Способ получения покрытия на основе оксида индия и олова

Изобретение относится к полупроводниковой технике, в частности к оптоэлектронике, а именно к электропроводящим оптически прозрачным покрытиям на основе оксида индия и олова. Способ получения покрытия на основе оксида индия и олова на поверхности подложки включает напыление на подложку оксида индия и олова с обеспечением требуемого значения показателя преломления покрытия за счет выбора технологического параметра процесса напыления. Согласно изобретению напыление осуществляют при нормальной ориентации подложки относительно потока напыляемого вещества, процесс напыления оксида индия и олова на подложку включает последовательно осуществляемые операцию напыления оксида индия и олова методом электронно-лучевого испарения или магнетронного распыления при температуре от 400 до 500°С и операцию напыления оксида индия и олова методом магнетронного распыления при температуре от 15 до 75°С, при этом обеспечивают требуемое значение показателя преломления покрытия за счет выбора массы вещества, наносимого на каждой из указанных операций напыления. Техническим результатом, достигаемым при реализации изобретения, является получение покрытия оксида индия и олова с заданным значением показателя преломления при обеспечении его однородности по толщине.

 

Изобретение относится к полупроводниковой технике, в частности к оптоэлектронике, а именно к электропроводящим оптически прозрачным покрытиям на основе оксида индия и олова.

Известен ряд методов получения покрытий на основе оксида индия и олова (ITO) с использованием метода электронно-лучевого испарения, магнетронного распыления или их комбинации.

Так, известен способ получения пленочного покрытия на основе оксида индия и олова [RU 2530487], которое применяется в качестве прозрачного контакта светодиода.

Данный способ включает формирование покрытия путем нанесения слоя оксида индия и олова толщиной 5-15 нм методом электронно-лучевого испарения на нагретую до высокой температуры подложку и последующее нанесение на указанный слой второго слоя оксида индия и олова толщиной, значительно большей, чем толщина первого слоя, методом магнетронного распыления.

В результате получают покрытие, обладающее хорошей электрической проводимостью и с высоким (около 2) показателем преломления, что позволяет использовать его в качестве контакта светодиода.

Однако данный способ не предусматривает возможность управления оптическими свойствами получаемого покрытия ITO.

В настоящее время актуальной является задача создания способов получения покрытий ITO с контролируемым значением показателя преломления, что позволяет управлять их оптическими свойствами.

Известен способ получения покрытия на основе оксида индия и олова [Martin F. Schubert и др. Applied Physics Letters. 90, 141115 (2007)], выбранный в качестве ближайшего аналога.

Данный способ включает операцию напыления на подложку оксида индия и олова методом электронно-лучевого испарения при наклонном падении напыляемого вещества на подложку. При наклонном напылении материала на подложку образующиеся на начальной стадии указанного процесса зародыши формируемой структуры покрытия затеняют собой часть поверхности подложки, что в дальнейшем предотвращает осаждение материала на затененные области и приводит к образованию на данных участках пор. В зависимости от угла напыления материала меняется пористость напыляемого слоя покрытия, и, следовательно, его показатель преломления.

Согласно рассматриваемому способу, варьируя в процессе напыления технологический параметр, которым является угол напыления, обеспечивают требуемое значение показателя преломления напыляемого слоя покрытия.

Данный способ позволяет получать покрытия ITO с заданным значением показателя преломления, однако при наклонном напылении вещества не обеспечивается однородность по толщине получаемого покрытия.

Задачей заявляемого изобретения является получение покрытия оксида индия и олова с заданным значением показателя преломления при обеспечении его однородности по толщине.

Сущность изобретения заключается в том, что в способе получения покрытия на основе оксида индия и олова на поверхности подложки, включающем напыление на подложку оксида индия и олова с получением покрытия с заданным значением показателя преломления, согласно изобретению напыление осуществляют при нормальной ориентации подложки относительно потока напыляемого вещества, причем напыление оксида индия и олова на подложку осуществляют путем электронно-лучевого испарения или магнетронного распыления при температуре от 400 до 500°С и последующего магнетронного распыления при температуре от 15 до 75°С, при этом требуемое значение показателя преломления покрытия обеспечивают количеством вещества, наносимого на каждой из указанных операций напыления.

Заявляемый способ основан на зависимости структуры и соответственно оптических свойств покрытия от технологических параметров напыления материала оксида индия и олова на подложку.

Первоначально осуществляют операцию напыления на подложку оксида индия и олова методом электронно-лучевого испарения или магнетронного распыления при нагреве подложки выше температуры кристаллизации ITO (400-500°С). Структура нанесенного слоя материала покрытия характеризуется наличием вытянутых (в случае электронно-лучевого испарения их можно назвать нитевидными) кристаллов и содержит большое количество пустот. Показатель преломления такого слоя имеет значение, меньшее, чем показатель преломления плотного слоя материала оксида индия и олова без пустот.

Далее осуществляют операцию напыления на полученный ранее слой материала покрытия оксида индия и олова методом магнетронного распыления мишени без нагрева подложки при температуре 15-75°С. При этом происходит уплотнение структуры материала за счет внедрения в имеющиеся в ней пустоты напыляемого материала, что обуславливает повышение коэффициента преломления полученного с помощью указанных операций покрытия.

Как показали исследования авторов, варьируя массу напыляемого оксида индия и олова при осуществлении каждой из описанных выше операций, можно добиться заданной величины показателя преломления покрытия в широком диапазоне значений.

Благодаря тому, что при осуществлении процесса напыления обеспечивают нормальную ориентацию подложки относительно потока напыляемого вещества, вещество равномерно распределяется по поверхности подложки, чем достигается однородность покрытия по толщине.

Таким образом, техническим результатом, достигаемым при реализации изобретения, является получение покрытия оксида индия и олова с заданным значением показателя преломления при обеспечении его однородности по толщине.

Способ осуществляют следующим образом.

Нанесение покрытия ITO на подложку осуществляют с использованием оборудования, позволяющего реализовать метод напыления оксида индия и олова на подложку, при котором обеспечивается нормальная ориентация напыляемого вещества относительно подложки.

Осуществляют операцию напыления материала оксида индия и олова на подложку методом электронно-лучевого испарения или магнетронного распыления при нагреве подложки до температуры 400-500°С. В процессе напыления контролируют массу напыляемого вещества и обеспечивают достижение требуемого значения массы. Контроль массы осуществляют, в частности, с помощью кварцевого датчика.

Осуществляют последующую операцию напыления материала оксида индия и олова методом магнетронного распыления без нагрева подложки при температуре 15-75°С. В процессе напыления также контролируют массу напыляемого вещества и обеспечивают достижение требуемого массового количества вещества, в частности, с помощью кварцевого датчика.

Требуемые значения массы материала оксида индия и олова, напыляемого при осуществлении каждой из описанных стадий процесса напыления, предварительно определяют экспериментально из условия достижения заданного значения показателя преломления получаемого покрытия.

Для обеспечения требуемых свойств полученного покрытия в отношении прозрачности осуществляют известные технологические операции, такие как промежуточный, последующий отжиг или напыление в среде кислорода.

При необходимости аналогичным образом можно осуществлять дальнейшее напыление слоев оксида индия и олова, чередуя указанные выше операции, напыления и обеспечивая достижение при проведении каждой из них требуемого массового количества напыляемого вещества.

Возможность реализации способа показана в примерах его выполнения.

Пример 1

Наносили тонкопленочное покрытие ITO на подложку, в качестве которой использовали покровное стекло толщиной 0, 17 мм. Площадь покровного стекла составляла 1 см2.

Напыление осуществляли на специализированной установке комбинированного электронно-лучевого и магнетронного напыления, производства фирмы Torr Int., США.

Рабочая камера установки откачивалась до давления 10-7 mbar, в камере был предусмотрен нагрев подложкодержателя, а также обеспечивался напуск газов (Ar, N2, O2).

Осуществляли операцию напыления материала ITO методом электронно-лучевого испарения при нагреве подложки до температуры 500°С. В процессе напыления контролировали массу напыляемого вещества и обеспечивали достижение требуемого значения массы.

Контроль массы ITO осуществляли с помощью кварцевого датчика.

Напыляли материал ITO, масса которого составляла 71 мкг.

Осуществляли последующую операцию напыления материала ITO методом магнетронного распыления без нагрева подложки при температуре 22°С. В процессе напыления также контролировали массу напыляемого вещества. Напыляли материал ITO, масса которого составляла 50 мкг.

Далее обеспечивали требуемые свойства покрытия в отношении прозрачности, для чего осуществляли отжиг в атмосфере, состоящей из смеси азота и кислорода, при 500°С в течение 10 мин.

Получили покрытие с показателем преломления 1,4.

Как показали исследования, осуществляемые с помощью сканирующей электронной микроскопии, полученное покрытие являлось однородным по толщине.

Пример 2

Осуществляли процесс напыления покрытия аналогично, как описано в примере 1.

При этом осуществляли операцию напыления материала ITO методом электронно-лучевого испарения при нагреве подложки до температуры 450°С и напыляли материал ITO, масса которого составляла 36 мкг.

Последующую операцию напыления методом магнетронного распыления осуществляли при температуре 20°С и напыляли материал ITO, масса которого составляла 121 мкг.

Далее обеспечивали требуемые свойства покрытия в отношении прозрачности, для чего осуществляли отжиг в атмосфере, состоящей из смеси азота и кислорода, при 500°С в течение 10 мин.

Получили покрытие с показателем преломления 1,7.

Как показали исследования, осуществляемые с помощью сканирующей электронной микроскопии, полученное покрытие являлось однородным по толщине.

Пример 3

Осуществляли процесс напыления покрытия аналогично, как описано в примере 1.

При этом осуществляли операцию напыления материала ITO методом магнетронного распыления при нагреве подложки до температуры 400°С и напыляли материал ITO, масса которого составляла 71 мкг.

Последующую операцию напыления методом магнетронного распыления осуществляли при температуре 60°С и напыляли материал ITO, масса которого составляла 50 мкг.

Далее обеспечивали требуемые свойства покрытия в отношении прозрачности, для чего осуществляли отжиг в атмосфере, состоящей из смеси азота и кислорода, при 500°С в течение 10 мин.

Получили покрытие с показателем преломления 1,3.

Как показали исследования, осуществляемые с помощью сканирующей электронной микроскопии, полученное покрытие являлось однородным по толщине.

Способ получения покрытия на основе оксида индия и олова на поверхности подложки, включающий напыление на подложку оксида индия и олова с получением покрытия с заданным значением показателя преломления, отличающийся тем, что напыление осуществляют при нормальной ориентации подложки относительно потока напыляемого вещества, причем напыление оксида индия и олова на подложку осуществляют путем электронно-лучевого испарения или магнетронного распыления при температуре от 400 до 500°С и последующего магнетронного распыления при температуре от 15 до 75°С, при этом требуемое значение показателя преломления покрытия обеспечивают количеством вещества, наносимого на каждой из указанных операций напыления.



 

Похожие патенты:

Слои hipims // 2633672
Изобретение относится к способу осаждения систем слоев PVD из газовой фазы с помощью напыления по меньшей мере на одну подложку. К подложке прикладывают напряжение смещения и осаждают по меньшей мере один первый слой HIPIMS и один второй слой HIPIMS с помощью метода HIPIMS.

Изобретение относится к области модифицирования металлогидридных материалов, в частности к способу напыления титанового покрытия на частицы из гидрида титана , и может быть использовано для изготовления радиационно-защитных материалов биологической защиты в ядерной индустрии.

Изобретение относится к электротехнике и нанотехнологиям, в частности к способу изготовления термоэлектрического элемента для термоэлектрических устройств, например термоэлектрической батареи, и может быть использовано в потребительской электронике, медицине, лабораторном оборудовании и других областях.

Изобретение относится к способу предоставления импульсов мощности для PVD-распыляемого катода, который содержит компонент приема мощности и частичный катод, при этом во время интервала нарастания мощности генератора мощность в компоненте приема мощности снижается, а затем мощность снижается на частичном катоде, причем переключение осуществляется таким образом, что отдача мощности от генератора, предоставляющего мощность, не должна прерываться.
Изобретение относится к способу нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочного никелевого сплава и может быть использовано для гравюр штампов, применяемых для горячей объемной изотермической штамповки металлических деталей.
Изобретение относится к способу нанесения многослойного ионно-плазменного покрытия на поверхность гравюры штампа из жаропрочной стали и может быть использовано при изготовлении лопаток газотурбинных двигателей горячей штамповкой.

Изобретение относится к способу нанесения покрытия на подложку путем напыления с конденсацией из газовой фазы в условиях вакуума и источнику материала для нанесения покрытия.

Изобретение относится к способу нанесения защитного покрытия из слоев TiN и (Ti+V)N на подложку из титанового сплава ВТ-6. Осуществляют одновременное напыление слоев TiN и (Ti+V)N на подложку из титанового сплава ВТ-6 с помощью двух электродуговых испарителей с чередованием времени нанесения каждого слоя и количества напыляемого материала с каждого из катодов электродуговых испарителей в атмосфере инертного газа.

Изобретение относится к области изготовления диспенсерных катодов на основе скандата бария или других материалов на основе скандата бария, а именно к материалу мишени и мишени для физического осаждения тонких пленок, дисперсному катоду на основе скандата бария и способу его получения и способу получения мишени.

Изобретение относится к манипулятору (1) для динамического позиционирования основы (2), подлежащей обработке, способу термического напыления для нанесения функционального структурированного слоя (20) покрытия на основу (2) и к устройству для его осуществления.

Изобретение относится к технологии нанесения покрытий на металлические поверхности с использованием концентрированных потоков энергии и может быть использовано в электротехнике.

Изобретение относится к формированию на поверхности медных электрических контактах покрытий и может быть использовано в электротехнике. Способ включает электрический взрыв композиционного электрически взрываемого проводника, состоящего из двухслойной плоской медной оболочки массой 60-360 мг и сердечника в виде порошков молибдена и никеля, взятых в соотношении 10:1 массой, равной 0,5-2,0 массы оболочки, формирование из продуктов взрыва импульсной многофазной плазменной струи, оплавление ею поверхности медного электрического контакта при поглощаемой плотности мощности 4,5-6,5 ГВт/м2, осаждение на поверхность продуктов взрыва с формированием на ней композиционного покрытия системы Mo-Ni-Cu и последующую импульсно-периодическую электронно-пучковую обработку поверхности покрытия при поглощаемой плотности энергии 40-60 Дж/см2, длительности импульсов 150-200 мкс и количестве импульсов 10-30.

Способ получения сегнетоэлектрической пленки Ba1-xSrxTiO3 относится к технологиям получения тонких пленок и может быть использован при получении сегнетоэлектрических пленок Ba1-xSrxTiO3 для сверхвысокочастотной техники.

Изобретение относится к области получения электрических контактов, в частности к формированию на медных электрических контактах покрытий на основе вольфрама, никеля и меди, которые могут быть использованы в электротехнике.

Изобретение относится к области теплотехники, а именно к теплозащитным покрытиям лопаток энергетических и транспортных турбин, и может быть использовано в других областях техники для защиты теплонагруженных конструкций.

Изобретение относится к изготовлению теплоизлучающих элементов. Способ включает размещение сетки на основе, изготовленной из первого металлического материала, и формирование на поверхности основы теплоизлучающей ячейки либо путем распыления гранулированных частиц, полученных из второго металлического материала, оксид которого имеет коэффициент отражения 70% и более, отличного от первого металлического материала, и частиц из оксида второго металлического материала, либо путем напыления металлических частиц, изготовленных из второго металлического материала, и их окисления, при этом формирование осуществляют таким образом, что зона контакта ячейки с основой составляет 1 мм2 и менее, после чего сетку удаляют.

Изобретение относится к покрытиям металлических материалов и может быть использовано для защиты деталей из сплава на основе ниобия от высокотемпературной газовой коррозии в условиях высоких температур.

Изобретение относится к способу ионно-плазменного нанесения износостойкого и коррозионностойкого покрытия на изделия из алюминиевых сплавов. Поверхность очищают ионами аргона в плазме тлеющего разряда при напряжении разряда до 700 В, мощности до 1,5 кВт и рабочем давлении 1 Па в течение 10 мин.
Изобретение относится к инструменту для горячего формования стального листа с AlSi покрытием, имеющему покрытие CrxSiyNz, в котором x: 40-69 ат. %, y: 1-20 ат.

Изобретение относится к бритвенным лезвиям, и более конкретно, к новым покрытиям на краях бритвенных лезвий. Бритвенное лезвийное устройство содержит заостренную основу, содержащую по меньшей мере один расположенный на ней слой на основе алюминий-магниевого борида AlMgB14.

Изобретение может быть использовано при нанесении оксидного покрытия, в частности Al-Cr-O, на подложку методом физического осаждения из паровой фазы (PVD). Осуществляют нанесение реакционного PVD-покрытия на поверхность подложки в камере с использованием технологического газа, содержащего химически активный газ, в частности кислород, реагирующий с ионами металлов, полученными из по меньшей мере одной мишени, для осаждения по меньшей мере одного слоя, состоящего из Al, Cr, Si и О.
Наверх