Способ получения магнитного и электромагнитного экрана

Использование: для создания композиционных материалов на основе аморфных и нанокристаллических сплавов. Сущность изобретения заключается в том, что ленты укладывают между двух полимерных диэлектрических пленок, разогретых до температуры, достаточной для двухстороннего склеивания полимерной диэлектрической пленки с металлической лентой и подвергают совместному формованию, металлическую ленту подвергают предварительной термической обработке при температурах 300-380°С в течение 5-90 мин с целью создания состояния с положительной магнитострикцией насыщения за счет образования нанокристаллической структуры, при этом во время формования к ленте прикладывают растягивающее напряжение 1-100 МПа, а непосредственно после формования металлополимерный материал охлаждают от температуры формования до температуры на 10-20°С ниже комнатной, выдерживают 10-60 минут и после выдержки одновременно снимается внешнее растягивающее напряжение, приложенное к ленте, и производится нагрев материала до комнатной температуры. Технический результат заключается в повышении магнитной проницаемости материала и коэффициента экранирования. 1 з.п. ф-лы, 1 табл.

 

Изобретение относится к способам создания композиционных материалов на основе аморфных и нанокристаллических сплавов для защиты технических и биологических объектов от постоянных и переменных полей промышленной частоты.

На сегодняшний день повышение уровня техногенных магнитных (МП) и электромагнитных полей (ЭМП) является актуальной проблемой в связи с возможностью вызывать негативные последствия для жизнедеятельности биологических объектов, в том числе человека, вплоть до экологических масштабов, а также вызывать сбои в работе электротехнического и электронного оборудования, в связи с чем возникает задача обеспечения электромагнитной совместимости (ЭМС) различных устройств. Для регламентирования предельно допустимых значений постоянных и переменных магнитных полей в России и за рубежом разрабатываются нормативные документы, включающие в себя различные директивы, санитарные нормы для населения и обслуживающего персонала, стандарты в области ЭМС и т.д., вынуждающие разработчиков оборудования искать способы защиты от МП и ЭМП, обеспечивающие необходимое ослабление поля.

Зачастую наиболее эффективным и целесообразным способом защиты технических объектов с целью обеспечения ЭМС, а также биологических объектов является пассивное экранирование с использованием специальных материалов. Для изготовления низкочастотных экранов (рабочие частоты менее 300 кГц, а также постоянные поля) используются материалы с высокой магнитной проницаемостью. Традиционно для этой цели применяются такие материалы, как электротехническая сталь, пермаллой, μ-металл и т.д. Однако в связи с постоянным ужесточением требований эти материалы не обладают комплексом магнитных и механических свойств для удовлетворения этим требованиям.

Перспективными материалами в этом направлении являются аморфные и нанокристаллические магнитомягкие сплавы на основе кобальта и железа, полученные методом сверхбыстрой закалки расплава (спиннингованием) в виде тонкой ленты, толщиной порядка 20 мкм. Такие сплавы в свежее закаленном состоянии обладают свойствами, в ряде случаев превышающими свойства традиционных кристаллических материалов и менее чувствительны к механическим деформациям при монтаже. Последующая термическая обработка позволяет еще повысить магнитную проницаемость сплавов за счет снятия закалочных напряжений и частичной нанокристаллизации ленты. Однако из-за ограниченной ширины ленты и ее хрупкости необходим поиск способов ее монтажа при экранировании объектов.

Одним из технических решений крепления лент при экранировании является получение гибкого металл-полимерного экрана, где диэлектрическая полимерная пленка выполняет одновременно монтажные и защитные функции, а также на данный момент существуют патенты на рулонный композитный металл-полимерный экран, такие как JP 11087989, JP 2004071735, RU 2274914 и на способ производства такого экрана RU 2375851.

Однако по имеющимся данным любые покрытия, наносимые на магнитомягкие сплавы, могут приводить к снижению магнитной проницаемости. Например, производителем аморфных сплавов и магнитопроводов на их основе ОАО «Мстатор» (Россия, Боровичи) отмечается, что нанесение эпоксидной порошковой краски на магнитпровод из аморфных сплавов приводит к значительному ухудшению его магнитных параметров из-за усадочных напряжений полимера [1].

Существующие исследования свидетельствуют о том, что наносимые покрытия являются магнитоактивными, то есть, создавая дополнительные напряжения на поверхности ленты, формируют соответствующее распределение намагниченности по объему ленты и, как следствие, конечные магнитные свойства. Так, исследования, проведенные в работе [2] для аморфного Fe-B-Si-C сплава с положительной магнитострикцией насыщения, показали, что органические покрытия создают сжимающие напряжения в ленте, также приводящие к снижению магнитной проницаемости из-за перераспределения намагниченности по объему ленты под действием напряжений.

Таким образом, известные технические решения, включая прототип RU 2375851, не позволяют получить композиционный экран с достаточно высокой магнитной проницаемостью ввиду ее уменьшения при нанесении покрытия на прошедшую термообработку ленту и, как следствие, не позволяют достичь потенциально возможных экранирующих свойств.

Технический результат изобретения заключается в сохранении и повышении магнитной проницаемости и коэффициента экранирования композиционного магнитного защитного экрана.

Технический результат достигается за счет нанесения диэлектрической полимерной пленки на аморфную ленту системы Co-Ni-Fe-Cr-Si-B-Mn, прошедшую предварительную термическую обработку, под действием одновременного подогрева для создания лучшей адгезии и растягивающих напряжений, приложенных вдоль оси ленты, приводящие к перераспределению намагниченности вдоль оси ленты и способствующие повышению магнитной проницаемости. Существует формула, связывающая чувствительность магнитных свойств материала с прикладываемыми внешними напряжениями [3]:

где Sm - коэффициент чувствительности магнитных свойств к механическим напряжениям; μ - магнитная проницаемость; dμ - изменение магнитной проницаемости; σk - механической напряжение растяжения.

Исходя из формулы (1), чем меньше чувствительность магнитных свойств сплава к внешним механическим напряжениям, тем большее внешнее напряжение необходимо прикладывать для получения эффекта изменения свойств. В этом случае также для повышения эффекта влияния внешних механических напряжений при нанесении покрытия можно прикладывать дополнительное механическое давление перпендикулярно плоскости ленты, ориентирующее намагниченность в плоскости ленты, а также повышающее адгезию покрытия. Однако при приложении напряжений необходимо оставаться в упругой области диаграммы растяжения сплава, не допуская процессов образования микронесплошностей и разрушения сплава, приводящие к необратимой деградации магнитных свойств, поэтому для получения технически значимого эффекта в данном изобретении предлагается прикладывать внешнее растягивающее напряжение величиной 1-100 МПа, а дополнительное механическое давление при необходимости в пределах 0,5-10 МПа.

При этом задачей предварительной термической обработки является снятие закалочных напряжений, а также создание состояния ленты с положительной магнитострикцией насыщения, так как, согласно работам [4, 5], данная характеристика для аморфных сплавов является структурно чувствительной и может управляться посредством задания специальных режимов термической обработки. Смена знака магнитострикции согласно этой работе была обнаружена при температурах порядка 350°С.

Далее, после нанесения покрытия, необходимо произвести охлаждение получившегося композиционного материала, причем до температур ниже комнатной на 10-20°С, при этом сохраняя воздействие растягивающих напряжений вдоль оси ленты. На этой стадии происходит усадка нагретого деформированного полимера и его естественное сужение, приводящие к сжимающим напряжениям на границе пленка-лента, однако благодаря приложенным к ленте растягивающим напряжениям релаксация напряжений при выдержке происходит без переориентации намагниченности в ортогональное направление и не приводит к снижению магнитной проницаемости. Далее после выдержки при пониженной температуре с одновременным воздействием растягивающих напряжений эти напряжения снимаются и производится нагрев материала до комнатной температуры. При этом происходит небольшое естественное расширение диэлектрической полимерной пленки, приводящее к дополнительным растягивающим напряжениям в плоскости ленты и ориентации намагниченности в этом направлении, что способствует сохранению или повышению магнитной проницаемости и коэффициента экранирования.

Примеры реализации изобретения представлены в Приложении 1.

Источники информации

1. www.mstator.ru

2. V Всесоюзная конференция "Аморфные прецизионные сплавы: технология, свойства, применения". Горланова М.А., Скулкина Н.А., Ханжина Т.А., Широкова Е.А., Иванов О.А. Ростов Великий: б.н., 23-27 сентября 1991. Влияние электроизоляционного покрытия на магнитные и электромагнитные свойства аморфного сплава Fe81B13Si4C2. стр. 86-87.

3. В.Б. Гинзбург. Магнитоуправляемые датчики. - Москва: Энергия, 1970, 72 с.

4. Иванов, О.Г. Афтореф. дис. к.т.н. Особенности формирования физических свойств и разработка новых аморфных магнитомягких сплавов на основе кобальта. б.м.: МГТУ им. Н.Э. Баумана, 2004 г.

5. Кекало И.Б., Могильников П.С. Влияние изгибных напряжений на высокочастотные магнитные свойства и временную их стабильность в аморфном сплаве на основе кобальта с очень низкой магнитострикцией. Журнал технической физики. 2015 г., Т. 85, 12, стр. 80-87.

1. Способ получения магнитного и электромагнитного экрана с использованием лент магнитомягких сплавов, при котором ленты укладывают между двух полимерных диэлектрических пленок, разогретых до температуры, достаточной для двухстороннего склеивания полимерной диэлектрической пленки с металлической лентой, и подвергают совместному формованию, отличающийся тем, что металлическую ленту подвергают предварительной термической обработке при температурах 300-380°С в течение 5-90 мин с целью создания состояния с положительной магнитострикцией насыщения за счет образования нанокристаллической структуры, при этом во время формования к ленте прикладывают растягивающее напряжение 1-100 МПа, а непосредственно после формования металлополимерный материал охлаждают от температуры формования до температуры на 10-20°С ниже комнатной, выдерживают 10-60 минут и после выдержки одновременно снимается внешнее растягивающее напряжение, приложенное к ленте, и производится нагрев материала до комнатной температуры.

2. Способ получения магнитного и электромагнитного экрана по п. 1, отличающийся тем, что при формовании материала прикладывают механическое давление 0,5-10 МПа, которое снимают при окончательном нагреве до комнатной температуры.



 

Похожие патенты:

Изобретение относится к устройству для снижения опасности электромагнитных излучений, и предназначено для использования в качестве средства защиты от электромагнитного излучения на производственных и коммунально-бытовых объектах, и может быть использовано в широком диапазоне частот, в том числе для защиты от влияния электрических и магнитных полей промышленной частоты и радиочастотного диапазона.

Группа изобретений относится к области радиоэлектроники и электротехники и может использоваться как для уменьшения излучения какого-либо устройства путем его экранирования, так и для уменьшения помех от внешнего магнитного поля на датчики.

Изобретение представляет собой устройство, компенсирующее негативное действие гипомагнитных условий на биологические объекты и системы, в частности на космонавта при длительных полетах вне магнитосферы Земли.

Использование: для антенных измерений в неприспособленном помещении. Сущность изобретения заключается в том, что облицовочный материал, выполненный в виде конструкции на основе картона, покрытой углеродсодержащим составом, отличающийся тем, что он выполнен на основе рифленых картонных ячеек для укладки куриных яиц, а в качестве углеродсодержащего состава использована смесь мелкодисперсного углерода, получаемого СВЧ плазменным пиролизом метана, и цапонлака в пропорции от 1:8 до 1:12, при этом поверхностная плотность нанесенного углерода составляет от 30 до 50 г на квадратный метр.

Изобретение относится к композиции для получения радиозащитного фенолформальдегидного пенопласта заливочного типа на основе резольных фенолформальдегидных смол холодного отверждения и может быть использовано в тех областях техники, где требуются облегченные негорючие теплоизоляционные радиозащитные материалы, устойчивые к длительным воздействиям высоких температур и агрессивных газовых сред, например авиация, космонавтика, судостроение, машиностроение, транспорт, гражданское и промышленное строительство.

Изобретение относится к экранированию электромагнитных полей различного происхождения. Технический результат - разработка конструкции камеры с использованием стандартных столярных элементов, позволяющей производить ручную сборку или демонтаж, без ограничения минимальной площади и высоты помещения для камеры, а также без потери эффективности экранирования.

Изобретение относится к устройству для экранирования от магнитных полей промышленной частоты и электромагнитных полей радиочастотного диапазона и может применяться для обеспечения электромагнитной совместимости технических средств и электромагнитной безопасности биологических объектов в различных отраслях промышленности.

Изобретение относится к медицине. Конкретно - к способу уменьшения негативного влияния сотового телефона на человека.

Изобретение относится к системам обеспечения информационной безопасности. Система электромагнитного экранирования защищаемого помещения с конструкторско-технологическими решениями, выбранными из перечня (а-e), определяемого архитектурными и/или технологическими особенностями данного помещения и включающего: a) узел ввода трубопровода, например трубопровода системы теплоснабжения, горячего и/или холодного водоснабжения, спринклерной системы пожаротушения; b) узел ввода вентиляционных коробов приточно-вытяжной системы вентиляции и кондиционирования воздуха; c) узел ввода электрических сетей, как слаботочных, так и сетей электроснабжения и заземления; d) светопрозрачные конструкции в оконных проемах ограждающих строительных конструкций; e) входные группы помещений в дверных проемах ограждающих строительных конструкций, предусматривает следующие средства экранирования: предельный волновод с возможностью использования диэлектрической вставки для узла ввода трубопровода (а); короб из полимерного материала для узла ввода воздуховода (b); экранирующая оплетка и предельные волноводы для узла ввода электрических сетей (с); электромагнитный экран, например, из тканой металлической сетки для светопрозрачной конструкции (d); дверное полотно, изготовленное с использованием экранирующего материала, например металлической тканой сетки или металлического листа для дверного проема (е).

Изобретение относится к средствам для защиты от электромагнитных полей электротехнических и электронных устройств и биологических объектов и может использоваться для создания электромагнитных экранов и безэховых камер.

Изобретение относится к средствам для защиты от электромагнитных полей: электротехнических и электронных. Композиционный материал для защиты от электромагнитного излучения, состоящий из полимерной основы с распределенными в ней частицами сплава системы Fe-Cu-Nb-Si-B, представляющий собой многослойную конструкцию, каждый слой которой выполнен из указанного состава, а содержание частиц сплава в каждом слое составляет 70-90 мас. % и ограничено определенным диапазоном размеров частиц из непрерывного ряда 1-200 мкм с увеличением размерности частиц в каждом последующем слое, в качестве первого слоя используется аморфная лента сплава системы Fe-Cu-Nb-Si-B. Способ изготовления композиционного материала, включающий наложение радиопоглощающих слоев, начиная с самого толстого слоя по мере уменьшения толщины слоев, первый слой укладывается из экранирующей аморфной ленты сплава системы Fe-Cu-Nb-Si-B, а последующие слои накладываются исходя из толщины каждого последующего слоя, рассчитываемой по формуле: , при этом заключительный (внешний) слой выполняется из связующего - диэлектрика без наполнителя. 2 н. и 1 з.п. ф-лы.

Изобретение относится к области электротехники, а именно к конструкции многослойного экрана для защиты от электромагнитных полей в широком диапазоне частот, и может быть использовано для обеспечения электромагнитной совместимости блоков в комплексах электронной аппаратуры. Многослойный электромагнитный экран содержит чередующиеся электропроводящие слои меди и магнитные слои из сплава никель-железа с оптимальным сочетанием количества и толщин магнитных и немагнитных слоев. Примером практической реализации конструкции предлагаемого экрана является экранирование привода сканирующего узла видеоспектрометра, выполненного при создании многоцелевого комплекса научной аппаратуры для космических исследований. Многослойные экраны с предложенными характеристиками обеспечивают эффективную электромагнитную защиту в низкочастотном диапазоне ЭМИ, что является техническим результатом изобретения. Как показывает практика, применение этих экранов позволяет осуществлять совместное функционирование узлов и блоков с недопустимым уровнем производимых ими электромагнитных помех, обеспечивает возможность создания аппаратуры из блоков с несовместимыми электродинамическими характеристиками. 2 з.п. ф-лы, 4 ил., 1 табл.

Использование: для создания композиционных материалов на основе аморфных и нанокристаллических сплавов. Сущность изобретения заключается в том, что ленты укладывают между двух полимерных диэлектрических пленок, разогретых до температуры, достаточной для двухстороннего склеивания полимерной диэлектрической пленки с металлической лентой и подвергают совместному формованию, металлическую ленту подвергают предварительной термической обработке при температурах 300-380°С в течение 5-90 мин с целью создания состояния с положительной магнитострикцией насыщения за счет образования нанокристаллической структуры, при этом во время формования к ленте прикладывают растягивающее напряжение 1-100 МПа, а непосредственно после формования металлополимерный материал охлаждают от температуры формования до температуры на 10-20°С ниже комнатной, выдерживают 10-60 минут и после выдержки одновременно снимается внешнее растягивающее напряжение, приложенное к ленте, и производится нагрев материала до комнатной температуры. Технический результат заключается в повышении магнитной проницаемости материала и коэффициента экранирования. 1 з.п. ф-лы, 1 табл.

Наверх