Способ получения активированной воды

Изобретение относится к прикладной электрохимии и может быть использовано для получения активированной шунгитной воды, которую можно использовать в сельском хозяйстве, в медицине для лечения и профилактики различных заболеваний, а также в косметологии. Способ активации воды заключается в ее электролизе между двумя электродами, разделенными между собой пористой диафрагмой, между которыми подано напряжение, отрицательный и положительный потенциалы которого соединены соответственно с катодным и анодным электродами. Электроды выполнены из шунгита, причем анод не полностью погружен в активируемую воду, область анода на границе воздух-вода облучают лазерным лучом, длина волны которого лежит в диапазоне (800÷1540) нм, а плотность энергии лежит в диапазоне (2÷5) Дж/мм2. Технический результат - интенсификация процесса электролиза, повышение стимулирующих свойств католита. 1 ил., 1 табл., 1 пр.

 

Изобретение относится к прикладной электрохимии и может быть использовано для получения из активированной шунгитной воды, стимулирующей и нормализующей процессы в различных биологических объектах, которую можно использовать в сельском хозяйстве, в медицине для лечения и профилактики различных заболеваний, а также в косметологии и в других областях деятельности человека.

Известен способ получения активированной воды, при котором воду настаивают в сосуде, с размещенным в него шунгитом, в течение трех суток [1].

Недостатками такого способа активирования воды являются длительное время активирования воды и низкая минерализация воды полезными микроэлементами.

Известен способ активирования воды с использованием бытового диафрагменного электролизера для получения католита («живой» воды) и анолита («мертвой» воды), содержащий водонепроницаемый корпус-сосуд (стеклянную банку), прямоугольные анодный и катодный электроды, выполненные из нержавеющей стали (относящийся к неблагородному проводящему материалу) и закрепленные на диэлектрической крышке корпуса-сосуда, выпрямительный полупроводниковый диод, закрепленный на диэлектрической крышке и подключенный катодом к анодному электроду, водонепроницаемый брезентовый мешочек, помещенный в корпус-сосуд, в который, в свою очередь, помещается анодный электрод, и двухпроводной шнур питания, первый конец первого провода которого соединен с анодом диода, первый конец второго провода подключен к катодному электроду, вторые концы которого оканчиваются вилкой, включаемой в сеть переменного напряжения 220 B [2].

Недостатком такого способа активации воды является то, что отрываемые электрическим полем с поверхности анодного электрода катионы (положительные ионы) за счет создаваемых электрохимическими процессами на поверхности анодного электрода конвекционных потоков жидкости быстро, менее чем за минуту, достигают внутренней поверхности мешочка, проходят через его поры и попадают в катодную камеру, окружающую мешочек. Католит оказывается загрязненным ионами металлов, входящих в состав нержавеющей стали, в частности ионами никеля. Употреблять такой католит внутрь организма небезопасно для здоровья человека.

Известен способ активации воды с использованием электролизера, содержащего прямоугольный водонепроницаемый корпус-сосуд, выполненный из инертного диэлектрического материала, катодный и анодный электроды, выполненные из нержавеющей стали, размещенные внутри корпуса-сосуда и разделенные между собой двумя стеклянными стаканами, стенки которых наращены обечайками из ватмана, выполняющими роль пористых диафрагм, и источник однополярного пульсирующего напряжения, отрицательный и положительный выводы которого соединены соответственно с катодным и анодным электродами [3]. Электролизер питается от сети переменного напряжения через последовательно соединенные полупроводниковый выпрямительный диод и лампу накаливания 220 B, 40 Вт, выполняющую роль гасящего избыточного напряжения сопротивления. Параллельно лампе накаливания подключен выключатель, при замыкании которого форсируется процесс получения католита и анолита. Стеклянные стаканы располагаются на опускаемом в корпус-сосуд поддоне. Обечайки располагаются друг от друга на расстоянии около 1 см (судя по двум проекциям прибора, представленным на рис. 1, в [3], с. 26).

Недостатком указанного способа является то, что с помощью его вырабатывают католит, в котором содержатся катионы анодного электрода, небезопасные для здоровья человека и животных, в частности катионы никеля. Это обусловлено тем, что катионы преодолевают ближайшее расстояние между диафрагмами в электролизере-прототипе за время существенно меньшее времени электролиза воды, и катионы анодного электрода оказываются в катодной камере электролизера-прототипа задолго до окончания процесса электролиза.

Наиболее близким к заявляемому является способ активации воды, с использованием в диафрагменного электролизера, содержащего прямоугольный водонепроницаемый корпус-сосуд, изготовленный из инертного диэлектрического материала, катодный и анодный электроды, выполненные из неблагородных проводящих материалов, размещенные внутри корпуса-сосуда и разделенные между собой двумя пористыми диафрагмами, и источник однополярного пульсирующего напряжения, отрицательный и положительный выводы которого соединены соответственно с катодным и анодным электродами, причем пористые диафрагмы размещены друг от друга на расстоянии, определяемым соотношением

,

где L - расстояние между пористыми диафрагмами, в см; Е - средняя напряженность пульсирующего электрического поля между электродами в жидкости, в В/см; b - подвижность жидких наиболее быстрых катионов, отрываемых от анодного электрода электрическим полем, в см2 В-1⋅с-1 при Е=1 В/см; t - время электролиза, в с [4].

Недостатком способа-прототипа является то, что опасные для здоровья человека и животных катионы, отрываемые полем с поверхности металлического анода, попадают в воду, и выбранное расстояние L между электродами не гарантирует полного исключения указанных катионов из готового продукта-католита. Кроме того, вырванные из анода ионы опасных и вредных для здоровья человека и животных, ионов металла (катионов), находятся и в анолите, который также используется в лечебных целях, и могут нанести ущерб здоровью людей и животных. Кроме того, использование католита, полученного по способу-прототипу, имеет относительно низкие стимулирующие свойства при проращивании семян различных растений и скорости роста растений. Увеличение расстояние между электродами в способе-прототипе приводит к необходимости увеличения напряжения электролиза и приводит к увеличению процесса активирования воды.

Задача, на которую направлено изобретение, состоит в интенсификации процесса активации воды и повышении стимулирующих свойств католита, при использовании его для проращивания семян растений, стимуляции их роста, для профилактических и лечебных свойств для людей и животных.

Поставленная задача решается тем, что в способе активации воды, заключающимся в ее электролизе между двумя электродами, разделенными между собой пористой диафрагмой, между которыми подано напряжение, отрицательный и положительный потенциалы которого соединены соответственно с катодным и анодным электродами, электроды выполняют из шунгита, причем анод не полностью погружают в активируемую воду, и область анода на границе стыка воздуха с водой облучают лазерным лучом, длина волны которого лежит в диапазоне (800÷1500) нм, а плотность энергии, лежит в диапазоне (2÷5) Дж/мм2.

На чертеже изображен электролизер, поясняющий заявляемый способ.

На чертеже введены следующие обозначения: 1 - шунгитовый анод; 2 - шунгитовый катод; 3 - пористая диафрагма; 4 - лазер; 5 - луч лазера; 6 - место облучения.

Сущность заявляемого изобретения заключается в следующем.

Шунгит является природным композитом, структура которого представляет собой аморфный микропористый кварцевый каркас, заполненный высокодисперсными (около 1 мкм) частицами минералов алюмосиликатного ряда.

Главный компонент шунгита - углерод С60. Его содержание в породе может доходить до 99%. В минеральном составе шунгита помимо углерода С60 присутствуют оксид кремния и оксид алюминия, остальная же часть минерального состава шунгита содержит более 20 макро- и микроэлементов - Na, Са, K, Mg, Fe, Cu и др.). Уникальная особенность шунгита заключается в том, что при взаимодействии его с водной средой в воду выходят только наиболее полезные для организма человека минеральные составляющие этой горной породы.

Фуллерены, входящие в состав шунгитовой воды, способствуют улучшению клеточного обмена веществ и повышению устойчивости клетки (в т.ч. и ее генетического аппарата) к внешним неблагоприятным воздействиям (вирусное заражение, повышение температуры окружающей среды и др.). Эти же молекулярные соединения, переходящие из шунгита в воду, также способствуют улучшению работы нервной системы, повышая устойчивость человеческого организма к стрессу и высоким физическим нагрузкам. Фуллерены, находящиеся в шунгите, являются сильными и длительно действующими антиоксидантами, и именно поэтому на их основе было создано множество лекарств, предназначенных для лечения болезней, в отношении которых были недостаточно эффективны стандартные методы лечения (грипп, астма, атеросклероз, бесплодие, язвы, ожоги и др.).

Католит, образуемый в катодной камере диафрагменного электролизера, обладает щелочными свойствами. Значение его водородного показателя pH при электролизе хорошо проводящей жидкости может достигать 12,0. Значение окислительно-восстановительного потенциала (кратко обозначаемого Eh или ОВП) измеряется при помощи платинового и хлорсеребряного электродов. Оно может достигать значения -900 мВ. Католит, приготовленный из питьевой воды, в отличие от большинства синтезированных сильных антиоксидантов при встрече со свободными радикалами не становится «более слабым свободным радикалом». Более сильных антиоксидантов чем католит, по-видимому, в природе не существует.

Католит обладает иммуностимулирующим, детоксицирующим действием, ускоряет регенерацию тканей и поэтому эффективен при многих хронических заболеваниях, сопровождающихся ослаблением иммунной реактивности организма, при длительно незаживающих ранах и язвах.

В сельском хозяйстве католит используют для ускорения проращиваемости семян различных растений и стимуляции их роста.

Однако активированная вода, получаемая в бытовых электролизерах помимо целебных свойств может нести в себе и определенную опасность для человека и животных.

Известно, что при электролизе воды происходит разрушение анода и положительно заряженные ионы его материала (катионы) проходят от анода через анолит и через мембрану поступают в катодную камеру. Так как в большинстве бытовых электролизеров в качестве электродов используют металлы, то поступающие в анолит и католит катионы оказывают угнетающее действие на растения и делают их небезопасными для человека и животных.

В заявляемом способе в качестве электродов используют шунгит. Использовать шунгит в качестве электродов позволяют, в первую очередь, его высокая электропроводность, и другие его физические характеристики, приведенные ниже:

- плотность - 2,25÷2,40 г/см3;

- пористость - 0,5÷5%

- прочность на сжатие 100÷50 МПа

- модуль упругости (Е) - 0,31×105 МПа

- электропроводность - (1-3)×103 См/м

- теплопроводность - 3,8 Вт/м × К.

- среднее значение коэффициента теплового расширения в интервале температур 20-600 С ÷ 12×10-6 1/град.

В заявляемом способе используется тот факт, что в процессе электролиза из анода электрическим полем вырываются положительно заряженные ионы (катионы) материала анода, которые под действием поля переносятся в прикатодную область, насыщая католит этими катионами. Так как, в отличие от приведенных выше аналогов и способа-прототипа, где анод наиболее часто выполнен из материалов (металлов), отрицательно воздействующих на организм человека, животных и растений, в заявляемом способе используют шунгит, ионы которого обладают целебными и стимулирующими свойствами и полезны для человека, животных и растений.

Следует отметить, что фуллерены, полученные искусственным путем, практически нерастворимы в воде. Шунгит - это камень естественного происхождения, и фуллерены, входящие в его состав, способны к растворению в воде.

В заявляемом способе процесс поступления в католит полезных для человека, животных и растений положительных ионов из шунгитового анода интенсифицируют лазерным лучом. Опыты показали, что наилучшие стимулирующие свойства у католита получаются в том случае, если пограничную область анода из шунгита облучать лазерным лучом, длина волны которого лежит в диапазоне (800÷1540) нм, а плотность энергии, лежит в диапазоне (2-5) Дж/мм2.

Диапазон длины волны от (800÷1540) нм был выбран из следующих прагматичных соображений. Во-первых, диапазон указных длин волн имеют наиболее распространенные и наиболее дешевые лазеры, например диодные лазеры (длина волны излучения 800-950 или 1450 нм); Nd:YAG- и Nd:YVO4-лазеры имеют длину волны 1064 нм; Nd:YAG-лазеры имеют длину волны 1320 нм; Englass-лазер имеет длину волны 1540 нм. Лазеры с длиной волны излучения меньше чем 800 нм менее распространены и значительно более дорогие. При излучении более 1540 нм их инфракрасное излучение поглощается водой, и с увеличением длины волны доля поглощения излучения водой существенно возрастает, что в нашем случае нежелательно.

Выбор плотности энергии лазерного луча в диапазоне (2÷5) Дж/мм2, обусловлен следующими причинами. При мощности лазерного луча, лежащей в диапазоне от 1 до 2 Дж/мм2, эффективность его воздействия на характеристики католита, скорость электролиза воды, относительно низка. Для получения луча с мощностью более 5 Дж/мм2 требуются более дорогие лазеры. Опытным путем было установлено, что оптимальным является диапазон мощностей (2÷5) Дж/мм2.

Катионы шунгита, прошедшие через мембрану в область катода, усиливают антиоксидантные свойства католита.

Пример конкретного выполнения. Заявляемый способ был реализован при помощи устройства, изображенного на чертеже. Способ был реализован следующим образом. Анод 1 и катод 2 были выполнены из шунгита в виде прямоугольных брусков размером 15×20×100 мм. Между катодом и анодом была установлена пористая диафрагма 3, выполненная из пористой керамики. Корпус электролизера был выполнен из капролактама. Объем воды в электролизере был равен 2 литрам. Номинальное постоянное напряжение, подаваемое между электродами, лежало в диапазоне от 11 до 14 В. Сила тока электролиза изменялась в диапазоне от 0,35, до 13,5 А. Анод 1 выступал над поверхностью воды на 10 мм, мощность порядка 3,5 Дж/мм2.

Электролиз воды осуществлялся в трех режимах: 1 - без лазерного облучения; 2 - по заявляемому способу с облучением анода 1 лазерным лучом 5, на участке 6 соприкосновения анода с границей стыке воздух-вода; и по способу-прототипу с электродами, выполненными из титана. Во всех трех случаях процесс электролиза контролировался по непрерывному измерению водородного показателя pH в катодной камере. Процесс заканчивали при достижении pH равном 9,5. Было установлено, что при облучении участка 6 лазерным лучом 5 время достижения указанного значения водородного показателя составляло в среднем 10 мин, тогда как без облучения лазером время достижения значения pH 9,5 при шунгитовых электродах было равно 24 мин, а при титановых электродах - 26 мин. При этом было замечено, что ток электролиза возрастал при облучении шунгитового электрода в 1,4-1,5 раза по сравнению током электролиза при отсутствии облучающего воздействия на анод лазером.

Интенсификация процесса электролиза при облучении анода лазером, вероятно, обусловлена тем, что под воздействием лазерного излучения происходит интенсивное испарение материала анода и воды с образованием плазмы, ионы которой значительно повышают проводимость воды, что и вызывает ускорение процесса ее активации.

После завершения процесса электролиза исследовалось воздействие католита на содержание метаболитов набухающих семян амаранта хвостатого.

Результаты исследования приведены в таблице 1.

Таким образом, исследования показали, что по сравнению со способом-прототипом заявляемый способ имеет следующие преимущества:

- происходит интенсификация процесса электролиза, за счет которой процесс электролиза ускоряется в 1,4÷1,5 раз;

- повышаются стимулирующие свойства католита на (10÷-40)%

Источники информации

1. http://www.kakprosto.ru/kak-46750-kak-poluchit-zhivuyu-vodu

2. Лечение «живой» и мертвой водой. - СПб.: Лениздат, «Ленинград», 2005. - 320 с. [с. 91-92].

3. В Хахалкин. Активатор для рассады // Моделист конструктор, 1987, №3, с. 26-27.

4. Патент РФ на изобретение №2344996. Бытовой диафрагменный электролизер. // Опубл: 27.01.2009. Бюл. №3 – прототип.

Способ активации воды, заключающийся в ее электролизе между двумя электродами, разделенными между собой пористой диафрагмой, между которыми подано напряжение, отрицательный и положительный потенциалы которого соединены соответственно с катодным и анодным электродами, отличающийся тем, что электроды выполняют из шунгита, причем анод не полностью погружают в активируемую воду, и область анода на границе воздух-вода облучают лазерным лучом, длина волны которого лежит в диапазоне (800÷1540) нм, а плотность энергии лежит в диапазоне (2÷5) Дж/мм2.



 

Похожие патенты:

Изобретение относится к устройствам для удаления поверхностного слоя нефтесодержащих жидкостей и может быть использовано в очистных сооружениях водоснабжения и канализации, в химической, металлообрабатывающей и других отраслях промышленности при очистке технологических, смазочно-охлаждающих жидкостей и моющих растворов от посторонних органических примесей, а также для удаления нефтепродуктов с поверхностей водоемов рек, морей, океанов.

Изобретение относится к устройствам для удаления поверхностного слоя нефтесодержащих жидкостей и может быть использовано в очистных сооружениях водоснабжения и канализации, в химической, металлообрабатывающей и других отраслях промышленности при очистке технологических, смазочно-охлаждающих жидкостей и моющих растворов от посторонних органических примесей, а также для удаления нефтепродуктов с поверхностей водоемов рек, морей, океанов.

Изобретение относится к технологии очистки воды или водной среды различного происхождения, в частности к высокопроизводительным методам единовременной комплексной обработки воды в потоке водной среды без применения химических реагентов.
Изобретение относится к области физико-химических технологий, в частности к способам дистилляции воды. Через дистиллируемую высокоминерализованную воду барботируют диспергированный нагретый атмосферный воздух при одновременном воздействии электромагнитным полем СВЧ или КВЧ диапазона в области 300 МГц - 300 ГГЦ и конденсируют пары дистиллята.

Изобретение относится к области энергетики, а точнее к способам подготовки воды для энергетических установок. Каталитический способ удаления кислорода из воды, согласно которому исходную воду очищают от механических примесей и подают в инжектор, где ее смешивают с газообразным водородом, получают водо-водородную смесь и производят ее обескислороживание путем взаимодействия с ионообменным материалом, содержащим палладиевый катализатор, отличающийся тем, что пузырьки газообразного водорода в водо-водородной смеси дробят и полностью растворяют в воде с помощью аппарата вихревого слоя с ферромагнитными иголками, установленными с возможностью вращения под воздействием переменного электромагнитного поля.

Изобретение относится к гидротехнике, а именно к устройствам для очистки воды от наносов, и предназначено для предотвращения попадания донных и взвешенных наносов, фракций более 0,2 мм, в трубопроводы с машинным орошением и аванкамеры насосных станций.

Изобретение относится к насосостроению и предназначено для перекачки различных сред, например, для выделения воздуха, растворенного в воде. Выделение растворенных газов из перекачиваемой жидкости методом понижения давления в потоке газа с использованием явления кавитации выполняется благодаря подаче жидкости через патрубок ввода на диаметральный дисковый ротор, разделению потока жидкости за счет центробежных сил в междисковом пространстве на области с повышенным и пониженным давлением и раздельный вывод жидкости и выделенного газа через патрубки.

Изобретение относится к прикладной электрохимии и может быть использовано для получения методом электролиза воды с отрицательным окислительно-восстановительным потенциалом, совместимой с внутренней средой организма.

Изобретение относится к устройствам для очистки жидкостей и газов, например, в сельском хозяйстве, медицинской, пищевой и микробиологической отраслях промышленности, а также может быть использовано для разделения и концентрирования технологических растворов, водоподготовки, очистки сточных вод других производств.

Изобретение относится к мембранной технике и может быть использовано при процессах разделения, концентрирования и очистки компонентов сточных вод и технологических жидких смесей.

Изобретение может быть использовано в аналитической химии природных вод для инструментального определения микроэлементов. Для осуществления способа группового концентрирования из кислых растворов и разделения ионов Ti, Mo, Sn, Fe к 10 мл водной фазы анализируемого кислого раствора добавляют 1 г легкоплавкого расплава ацетилсалицилата антипириния [AntH3O+]⋅[AcSal-], отделяют концентрат ионов Ti, Mo, Sn, Fe, озоляют азотной кислотой в микроволновой печи и анализируют атомно-эмиссионной спектрометрией. Для расширения спектра извлекаемых из кислого водного раствора ионов - Ti, Mo, Sn, Fe, V, Cr, Pb, Cd, Co, Sb, Mn легкоплавким расплавом ацетилсалицилата антипириния к 5 мл анализируемого раствора дополнительно прибавляют 5 мл 2,0 М раствора хлорида натрия при том же количестве – 1 г ацетилсалицилата антипириния. Полученную систему подогревают до 90оС, встряхивают 5 мин, центрифугируют, экстрагируют концентрат ионов элементов, озоляют и анализируют. Способ обеспечивает эффективное групповое извлечение широкого спектра элементов - Ti, Mo, Sn, Fe, V, Cr, Pb, Cd, Co, Sb, Mn. 2 ил., 2 табл., 1 пр.

Изобретение относится к способам очистки воды от стронция. Способ очистки питьевой воды от стронция осуществляют путём ионного обмена. Используют фильтр с загрузкой, состоящей из монодисперсного сильнокислотного катионита в Na- или H-форме с размером гранул 0,6-0,7 мм. Процесс осуществляют в фильтре с зажатым слоем загрузки при отношении диаметра и высоты загрузки не более 0,8. Используют фильтр, снабжённый дренажными щелевыми колпачками в оболочке из металлической сетки с размером ячеек 0,28-0,50 мм. Изобретение обеспечивает повышение селективности извлечения стронция, стабилизацию потока обрабатываемой воды, увеличение глубины очистки от солей жесткости и солей стронция, повышение продолжительности фильтроцикла. 1 з.п. ф-лы, 1 табл.

Изобретение относится к дозирующему устройству для подачи дозы добавки в жидкость, в частности, оно касается дозирующего устройства, которое используется для добавления малых количеств добавки в поток жидкости в трубе, в общем случае в поток воды, во время протекания жидкости мимо дозирующего устройства. Дозирующее устройство (1) снабжено добавкой (2) для подачи дозы добавки в жидкость, которая течет в трубе, и это устройство (1) прежде всего включает насадку (3) со впускным отверстием (4) и выпускным отверстием (5) для соединения устройства (1) с трубой, корпус (6) с отверстием, который соединяется с насадкой (3), и снабжен крепежными средствами для крепления корпуса (6) к насадке (3) с объемом, в котором содержится добавка (2), дозирующее устройство (1) снабжено звуковыми средствами, которые блокируются присутствием самой добавки (2) и разблокируются, когда добавка (2) полностью или почти полностью израсходована, посредством чего звуковые средства генерируют звук в разблокированном состоянии механическим способом под влиянием потока жидкости, и при этом звуковые средства принимают форму поршня с головкой, подвижно связанной с трубчатым корпусом (12), связанным с крепежными средствами (19), при этом звуковые средства имеют общий удельный вес ниже, чем у воды, и при этом крепежные средства (19) расположены в той секции дозирующего устройства, где расположена добавка, которая используется последней, где крепежные средства блокированы добавкой (2), захватывающей или вмещающей крепежные средства (19) до тех пор, пока добавка (2) не будет израсходована и звуковые средства разблокированы, в соответствии с чем поршень с его головкой подходит и также касается стенки канала, который расположен вне объема корпуса (6), который определен первой стенкой (8а) в случае, если сама головка производит механический звук или взаимодействует с концентрическими вращающимися лопастями, которые двигаются по фиксированному зубчатому кольцу в случае, если головка снабжена средствами для взаимодействия с ними таким образом, чтобы генерировать звук трещотки. Изобретение обеспечивает дозирующее устройство, оборудованное звуковыми средствами, которые блокируются присутствием самой добавки и разблокируются, когда добавка полностью или почти полностью израсходована, и звуковые средства генерируют звук в разблокированном состоянии под воздействием потока жидкости через устройство, и это осуществляется механическим способом. 17 з.п. ф-лы, 18 ил.

Изобретение относится к приготовлению раствора, содержащего катионы и анионы. Токовый способ для выбора вида ионов и концентрации является традиционным путем химического растворения. Устройство для приготовления раствора (5) содержит: по меньшей мере, два модуля (10, 10’) для высвобождения катионов, каждый из которых сконфигурирован, чтобы высвобождать, по меньшей мере, один вид катионов; по меньшей мере, два модуля (12, 12’) для высвобождения анионов, каждый из которых сконфигурирован, чтобы высвобождать, по меньшей мере, один вид анионов; и контроллер (14), сконфигурированный, чтобы управлять, по меньшей мере, одним указанным модулем для высвобождения катионов и, по меньшей мере, одним указанным модулем для высвобождения анионов, чтобы высвобождать соответствующие виды ионов. Способ позволяет автоматически приготавливать раствор посредством соответствующего регулирования катионов и анионов. 2 н. и 10 з.п. ф-лы, 9 ил.

Изобретение относится к очистке природных и сточных вод и может быть использовано в коммунальном хозяйстве и в сфере природообустройства. Способ удаления плавающих веществ (1) с поверхности воды емкостного сооружения (2) включает удаление плавающих веществ (1) в отводящий желоб (3), переливной бортик (4) которого расположен строго горизонтально выше рабочего уровня воды (5) емкостного сооружения (2), а дно желоба (3) имеет уклон для самотечного отвода плавающих веществ (1). Перелив плавающих веществ (1) в отводящий желоб (3) производят тонким слоем в результате кратковременного контролируемого подъема уровня воды (6) в сооружении выше переливного бортика (4) отводящего желоба (3) путем использования регулирующего устройства (7), установленного на выпуске сточных вод из емкостного сооружения. Изобретение позволяет эффективно удалять плавающие вещества в емкостном сооружении без использования расходных материалов при сокращении количества сопутствующей воды. 1 ил.

Изобретение может быть использовано для безреагентной очистки сапонитсодержащей воды и уплотнения сапонитсодержащего осадка. Для осуществления способа формируют излучение бегущих гидроакустических волн звукового и ультразвукового диапазонов частот, воздействуют излучением на загрязненную сапонитсодержащую воду, осуществляют гидроакустическую коагуляцию и осаждение сапонитсодержащих частиц, уплотнение тел водоупорных дамб и акустическую сушку осадка. При этом гидроакустические излучатели размещают на плавучих гидроакустических модулях (13), установленных в районе сброса загрязненной сапонитсодержащей воды (5), в центральной части отстойника и в районе водозабора осветленной воды (7) дополнительно используют не менее двух мобильных боновых заграждений (11), формирующих поперечные, переливные отсеки отстойника (6), не менее двух мобильных, придамбовых боновых заграждений (12), формирующих продольные, глухие отсеки отстойника (6), при этом плавучие гидроакустические модули (13) устанавливают в ряд за вторым боновым заграждением (11). Дополнительно устанавливают не менее трех плавучих шламовых насосов (14), обеспечивающих отбор предварительно уплотненного сапонитсодержащего осадка, его перемещение в глухой отсек отстойника (6), в котором осуществляют концентрирование, уплотнение и обезвоживание осадка. С двух сторон боновых заграждений (11) и (12) устанавливают плавучие насосы (15) для их монтажа или демонтажа. Дополнительно используют гидроакустическое уплотнение сапонитсодержащего осадка для его обезвоживания (16) и сушки (17). Способ обеспечивает быстрое и качественное осветление больших объемов сапонитсодержащей воды, уплотнение и сушку полученного сапонитсодержащего осадка, повышение экологической безопасности эксплуатации отстойников. 9 ил., 1 пр.

Описаны способ магнитной активации жидких высокомолекулярных углеводородов, в котором для создания магнитного поля в жидкости, протекающей по диамагнитной трубе, пропускают импульсы тока по проводникам, расположенным в потоке жидкости, и устройство для реализации данного способа, в котором формирователи магнитного поля находятся вне трубы, а внутри трубы установлены металлические проводники, изолированные концы которых выведены наружу трубы и через управляемые коммутаторы подключены к импульсным источникам электроэнергии. Повышение магнитной активации углеводородов позволяет снизить температуру нагрева углеводородов при переработке их термическим разложением и снизить при этом коксование на греющих поверхностях. 2 н. и 3 з.п. ф-лы, 1 ил.

Изобретение относится к биотехнологии. Предложен способ очистки нефтесодержащих сточных вод. Способ включает очистку нефтесодержащих сточных вод в фильтре, содержащем корпус со съемными фильтрующими кассетами, обеспечивающими скорость фильтрации 0,1-0,3 м/ч. В качестве фильтрующей загрузки используют гранулы вспененного дробленого пенополистирола с крупностью зерен 2-3 мм с насыпным весом 17-22 кг/м3 при толщине кассеты 0,3-0,5 м, при этом в объем фильтрующей загрузки вводят в эффективном количестве штамм углеводородокисляющих бактерий Rhodococcus и/или Pseudomonas и/или Acinetobacter или биопрепарат нефтедеструктор. Способ обеспечивает глубокую очистку нефтесодержащих сточных вод. 2 ил., 4 пр.

Изобретение относится к ротационно-ударному испарителю (РУИ), который предназначен для испарения жидкостей, например нефти и нефтепродуктов, и может быть применен в установках для вакуумной перегонки, очистки, опреснения, получения элитных эфирных масел и спиртных напитков, а также в ряде других областей. Ротационно-ударный испаритель для испарения жидкостей, например нефти и нефтепродуктов, состоит из герметичной испарительной камеры, распылительного дозатора, обеспечивающего распыл подающейся к нему подготовленной жидкости, подаваемой в испарительную камеру с малым расходом, заборника пара, соединенного с устройством для откачки пара, создающим заданный вакуум в испарительной камере, и накопителем неиспарившейся жидкости. Испаритель отличается тем, что в испарительной камере установлен венец ударных лопаток на лопаточном колесе, вращающемся с высокой скоростью на валу, введенном в испарительную камеру через уплотнение и приводящемся во вращение приводом так, что капельный поток жидкости от распылительного дозатора, частично испаряясь, движется навстречу вращающимся ударным лопаткам, которые отсекают от него малые капельные порции и наносят по ним мощные удары, причем ударные лопатки имеют достаточно большую площадь поверхности и наклонены к плоскости вращения так, чтобы обеспечить максимальную интенсивность наносимых ударов, в результате чего часть жидкости распыляется и испаряется, а другая растекается по поверхности ударных лопаток в виде динамических пленок, которые, измельчаясь и испаряясь, стекают к краям ударных лопаток, приобретая скорость ударных лопаток, срываются с краев ударных лопаток, распадаются и продолжают двигаться, распыляясь и испаряясь, по направлению к стенкам испарительной камеры, испытывают мощные удары при столкновении со стенками испарительной камеры, после чего, частично испаряясь, растекаются по внутренней поверхности испарительной камеры в виде динамической пленки, которая, испаряясь, стекает вниз, где расположен накопитель неиспарившейся жидкости, в то время как образовавшийся пар отводится через заборник при помощи устройства для откачки пара, например вакуумного насоса. Заявлен также способ вакуумной перегонки сложных жидкостей на основе ротационно-ударного испарителя. Технический результат - РУИ позволяет эффективно испарять жидкости, обладающие неблагоприятными для традиционного испарения теплофизическими свойствами, а также жидкости, имеющие в своем составе полезные компоненты, подверженные термохимическим реакциям и коксованию, при этом подвод тепла непосредственно в ходе испарения в РУИ не предусмотрен и не требуется. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к получению пузырьков и пен, содержащих пузырьки. Устройство содержит: первый блок, выполненный с возможностью определять по меньшей мере одну характеристику газа в пузырьках; второй блок, выполненный с возможностью вырабатывать пузырьки, содержащий: электролизер, выполненный с возможностью проводить электролиз электролита, чтобы вырабатывать газ в электролите, тем самым вырабатывая пузырьки; контроллер выполнен с возможностью регулировать второй блок, чтобы вырабатывать пузырьки согласно по меньшей мере одной характеристике газа. Изобретение позволяет регулировать характеристику газа в пузырьке на основе практических требований к газу, а также снизить уровень шума и габариты устройства для вырабатывания пузырьков и пен. 2 н. и 11 з.п. ф-лы, 11 ил.
Наверх