в резервуаре для разделения, включает этапы, на которых перемещают первую часть воды для восходящего потока через трубопровод для введения газа, перемещают вторую часть воды для восходящего потока через перепускной трубопровод, изменяют расход первой части воды для восходящего потока, насыщают газом первую часть воды для восходящего потока в трубопроводе для введения газа с целью выработки пузырьков газа, соединяют первую и вторую части воды для восходящего потока с целью получения псевдоожиженного потока и вводят псевдоожиженный поток в резервуар для разделения через разветвленный трубопровод для псевдоожиженного потока. Технический результат – повышение эффективности процесса разделения. 4 н. и 24 з.п. ф-лы, 4 ил.

Изобретение относится к резервуарам для флотации и может быть использовано для отделения углеводородов от пластовой воды. Резервуар (10) для флотации, предназначенный для удаления посторонних примесей из поступающей в него текучей среды, содержит нижнюю часть, задающую днище (50) резервуара (10), стенку (45), задающую борта резервуара; ряд смежных камер внутри резервуара, отделенных друг от друга разделительными стенками (65), нефтесборный лоток (15), охватывающий каждую камеру и отделенный от каждой камеры переливной перегородкой (35). Каждая камера содержит наклонную перегородку (40), сообщающую круговое движение текучей среде, находящейся в камере. Переливная перегородка (35) расположена напротив наклонной перегородки (40). С одной из камер из ряда смежных камер сообщен по текучей среде впускной патрубок (20), расположенный вблизи наклонной перегородки (40) ряда смежных камер. Каждая камера сообщается по текучей среде с соседними камерами через соединительный канал (75), расположенный в нижней части разделительной стенки (65) каждой камеры и напротив нефтесборного лотка (15). Соединительный канал (75) выполнен с возможностью прохождения текучей среды из камеры к задней стороне наклонной перегородки (40) смежной камеры. В разделительной стенке (65) между двумя смежными камерами выполнено соединительное отверстие (60). В наклонной перегородке (40), по меньшей мере, в одной из камер из ряда смежных камер выполнен канал (70) для прохождения текучей среды, выполненный с возможностью перетекания текучей среды между смежными камерами через наклонную перегородку (40), по меньшей мере, одной камеры. С одной из камер из ряда смежных камер сообщен по текучей среде выпускной патрубок. Соединительное отверстие и канал для прохождения текучей среды предусмотрены в чередующихся смежных камерах. Изобретение позволяет обеспечить устройство для газовой флотации, предотвращающее, сокращающее или ограничивающее перепуск воды с устранением или снижением зависимости от соединительной трубы. 14 з.п. ф-лы, 13 ил.

Изобретение относится к обогащению полезных ископаемых методом флотации и может быть использовано при обогащении рудного и нерудного сырья, очистке сточных вод, в химической промышленности. Флотационная машина включает камеру, расположенные внутри вертикально и коаксиально один в другом трубопровод для подачи воздуха и трубопровод для подачи пульпы с насадком, аэратор, выполненный в виде полой камеры, расположенной под трубопроводами, и сообщенный с ними, установленную под аэратором отбойную плиту, отличающаяся тем, что насадка трубопровода для подачи пульпы выполнена цилиндроконической формы с выпускным отверстием меньшего диаметра для создания эжектирующего эффекта. Машина снабжена соединяющими аэратор с объемом камеры патрубками, установленными под углом 120° и обеспечивающими всасывание и циркуляцию пульпы в зону эжектирующего эффекта для повторного насыщения воздухом. Камера цилиндрической формы снабжена пеногонами карусельного типа. Технический результат – повышение технологической эффективности флотационной машины. 1 з.п. ф-лы, 2 ил.
Наверх