Пьезоактюатор изгибного типа

Изобретение относится к пьезоактюаторам изгибного типа и предназначено для использования в электронике, управляемой оптике, микромеханике, медицине, машиностроении. Пьезоактюатор изгибного типа представляет собой многослойный пакет, состоящий из элементарных слоев, каждый из которых содержит пьезоэлектрические слои биморфного элемента и внутренние электроды, установленные между пьезоэлектрическими слоями и с обеих сторон биморфного элемента. При этом внутренние электроды объединены на неподвижном торце пакета внешними электродами. Многослойный пакет составлен из механически несвязанных элементарных слоев, каждый элементарный слой дополнительно содержит как минимум по два слоя, расположенных с каждой стороны биморфного элемента и выполненных из материала с магнитоэлектрическим эффектом, и внутренние электроды, установленные между слоями из материала с магнитоэлектрическим эффектом. При этом внутренние электроды объединены внешними электродами для электрического управления магнитными полями в слоях из материала с магнитоэлектрическим эффектом, дополнительно установленными на неподвижном торце многослойного пакета. Технический результат заключается в повышении амплитуды управляемых деформаций в статическом и динамическом режимах и возможность фиксирования больших статических и амплитудных резонансных изгибов пьезоактюатора. 3 з.п. ф-лы, 7 ил.

 

Изобретение относится к устройствам на основе пьезоматериалов, а именно к пьезоактюаторам изгибного типа и предназначено для использования в электронике, управляемой оптике, микромеханике, медицине, машиностроении, в частности, при изготовлении пьезоэлектрического привода закрылка лопасти воздушного винта винтокрылого летательного аппарата.

Известен биморфный пьезоэлектрический актюатор, включающий две жестко соединенные друг с другом однородные пьезоэлектрические пластины равной толщины с одинаковой или противонаправленной поляризацией, внутренний и наружные электроды [Никифоров В.Г., Климашин В.М., Сафронов А.Я. Биморфные пьезоэлектрические элементы: актюаторы и датчики // Компоненты и технологии. - 2003. - № 4. - С. 46-48].

Известное устройство имеет малую чувствительность (отношение величины изгибных деформаций биморфа к приложенному управляющему напряжению) и малую управляемую изгибную деформацию, вследствие его монолитности и большой жесткости на изгиб.

Наиболее близким устройством того же назначения к заявленному изобретению по совокупности признаков является деформируемое зеркало на основе многослойной активной биморфной структуры, содержащее закрепленные в корпусе два жестко соединенных друг с другом пьезоэлектрических элемента с металлическими электродами на противоположных сторонах и отражающую поверхность, выполненную на внешней стороне одного из пьезоэлектрических элементов. Пьезоэлектрические элементы выполнены многослойными и образованы по крайней мере двумя идентичными пьезопластинами, или пьезопленками, или пьезослоями со сплошными металлическими электродами на противоположных сторонах, причем в каждом пьезоэлементе отдельные пьезопластины, или пьезопленки, или пьезослои ориентированы таким образом, что векторы поляризации смежных пьезопластин, или пьезопленок, или пьезослоев направлены в противоположные стороны, а их одноименные электроды электрически связаны между собой, при этом пьезоэлектрические элементы жестко соединены друг с другом таким образом, что векторы поляризации их смежных сопрягаемых пьезопластин, или пьезопленок, или пьезослоев сонаправлены, а их смежные сопрягаемые электроды электрически связаны между собой (патент РФ №2099754 от 20.12.1997). Данное устройство принято за прототип.

Известное устройство, по сравнению с биморфом такого же размера из однослойных монолитных частей, позволяет лишь незначительно увеличить чувствительность и амплитуду деформаций за счет слоистости обеих частей биморфа.

Признаки прототипа, совпадающие с существенными признаками заявляемого изобретения, - пьезоактюатор изгибного типа представляет собой многослойный пакет, состоящий из элементарных слоев, каждый из которых содержит пьезоэлектрические слои биморфного элемента и внутренние электроды, установленные между пьезоэлектрическими слоями и с обеих сторон биморфного элемента; внутренние электроды объединены на неподвижном торце пакета внешними электродами.

Недостатками известного устройства, принятого за прототип, являются малая чувствительность и малая управляемая изгибная деформация, вследствие значительной изгибной жесткости актюатора. Увеличение числа слоев (жестко связанных между собой внутренними электродами) пьезоэлектрика не приводит к существенному увеличению реализуемых изгибных деформаций актюатора из-за сопутствующего значительного увеличения его изгибной жесткости.

Задачей, на решение которой направлено изобретение, является создание пьезоактюатора изгибного типа с увеличенными чувствительностью, амплитудами управляемых деформаций в статическом и динамическом режимах и возможностью фиксирования больших статических и амплитудных резонансных изгибов актюатора.

Поставленная задача была решена за счет того, что в известном пьезоактюаторе изгибного типа, характеризующемся тем, что представляет собой многослойный пакет, состоящий из элементарных слоев, каждый из которых содержит пьезоэлектрические слои биморфного элемента и внутренние электроды, установленные между пьезоэлектрическими слоями и с обеих сторон биморфного элемента, при этом внутренние электроды объединены на неподвижном торце пакета внешними электродами, согласно изобретению многослойный пакет составлен из механически несвязанных элементарных слоев, каждый элементарный слой дополнительно содержит как минимум по два слоя, расположенных с каждой стороны биморфного элемента и выполненных из материала с магнитоэлектрическим эффектом, и внутренние электроды, установленные между слоями из материала с магнитоэлектрическим эффектом, при этом внутренние электроды объединены внешними электродами для электрического управления магнитными полями в слоях из материала с магнитоэлектрическим эффектом, дополнительно установленными на неподвижном торце многослойного пакета.

Целесообразно помещение пьезоактюатора в эластичную оболочку для предотвращения его внешнего механического повреждения.

Эластичная оболочка может быть изготовлена из силикона.

Кроме того, форма внутренних электродов совпадает с формой областей контакта слоев, но вблизи неподвижного торца пьезоактюатора ширина электрода сужается от ширины всего пакета до ширины соответствующего внешнего электрода, к которому этот внутренний электрод присоединен.

Признаки заявляемого технического решения, отличительные от прототипа, - многослойный пакет составлен из механически несвязанных элементарных слоев; каждый элементарный слой дополнительно содержит как минимум по два слоя, выполненных из материала с магнитоэлектрическим эффектом, и внутренние электроды, установленные между слоями из материала с магнитоэлектрическим эффектом; внутренние электроды объединены с внешними электродами, дополнительно установленными на неподвижном торце многослойного пакета, для электрического управления магнитными полями в слоях из материала с магнитоэлектрическим эффектом; пьезоактюатор помещен в эластичную оболочку для предотвращения его внешнего механического повреждения; эластичная оболочка изготовлена из силикона; форма внутренних электродов совпадает с формой областей контакта слоев, но вблизи неподвижного торца пьезоактюатора ширина электрода сужается от ширины всего пакета до ширины соответствующего внешнего электрода, к которому этот внутренний электрод присоединен.

Отличительные признаки в совокупности с известными позволяют увеличить чувствительность, амплитуду управляемых деформаций в статическом и динамическом режимах и обеспечить возможность фиксирования больших статических и амплитудных резонансных изгибов пьезоактюатора.

Большие изгибные деформации пьезоактюатора достигаются благодаря малой жесткости на изгиб при квазистатическом и динамическом режимах, резонансной частоте электронагружения (в динамическом или «колебательном» режиме) биморфного пьезоэлектрического элемента для каждого элементарного составного слоя и для всего многослойного пакета пьезоактюатора при идеальном проскальзывании со смежными слоями на активной фазе изгиба. В частности, для прямоугольного пьезоактюатора в виде многослойного стержня (или пластины) жесткость на изгиб при идеальном проскальзывании входящих в него слоев в N2 раз меньше жесткости монолитного стержня (или пластины) с теми же размерами и упругими свойствами, N - число слоев в пакете. Приобретенная на каждой активной фазе амплитуда (монотонно возрастающая по отношению к амплитуде на предыдущей активной фазе) вынужденных резонансных электромагнитоупругих изгибных колебаний элементарных составных слоев фиксируется управляемым магнитным слипанием смежных слоев в монолитный жесткий пакет с фиксированной макродеформацией изгиба пьезоактюатора. Уменьшение толщин входящих в пьезоактюатор отдельных элементарных слоев понижает величины управляющих напряжений (без снижения амплитуды полезных изгибных деформаций) и, следовательно, повышает чувствительность каждого слоя и всего пьезоактюатора в целом.

Заявителю неизвестно использование в науке и технике отличительных признаков заявленного пьезоактюатора изгибного типа с получением указанного технического результата.

Предлагаемый пьезоактюатор иллюстрируется чертежами, представленными на фиг. 1-7.

На фиг. 1 изображена геометрическая форма многослойного пакета пьезоактюатора из элементарных слоев в исходном (А) и рабочем (Б) состояниях.

На фиг. 2 изображен элементарный слой.

На фиг. 3 изображена геометрическая форма внутренних и внешних электродов элементарного слоя.

На фиг. 4 изображены зависимости прогиба ƒ пьезоактюатора.

На фиг. 5 изображены зависимости силы магнитного притяжения Fm соседних элементарных слоев пьезоактюатора от времени t.

На фиг. 6 изображен оболочечный многослойный пьезоактюатор с регулируемыми межслойными магнитными связями между элементарными слоями (оболочками) через внешние электроды на наружной цилиндрической поверхности оболочечного пьезоактюатора изгибного типа, в частности, для адаптивной оптики.

На фиг. 7 изображен многослойный оболочечный пьезоактюатор с регулируемыми межслойными магнитными связями между элементарными слоями (оболочками) через внешние электроды на внутренней цилиндрической поверхности оболочечного пьезоактюатора изгибного типа, в частности, для адаптивной оптики.

Пьезоактюатор изгибного типа (фиг. 1) представляет собой многослойный пакет с регулируемыми межслойными магнитными связями между механически несвязанными элементарными слоями 1. Изгиб слоев 1 и пьезоактюатора в целом и управление связями осуществляется через внешние электроды 2, установленные на неподвижном закрепленном торце пьезоактюатора. Многослойный пьезоактюатор может быть выполнен в виде слоистого стержня, или пластины (фиг. 2), или оболочки (фиг. 6, 7).

Каждый элементарный слой 1 пьезоактюатора содержит центральные пьезоэлектрические слои 3, 4 (фиг. 2), выполненные механически связанными между собой по типу «биморф» с одинаковой или обратной поляризацией, и, как минимум, по два слоя 5, выполненных из материала с магнитоэлектрическим эффектом и расположенных с каждой стороны биморфного пьезоэлектрического элемента, состоящего из слоев 3, 4. Материал с магнитоэлектрическим эффектом представляет собой материал, в котором под действием приложенного электрического поля возникают магнитные поля, способные взаимодействовать с магнитными полями других магнитных тел, в частности, взаимно притягиваться или отталкиваться в зависимости от полярности полей. Пример композиционного материала с магнитоэлектрическим эффектом - это композит PVDF/феррит с пьезоэлектрическими (PVDF) и магнитострикционными или «пьезомагнитными» (феррит) фазами, взаимодействующими между собой посредством деформационных полей [Гетман И.П. О магнитоэлектрическом эффекте в пьезокомпозитах // ДАН СССР. - 1991. - Т. 317, №2. - С. 341-343].

Между пьезоэлектрическими слоями 3, 4, с обеих сторон биморфного элемента и между слоями из материала с магнитоэлектрическим эффектом установлены внутренние электроды 6.

Внутренние электроды 6 объединены по группам на неподвижном торце пакета различными внешними электродами 2: первая группа для электрического управления деформациями пьезоэлектрических слоев 3, 4 биморфа, вторая группа для управления магнитными полями в слоях из материала с магнитоэлектрическим эффектом 5.

В многослойном пьезоактюаторе смежные элементарные слои соприкасаются между собой слоями из материала с магнитоэлектрическим эффектом 5, которые обеспечивают «идеальное проскальзывание» или магнитное прилипание смежных элементарных слоев при соответствующих управляющих потенциалах на внешних электродах 2 пьезоактюатора. Предусмотрена возможность помещения пьезоактюатора в эластичную оболочку, в частности, силикона для предотвращения его внешнего механического повреждения. Геометрическая форма внутренних межслойных электродов 6 пьезоактюатора совпадает с формой областей контакта элементарных слоев 1, но вблизи неподвижного торца пьезоактюатора ширина электрода сужается от ширины слоев 1 до ширины соответствующего внешнего электрода 2, к которому этот внутренний электрод 6 присоединен (фиг. 3).

Для пластинчатого (оболочечного) пьезоактюатора изгибного типа внешние электроды 2 могут быть расположены как на наружной неподвижной «торцевой» цилиндрической поверхности (фиг. 6), так и на внутренней неподвижной «торцевой» цилиндрической поверхности (фиг. 7).

Устройство работает следующим образом.

Работа пьезоактюатора с управляемой жесткостью на изгиб из элементарных слоев 1 может проходить как в квазистатическом, так и в динамическом или колебательном режимах и состоит из чередования активной и реактивной фаз (фиг. 4). На каждом изгибном колебании (несимметричном относительно исходного положения) пьезоактюатора с управляемой жесткостью на изгиб активная фаза совпадает с фазой изгиба пьезоактюатора с малой жесткостью (при взаимном проскальзывании элементарных слоев 1) в требуемом направлении, а реактивная - с фазой незначительного изгиба пьезоактюатора с большой жесткостью (при взаимном слипании элементарных слоев 1) в обратном направлении. Длительности чередующихся активной и реактивной фаз определяются с учетом геометрических и физико-механических свойств пьезоактюатора.

На активной фазе создаются условия идеального проскальзывания смежных элементарных слоев 1 посредством управляющих сигналов (фиг. 5) на соответствующих внешних 2 и внутренних 6 электродах слоев электромагнетика 5. В результате на активной фазе при подаче напряжения на соответствующие внешние 2 и внутренние 6 электроды слоев 3, 4 биморфа благодаря прямому пьезоэффекту каждый элементарный слой синхронно и пьезоактюатор в целом приобретает большие изгибные деформации (фиг. 3) благодаря малой толщине (малой жесткости на изгиб) и резонансной частоте электронагружения (в динамическом или «колебательном» режиме) слоев 3, 4 биморфа для каждого элементарного слоя 1 при идеальном проскальзывании со смежными элементарными слоями.

На реактивной фазе приобретенная на предшествующей ей активной фазе амплитуда (монотонно возрастающая по отношению к амплитуде на предыдущей активной фазе) вынужденных резонансных электромагнитоупругих изгибных синхронных колебаний элементарных слоев 1 и пьезоактюатора в целом фиксируется управляемым магнитным слипанием (фиг. 5) смежных элементарных слоев 1 в монолитный жесткий пакет с фиксированной макродеформацией изгиба (фиг. 4) пьезоактюатора посредством управляющих сигналов на соответствующих внешних 2 и внутренних 6 электродах слоев из материала с магнитоэлектрическим эффектом 5.

Таким образом, предложенное техническое решение позволяет значительно повысить чувствительность, амплитуду управляемых деформаций в статическом и динамическом режимах и обеспечивает возможность фиксирования больших статических и амплитудных резонансных изгибов пьезоактюатора.

1. Пьезоактюатор изгибного типа, характеризующийся тем, что представляет собой многослойный пакет, состоящий из элементарных слоев, каждый из которых содержит пьезоэлектрические слои биморфного элемента и внутренние электроды, установленные между пьезоэлектрическими слоями и с обеих сторон биморфного элемента, при этом внутренние электроды объединены на неподвижном торце пакета внешними электродами, отличающийся тем, что многослойный пакет составлен из механически несвязанных элементарных слоев, каждый элементарный слой дополнительно содержит как минимум по два слоя, расположенных с каждой стороны биморфного элемента и выполненных из материала с магнитоэлектрическим эффектом, и внутренние электроды, установленные между слоями из материала с магнитоэлектрическим эффектом, при этом внутренние электроды объединены внешними электродами для электрического управления магнитными полями в слоях из материала с магнитоэлектрическим эффектом, дополнительно установленными на неподвижном торце многослойного пакета.

2. Пьезоактюатор по п. 1, отличающийся тем, что он помещен в эластичную оболочку для предотвращения его внешнего механического повреждения.

3. Пьезоактюатор по п. 2, отличающийся тем, что эластичная оболочка изготовлена из силикона.

4. Пьезоактюатор по п. 1, отличающийся тем, что форма внутренних электродов совпадает с формой областей контакта слоев, но вблизи неподвижного торца пьезоактюатора ширина электрода сужается от ширины всего пакета до ширины соответствующего внешнего электрода, к которому этот внутренний электрод присоединен.



 

Похожие патенты:

Изобретение относится к области точного приборостроения и может быть использовано в качестве эталона для определения перемещений и линейных размеров объектов в нанометровом диапазоне, а также для калибровки конфокальных микроскопов и оптических интерферометров.

Изобретение относится к электротехнике и может быть использовано в качестве исполнительного механизма управляющих систем прецизионного приборостроения, в оптических системах.

Изобретение относится к электротехнике и может быть использовано в приборах и системах автоматики, приборостроения, робототехники, авиакосмической, автомобильной отрасли.

Изобретение относится к электротехнике и и может быть использовано для привода различных устройств в прецизионном приборостроении, в оптических системах, в системах нанотехнологий.

Изобретение относится к вибрационным устройствам для создания линейных перемещений ползуна. Ультразвуковой двигатель содержит вибратор, ползун, который входит в контакт посредством трения с вибратором, пружину для прижатия вибратора к скользящему элементу.

Изобретение относится к электротехнике, а именно к синхронному линейному приводу для разгона ротора до гиперзвуковых скоростей. Ротор из магнитожесткого материала с остаточной радиальной намагниченностью выполнен в виде диска с центральным отверстием и расположен между статором и направляющим рельсом из магнитомягкого материала.

Изобретение относится к устройству привода вибрационного типа, а также к устройству двухмерного привода, устройству коррекции размытости изображения. Техническим результатом является снижение потери мощности, передаваемой подвижному телу, предотвращение повреждения провода из-за деформации и обеспечение пространства, в котором могут перемещаться вибратор и элемент источника питания.

Изобретение относится к области пьезотехники и может быть применено для перекачивания различных жидкостей. Технический результат, на достижение которого направлено настоящее изобретение, заключается в создании конструкции пьезоэлектрического насоса на основе возбуждения круговых качательных колебаний пьезоэлектрического кольца, передающихся на преобразующий элемент, имеющий специальные стоки, которые преобразуют круговое качательное движение в направленное движение жидкости.

Изобретение относится к области электромеханики и может быть использовано в системах точного позиционирования, для линейного перемещения различных объектов и устройств в нанотехнологическом оборудовании и прецизионном приборостроении.

Изобретение относится к точному приборостроению, к приводам микроманипуляторов, и может быть использовано для значительного перемещения объектов с высокоточным позиционированием и с приложением значительных усилий.

Изобретение может быть использовано в робототехнике, биомеханических протезах и в различного рода приводах. Способ получения механической энергии с помощью электроактивных полимеров заключается в использовании полимеров в виде волокон (1), которые под воздействием электричества начинают сворачиваться в спираль.

Изобретение относится к электротехнике, а именно к пьезоэлектрическому генератору достаточной мощности в виде прозрачной полимерной пьезопленки, которая может быть встроена в экран мобильного устройства и подзаряжать аккумулятор во время эксплуатации мобильного устройства при касании экрана.

Использование: для неразрушающего контроля напряженно-деформированного состояния конструкционного материала. Сущность изобретения заключается в том, что ультразвуковой пьезопреобразователь содержит корпус с нанесенным на его внутреннюю поверхность демпфирующим слоем и расположенную в корпусе призму, демпфер, соединенный с корпусом, и соединенный с демпфером пьезоэлемент, установленный на призме, при этом в основании призмы дополнительно установлены плоскопараллельные прямоугольные металлические пластины с прокладками между ними, причем металлические пластины имеют разные высоты и образуют ступенчатую пирамиду, а размеры плоскопараллельных прямоугольных металлических пластин выбирают исходя из определенных условий.

Изобретение относится к пьезоэлектронике. Сущность: рабочее тело высоковольтного генератора представляет собой инерционную массу и пакет из пластин поляризованных композиционных сегнетоэлектрических материалов с высокими значениями пьезоэлектрического коэффициента напряжения и заданной для каждой пластины прочностью на сжатие.

Изобретение относится к пьезоэлектрическим датчикам и может быть использовано, в частности, в системах диагностики автомобиля и системах автосигнализации. Сущность: датчик включает пьезоэлектрическое рабочее тело и систему регистрации.

Изобретение относится к электронной технике, а именно: к области создания магнитоэлектрических преобразователей, применяемых в качестве основы для датчиков магнитных полей, устройств СВЧ-электроники, основы для технологии магнитоэлектрической записи информации и для накопителей электромагнитной энергии и энергии вибраций.

Изобретение относится к способу изготовления акустооптических модуляторов. .

Изобретение относится к электротехнике и может быть использовано в цепях переменного тока для преобразования тока в напряжение с удвоением частоты выходного сигнала. Преобразователь представляет собой структуру из конденсатора, обкладками которого являются изготовленные из магнитострикционного металла пластины, механически связанные с расположенной внутри них пьезоэлектрической пластиной и намотанной на него катушкой индуктивности, и магнитопровода, выполненного в виде двух П-образных пластин, вплотную примыкающих к магнитострикционным пластинам, что обеспечивает замыкание магнитного потока. Входным сигналом является ток катушки индуктивности, а выходной сигнал снимается с обкладок конденсатора. Технический результат состоит в том, что для работы преобразователя не требуется создания поля подмагничивания, и он содержит магнитопровод, который обеспечивает замыкание магнитного потока, что приводит к уменьшению потерь энергии. 1 ил.
Наверх