Гибридная композитная панель для авиаконструкций

Изобретение относится к области разработки многослойных композитных авиационных конструкций с повышенной ударной прочностью и высокими деформационно-прочностными характеристиками. В гибридной композитной панели для авиаконструкции, например панели фюзеляжа летательного аппарата, слои, состоящие из углеродной ткани двунаправленного плетения с количеством элементарных нитей в филаменте не менее 6000 и арамидной ткани полотняного переплетения с поверхностной плотностью не менее 300 г/м2, уложены в пакет. Многослойный пакет укладывают на обогреваемую форму (матрицу) и пропитывают эпоксисодержащим связующим методом вакуумной инфузии. Одна из смол связующего является эпоксидиановой с содержанием эпоксидных групп 16-22%, а вторая эпоксиноволачной с содержанием эпоксидных групп 23-25%. Смолы смешаны в соотношении: на 100 масс. частей эпоксиноволачной смолы приходится от 30 до 100 масс. частей эпоксидиановой смолы. Отвердитель выполнен в виде анилинформальдегидной смолы, растворенной в фурфуроле и смешанной с указанными смолами в соотношении: на 100 масс. частей смеси смол приходится от 75 до 90 масс. частей отвердителя. Отвердитель также может быть выполнен в виде ангидридного агента, смешанного с указанными смолами в соотношении: на 100 масс. частей смеси смол приходится от 75 до 85 масс. частей ангидрида. Модификатор выполнен в виде синтетического бутадиенового каучука либо в виде гибкого термостойкого термопласта, смешанных с указанной смесью смол в объеме: на 100 масс. частей смолы приходится от 10 до 20 масс. частей модификатора. Предлагаемая гибридная композитная панель обеспечивает повышение ударной прочности и снижение веса силовых конструкций планера гражданского самолета. 2 з.п. ф-лы, 1 табл., 2 пр.

 

Изобретение относится к области разработки композитных авиационных конструкций с повышенной ударной прочностью и высокими деформационно-прочностными характеристиками, а также разработке метода их получения, в частности к герметичным панелям конструкции отсека фюзеляжа гражданского самолета, и может быть использовано для разработки авиационной техники.

Известна конструкция композитной балки, нижней основной плиты и фюзеляж самолета, включающий такие балки. Балка состоит из стопки матов из однонаправленных углеродных волокон, ориентированных в направлении высоты балки, арамидных волокон и углеродного волокнистого материала. Нижняя основная плита связана со сторонами ребра, нижний край каждого однонаправленного углеродного материала расположен внутри относительно соответствующих краев материала и вышеуказанные края имеют пилообразные грани [патент US 6948684 В2, МПК В64С 1/00, 27.09.2005].

Недостатками данных конструкций являются дорогостоящий метод производства композиционных материалов и отсутствие способа контролирования содержания связующего в полученном композите.

Известна подкрепленная композитная панель, включающая обшивку, выполненную из композитных материалов, и подкрепляющие стрингеры с нижними полками на обшивке [патент US 20160176500, МПК В64С 3/26, 09.08.2013].

Недостатком данной конструкции является отсутствие защиты панели от ударных воздействий. Как известно, ударные воздействия существенно снижают остаточную прочность силовых композитных авиаконструкций, что требует излишних весовых затрат для обеспечения необходимой прочности конструкции. Так, если данная панель будет выполнена из углепластиковых композиционных материалов, то невозможно будет обеспечить ее прочность при низких весовых затратах.

Известна композитная панель для самолета с защитой от ударных воздействий с высокой энергией, включающая слоистый композиционный материал, состоящий из двух слоев, один из которых изготовлен из сверхэластичного материала и приклеен к другому для защиты от ударных воздействий [патент US 20120040159, МПК В32В 7/02, В32В 5/02, В32В 27/38, В32В 25/16, В32В 37/14, В32В 37/12, (S.A.S.), 26.03.2009].

Недостатком данного изобретения, принятого за прототип, является то, что защита от ударных воздействий обеспечивается лишь с одной стороны композитной панели. Однако авиационные панели, в частности панели фюзеляжа, подвергаются ударам как снаружи, так и изнутри фюзеляжа в процессе сборки и эксплуатации конструкции. Кроме того, не обеспечивается защита подкрепляющих элементов (стрингеров) от ударных воздействий изнутри отсека.

Задачей и техническим результатом изобретения являются разработка высокоэффективной композитной панели силовой конструкции планера летательного аппарата, обеспечивающая повышение ударно-прочностных характеристик со снижением удельного веса конструкции.

Решение поставленной задачи и технический результат изобретения достигаются тем, что в гибридной композитной панели силовой конструкции планера летательного аппарата содержатся слои из разных материалов, одни из которых составлены из углеродной ткани двунаправленного плетения с количеством элементарных нитей в филаменте (пучке нитей) не менее 6000 и уложены в пакет. На обеих поверхностях и внутри пакета уложены слои из арамидной ткани полотняного переплетения с поверхностной плотностью не менее 300 г/м2. Количество слоев в пакете варьируется в зависимости от поставленной задачи и необходимой прочности, но оптимально составляет не менее 10 слоев. Содержание арамидного волокна к углеродному в получаемой композитной панели варьируется в пределах 10-25%. Образованный многослойный композитный пакет пропитан эпоксисодержащим связующим, которое состоит из двух эпоксидных смол, модифицированных каучуком или термопластом, и отвердителя. Пропитка композитного пакета осуществляется методом вакуумной инфузии. Связующее отверждается под вакуумом по специальному режиму. Связующее состоит из двух эпоксидных смол, при этом одна из смол является эпоксидиановой с содержанием эпоксидных групп 16-22%, а вторая - эпоксиноволачной с содержанием эпоксидных групп 23-25%, смолы смешаны в соотношении: на 100 масс. частей эпоксиноволачной смолы приходится от 30 до 100 масс. частей эпоксидиановой смолы.

Отвердитель выполнен в виде анилинформальдегидной смолы, растворенной в фурфуроле и смешанной с указанными смолами в соотношении: на 100 масс. частей смеси смол приходится от 75 до 90 масс. частей отвердителя, а модификатор выполнен в виде синтетического бутадиенового каучука, смешиваемого с указанной смесью смол в объеме: на 100 масс. частей смолы приходится от 10 до 20 масс. частей модификатора.

Технический результат достигается также тем, что в гибридной композитной панели для авиаконструкций отвердитель выполнен в виде ангидридного агента, смешанного с указанными смолами в соотношении: на 100 масс. частей смеси смол приходится от 75 до 85 масс. частей ангидрида.

Технический результат достигается также тем, что в гибридной композитной панели для авиаконструкций модификатор выполнен в виде гибкого термостойкого термопласта, смешанного с указанной смесью смол в объеме: на 100 масс. частей смол приходится от 10 до 20 масс. частей модификатора.

Процесс изготовления гибридной композиционной панели для авиационной конструкции в виде, например, элемента фюзеляжа летательного аппарата показан на двух примерах. Вначале формируют одинакового состава композитный многослойный пакет, составленный из слоев углеродной ткани двунаправленного плетения с количеством элементарных нитей в филаменте не менее 6000. Количество слоев в пакете варьируют в зависимости от поставленной задачи и необходимой прочности, но оптимально оно составляет, как показали экспериментальные исследования, не менее 10 слоев. На обеих поверхностях и внутри пакета укладывают слои из арамидной ткани полотняного переплетения с поверхностной плотностью не менее 300 г/м2, в которых содержание арамидного волокна к углеродному варьируется в пределах 10-25%. Для образования гибридной композитной панели многослойный пакет укладывают на обогреваемую форму (матрицу) и накрывают вакуумной пленкой, а затем пропитывают эпоксисодержащим связующим, которое состоит из двух эпоксидных смол, модифицированных каучуком или термопластом, и отвердителя. Пропитка композитного пакета осуществляется методом вакуумной инфузии. Связующее отверждается под вакуумом по специальному режиму.

Пример 1. По этому примеру эпоксисодержащее связующее состоит из смеси эпоксидных смол, в которой одна из них является эпоксидиановой, например ЭД-20 с содержанием эпоксидных групп 20-22%, а другая - эпоксиноволачной, например DEN 431 с содержанием эпоксидных групп 24,0-25,0%. Смолы смешивают в соотношении: на 100 масс. частей ЭД-20 приходится от 85 до 115 масс. частей DEN 431.

Модификатор представляет собой синтетический бутадиеновый каучук, смешиваемый со смолой в объеме: на 100 масс. частей смолы приходится от 10 до 20 масс. частей модификатора.

Отвердитель представляет собой анилинформальдегидную смолу СФ-340А, растворяемую в фурфуроле и смешиваемую со смесью смол ЭД-20 и DEN 431 в соотношении: на 100 масс. частей смолы приходится от 75 до 90 масс. частей отвердителя.

Пример 2. По этому примеру эпоксисодержащее связующее состоит из смеси эпоксидных смол, в которой одна из смол является эпоксидиановой, например ЭД-16 с содержанием эпоксидных групп 16-18%, а вторая - эпоксиноволачной, например DEN 438 с содержанием эпоксидных групп 23,8-24,4%. Смолы смешивают в соотношении: на 100 масс. частей DEN 438 приходится от 30 до 40 масс. частей ЭД-16.

Модификатор представляет собой гибкий термостойкий термопласт, например поликарбонат, смешиваемый со смолой в объеме: на 100 масс. частей смолы приходится от 10 до 20 масс. частей модификатора.

Отвердитель представляет собой изометилтетрагидрофталевый ангидрид и смешивается со смолой в соотношении: на 100 масс. частей смолы приходится 81 масс. частей изо-МТГФА.

После пропитки многослойного композитного пакета происходит процесс отверждения связующего по специально разработанному режиму для каждой эпоксидной системы при постоянном вакууме.

Так как разработанная для авиационных конструкций композитная панель со связующим состоит из более чем трех полиматричных и полиармированных компонентов, она отнесена к классу гибридных композитных материалов [Арзамасов Б.Н. и др. «Материаловедение. Учебник для вузов», 2002 г., стр. 468; Ржевская С.В. «Материаловедение. Учебник для вузов», 2004 г., стр. 70].

Образованная гибридная композитная панель обладает особой эффективностью: ее наружные слои первыми принимают на себя ударное воздействие и обеспечивают максимальное поглощение энергии индентора (проникающего элемента испытательной машины, предназначенной для экспериментальных исследований ударного воздействия), а нижние слои при этом не подвергаются повреждению.

Наружные арамидные слои пакетов пробиваются по механизму «раздавливания», для этого они изготовлены из плотной арамидной ткани со структурой, которая эффективно преобразует локальное воздействие индентора в распределенный по объему конус деформации, в котором арамидные волокна работают, в основном, на растяжение.

Арамидные волокна имеют фибриллярную структуру, что является их преимуществом, позволяющим обеспечить высокое энергопоглощение ударного воздействия [Аскадский А.А. «Деформация полимеров», 1973 г., стр. 65; Берлин А.А., Басин В.Е. «Основы адгезии полимеров», 1969 г., стр. 102]. Межфибриллярные прослойки в волокнах из гибкоцепных полимеров имеют большое число цепей, проходящих из одной фибриллы в другую в поперечном направлении. Высокая жесткость макромолекул ароматических полиамидов затрудняет межфибриллярный переход цепей, следствием чего является продольная расщепляемость микрофибрилл со значительной затратой энергии на преодоление межмолекулярного взаимодействия. Удержание высокоскоростного удара полимерными волокнами с фибриллярной структурой обеспечивается комплексным механизмом торможения роста трещин:

1) созданием барьеров на пути трещин - фибриллярное расщепление волокон на плоскости с минимальной поверхностной энергией;

2) затуплением вершины трещины вследствие многостадийного протекания релаксационных процессов;

3) низкой чувствительностью волокон к концентраторам напряжений;

4) сильной фибрилляцией с отщеплением микрофибрилл с поверхности волокон при увеличении деформации, образованием микротрещин вместо роста макротрещины.

Как показывают экспериментальные исследования, использование высокопрочного связующего напрямую влияет на свойства конечного композиционного материала, закономерно повышая его прочность.

Экспериментальные данные, полученные на стандартном оборудовании и в соответствии с действующими ГОСТами, показывают, как видно из таблицы, что у двух образцов, соответствующих примерам 1 и 2, с помощью предлагаемого состава достигнуты такие показатели, как высокое поглощение энергии удара (ударная вязкость), а также относительное удлинение при разрыве. Благодаря этому готовый гибридный композиционный материал способен воспринимать большие ударные нагрузки по сравнению с известными составами (например, ЭД-20 и ЭТАЛ-45). Связующее, обладающее повышенной эластичностью (относительное удлинение) при сохранении прочности, позволяет снизить хрупкость композиционного материала и тем самым повысить стойкость композитной панели к ударным воздействиям.

Также из экспериментальных данных видно, что у образца по примеру 1 прочность при разрыве и сжатии немного выше, чем у образца по примеру 2, и более чем в полтора раза выше, чем у образца известного состава. Благодаря этому прочность композиционного материала по примеру 1 в направлении армирующих волокон будет выше по сравнению с традиционными эпоксидными связующими и примером 2 предлагаемого связующего. Однако конечные свойства готового гибридного композиционного материала напрямую зависят от типа (марки и свойств) армирующей ткани и количества ее слоев.

Основными преимуществами предлагаемой композитной гибридной панели, таким образом, по сравнению с аналогами являются:

1. Высокие ударно-прочностные характеристики композитной панели.

2. Малый удельный вес изделия, что позволяет эффективно использовать изобретение в авиации.

3. Возможность использования гибридной многослойной композитной панели в качестве защитного противоударного слоя для силовых композитных конструкций.

1. Гибридная композитная панель для авиаконструкций, содержащая слои из разных материалов, в частности из углеродной и арамидной тканей, отличающаяся тем, что слои, составленные из углеродной ткани двунаправленного плетения с количеством элементарных нитей в филаменте не менее 6000, уложены в пакет, причем на обеих поверхностях и внутри пакета уложены слои из арамидной ткани полотняного переплетения с поверхностной плотностью не менее 300 г/м2, количество слоев в пакете варьируется в зависимости от поставленной задачи и необходимой прочности, но оптимально составляет не менее 10 слоев, при этом содержание арамидного волокна к углеродному в композитном пакете варьируется в пределах 10-25%, для образования гибридной композитной панели многослойный пакет пропитан эпоксисодержащим связующим методом вакуумной инфузии, при этом одна из смол связующего является эпоксидиановой с содержанием эпоксидных групп 16-22%, а вторая - эпоксиноволачной с содержанием эпоксидных групп 23-25%, смолы смешаны в соотношении: на 100 масс. частей эпоксиноволачной смолы приходится от 30 до 100 масс. частей эпоксидиановой смолы, отвердитель выполнен в виде анилинформальдегидной смолы, растворенной в фурфуроле и смешанной с указанными смолами в соотношении: на 100 масс. частей смеси смол приходится от 75 до 90 масс. частей отвердителя, а модификатор выполнен в виде синтетического бутадиенового каучука, смешиваемого с указанной смесью смол в объеме: на 100 масс. частей смолы приходится от 10 до 20 масс. частей модификатора, причем связующее отверждено под вакуумом по специальному режиму.

2. Гибридная композитная панель для авиаконструкций по п. 1, отличающаяся тем, что отвердитель выполнен в виде ангидридного агента, смешанного с указанными смолами в соотношении: на 100 масс. частей смеси смол приходится от 75 до 85 масс. частей ангидрида.

3. Гибридная композитная панель для авиаконструкций по п. 1, отличающаяся тем, что модификатор выполнен в виде гибкого термостойкого термопласта, смешанного с указанной смесью смол в объеме: на 100 масс. частей смол приходится от 10 до 20 масс. частей модификатора.



 

Похожие патенты:

Изобретение может быть использовано в аэрокосмической промышленности. Отверждаемый композитный материал содержит по меньшей мере один структурный слой армирующих волокон, пропитанных отверждаемой смолистой матрицей, и по меньшей мере одну проводящую композитную частицу, расположенную рядом или вблизи с указанными армирующими волокнами.

Изобретение относится к декоративным облицовочным звукоизолирующим материалам и касается защитного слоя со звукоизолирующими свойствами, в частности, для поверхностей из древесных материалов и ламината со звукоизолирующими свойствами.

Изобретение относится к гибким упаковочным пленкам на биооснове и касается пленки с биоразлагаемым термосвариваемым слоем. Обращенная к продукту композиционная пленка многослойной упаковочной пленки содержит барьерный адгезионный слой и термосвариваемый слой, сцепленный с противоположными сторонами барьерного рулонного слоя, содержащего аморфный полимер на биооснове.

Изобретение может быть использовано в производстве материалов для отделки автомобильных интерьеров. Для получения нетканого композиционного продукта осуществляют преформирование первого нетканого текстильного материала для получения твердого слоя и преформирование второго нетканого текстильного материала для получения мягкого слоя.

Изобретение относится к барьерным полимерным пленкам и касается инкапсулирующей барьерной многослойной структуры, способной инкапсулировать изделие, чувствительное к влаге и/или кислороду.
Изобретение относится к плоским слоистым уплотнительным материалам (паронитам) и различным прокладкам из них, предназначенным для эксплуатации в уплотнительных узлах с плоскими уплотняемыми поверхностями, в процессе эксплуатации которых материал подвергается переменным термическим и механическим нагрузкам - периодическим сжатиям, нагревам и др.

Изобретение относится к композитным изделиям, например к армированным волокном композитным изделиям, имеющим улучшенную баллистическую характеристику. Композитное изделие включает множество волокон, по меньшей мере частично внедренных внутрь матрицы. По меньшей мере одну из матриц и по меньшей мере одно из множества волокон формируют по меньшей мере из одного термопластичного материала, термореактивного полимера.

Изобретение относится к материалам авиастроительной промышленности и может быть использовано для изготовления деталей и элементов конструкционного назначения. Титанополимерный слоистый материал включает, по меньшей мере, два слоя листов титанового сплава и слой углепластика между ними, состоящий из, по меньшей мере, двух слоев препрега.

Изобретение относится к покрытию, которое может быть применено для изготовления кухонных изделий для приготовления пищи или любых иных поверхностей, в частности подошв утюгов, пластин выпрямителей волос или корпусов бытовых приборов, а также к способу изготовления такого покрытия.

Изобретение относится к области радиотехники, в частности к радиопоглощающим покрытиям (РПП), и может быть использовано в сверхширокополосных антенных системах. Сверхширокополосное радиопоглощающее покрытие выполнено в виде многослойного металлополимероматричного композиционного материала, слои которого имеют различную толщину: первый слой, состоящий из частиц чешуйчатой формы размером от 5 до 25 мкм, толщиной от 2,0 до 3,0 мм, второй слой из частиц чешуйчатой формы размером от 3 до 10 мкм толщиной от 1,0 до 1,5 мм, третий слой из частиц сфероидальной формы размером от 1 до 5 мкм толщиной от 0,5 до 1,0 мм, четвертый слой из частиц сфероидальной формы размером 1 до 5 мкм толщиной от 1,0 до 2,0 мм, пятый слой из частиц сфероидальной формы размером от 1 до 5 мкм толщиной от 3,0 до 3,5 мм.

Изобретение относится к строительной отрасли, в частности к многослойному ламинированному материалу для изготовления теплоизоляционных панелей. Описан многослойный ламинированный материал (10), содержащий первый слой (11), изготовленный из смеси полимеров, содержащей полиэтилентерефталат и материал, выбираемый из: полиэтилена низкой плотности, полиэтилена средней плотности, полиэтилена высокой плотности или полипропилена, второй слой (12), изготовленный из указанной смеси полимеров, и третий слой (13), расположенный между указанным первым и вторым слоями (11, 12); причем указанный третий слой (13) изготовлен из указанной смеси полимеров с добавлением стекловолокон, и смесь полимеров содержит от 6 до 14 мас.% одного из: полиэтилена низкой плотности, полиэтилена средней плотности, полиэтилена высокой плотности или полипропилена, а остальное – полиэтилентерефталат. Также описана теплоизоляционная панель. Технический результат: предложен материал для использования в химически агрессивной среде, дешевле стекловолокна. 2 н. и 4 з.п. ф-лы, 3 ил.

Изобретение относится к топливным бакам летательных аппаратов. Топливный бак содержит конструктивный элемент, в котором используется армированный углеродным волокном пластик (CFRP) (15), включающий армирующий материал, который содержит углеродное волокно, и матрицу, которая содержит пластик. Конструктивный элемент образован путем прикатывания проводящих листов (17) между листами препрега из армированного углеродным волокном пластика (CFRP) (15) и образован с крепежным отверстием (22), в котором закреплен болт. Изобретение устраняет необходимость нанесения герметика, позволяет снизить трудоемкость и сократить затраты, связанные с контролем качества, а также предотвратить повышения веса. 5 н. и 1 з.п. ф-лы, 8 ил.

Изобретение относится к внутренним панелям воздушного летательного аппарата и касается изготовления таких панелей, имеющих огнестойкое декоративное отделочное покрытие. Для отделки панели наносят заполняющий материал, содержащий агент для придания огнестойкости, на поверхность панели для формирования заполненной поверхности панели. Затем сглаживают заполненную поверхность панели. После чего наносят печать узора или изображения на одну сторону полимерной пленки, содержащей первый полимерный материал, и связывают другую сторону полимерной пленки со сглаженной заполненной поверхностью панели. Затем покрывают полимерную пленку покрывающим материалом, содержащим второй полимерный материал. Достигается снижение трудоемкости изготовления, обеспечение качественной декоративной огнестойкой отделки внутренних панелей. 3 н. и 12 з.п. ф-лы, 3 ил.

Группа изобретений относится к клеевой системе для применения в строительной композитной пленке для склеивания строительной композитной пленки с основой или другой строительной композитной пленкой с помощью клея, а также к снабженной клеевой системой строительной композитной пленке. Согласно изобретению предусмотрено, что клей имеет механическую стабильность при заданных количественных показателях и конструктивных выполнениях. При этом в состав клеевой композиции входит гаситель пламени. Строительная пленка включает клеевую систему по изобретению. Уплотнительный слой включает несколько строительных пленок. 4 н. и 8 з.п. ф-лы, 11 ил.

Изобретение относится к способу получения фотохромных оптических изделий. Способ включает (i) нанесение первого органического растворителя на поверхность оптической подложки с образованием смоченной органическим растворителем поверхности оптической подложки, (ii) нанесение отверждаемого фотохромного состава на смоченную органическим растворителем поверхность оптической подложки и (iii) по меньшей мере частичное отверждение вышеупомянутого отверждаемого слоя фотохромного покрытия. Отверждаемый состав фотохромного покрытия содержит второй органический растворитель. Первый и второй органические растворители могут смешиваться друг с другом и могут быть одинаковыми. Изобретение обеспечивает снижение количества фотохромного состава для формирования покрытия, а также снижение количества образующихся при этом отходов при сохранении качества изделия. 2 н. и 15 з.п. ф-лы, 5 ил., 3 табл., 1 пр.

Изобретение относится к области металлургии, а именно к составу и способу производства композиционного материала с заранее заданными свойствами, например элементов бронезащиты высокого класса, режущего элемента, элементов станочных конструкций. Композиционный материал на основе титанового сплава состоит из основного металла титанового сплава и модифицированного поверхностного слоя. Модифицированный поверхностный слой состоит из лицевого слоя с керамической структурой, слоя с металлокерамической структурой и слоя с переходной структурой от слоя с металлокерамической структурой к основному металлу титанового сплава и содержит насыщенный твердый раствор азота в титане с внедренными в нее керамическими частицами TiNx, и/или TiCx, и/или TixNyCz. Лицевой слой имеет толщину от 0,08 мм до 0,5 мм и твердость не менее 62 HRC. Слой с металлокерамической структурой имеет толщину от 0,5 до 24 мм и твердость от 50 HRC до 74 HRC. Слой с переходной структурой имеет толщину от 5 до 10% от толщины металлокерамического слоя и твердость от 60 до 30 HRC, снижающуюся при переходе от слоя с металлокерамической структурой к основному металлу титанового сплава. Способ изготовления композиционного материала включает нагрев поверхности титанового сплава высококонцентрированным движущимся источником тепловой энергии в газовой атмосфере, содержащей модифицирующие компоненты. Нагрев и переплав поверхности титанового сплава осуществляют плазменной погруженной дугой прямого действия при удельном тепловом потоке в центре пятна от 104 до 105 Вт/см2, силе тока 50-450 А, напряжении дуги от 20 до 40 В и скорости перемещения источника тепловой энергии относительно поверхности титанового сплава от 0,003 до 0,01 м/с, а газовая атмосфера содержит смесь аргона с добавлением модифицирующих компонентов азота и/или углерода в виде содержащего углерод газа. Материал характеризуется высокими значениями прочности, твердости, термической и коррозионной стойкости и износостойкости. 2 н. и 6 з.п. ф-лы, 3 ил., 1 табл.

Экранирующий инфракрасное излучение лист включает многослойную пленку, образованную поочередным наслаиванием слоя смолы с высоким показателем преломления, содержащего тонкодисперсные частицы, и слоя смолы с низким показателем преломления, содержащего тонкодисперсные частицы. По меньшей мере один из слоев смолы с низким показателем преломления имеет значение 0,1 или более, которое получается в результате вычитания показателя преломления при произвольной длине волны в диапазоне от 780 до 2500 нм из показателя преломления при длине волны 550 нм. Слой смолы с низким показателем преломления имеет более низкий показатель преломления, чем показатель преломления слоя смолы с высоким показателем преломления при любой длине волны в диапазоне от 550 нм до упомянутой произвольной длины волны включительно. Изобретение позволяет улучшить прозрачность в диапазоне видимого света при экранировании инфракрасного излучения. 5 н. и 16 з.п. ф-лы, 7 ил., 8 табл.

Изобретение предлагает вспененный многослойный лист, который обладает превосходной способностью соответствия изменению положения подложки. Кроме того, настоящее изобретение предлагает декоративную плиту, в которой используется вспененный многослойный лист. Вспененный многослойный лист, в котором вспененный полимерный слой наслаивается на волокнистый основной материал, представляет собой вспененный многослойный лист, обладающий превосходной способностью соответствия смещению поверхности подложки, причем смещение от первой точки локального максимума до второй точки локального максимума прочности в процессе измерения при растяжении со скоростью 3 мм/мин способом исследования прочности на разрыв листового покрытия, который определен стандартом JIS K7128-3, составляет от 1 до 5 мм. 5 н. и 7 з.п. ф-лы, 3 ил., 3 табл., 6 пр.
Наверх