Протекторный браслет зимней шины с трехмерными прорезями

Изобретение относится к автомобильной промышленности. Протекторный браслет (1) шины содержит продольные и поперечные канавки (3, 4), ограничивающие блоки (5), выступающие радиально вверх от поверхности (2) основания протекторного браслета (1); и прорези (9), образованные по меньшей мере в некоторых блоках (5) и проходящие радиально внутрь от верхней поверхности (8) соответствующего блока (5), образующей поверхность качения протекторного браслета (1). Каждая прорезь (9) имеет волнообразную конфигурацию (W1, W2, W3), если смотреть на соответствующий блок (5) в любой одной из трех взаимно перпендикулярных плоскостей (XY, ZX, YZ), образованных продольной осью (х), поперечной осью (у) и радиальный осью (z). Технический результат – повышение жесткости протектора шины без ухудшения качества его сцепления со снежной поверхностью. 2 н. и 11 з.п. ф-лы, 8 ил.

 

Область техники

Изобретение относится к протекторному браслету зимней шины. Протекторный браслет имеет прорези, выполненные в протекторных блоках и проходящие радиально от поверхности качения внутрь блоков.

Уровень техники

Одной из наиболее важных характеристик зимней шины является ее сцепление на снегу (т.е. на поверхности, покрытой снегом) и ее способность создания достаточного трения во время качения по покрытой снегом поверхности. Общая сила трения, возникающая между шиной и покрытой снегом поверхностью, представляет собой сумму усилия врезания протектора шины, проникающего в снег, и усилия сдвига от трения между снегом, захваченным протектором шины (в частности, в канавками протектора), и снегом на покрытой снегом поверхности. Для увеличения усилия сдвига необходимо увеличить количество снега, захватываемого (зажимаемого) протектором шины, для этого протектор имеет несколько, обычно зигзагообразных, прорезей, проходящих радиально от поверхности качения внутрь блоков.

Однако наличие прорезей имеет отрицательные аспекты, так как при улучшении характеристики на снегу или льду ухудшаются характеристики на сухих или (в меньшей степени) на мокрых поверхностях. В частности, наличие прорезей значительно увеличивает поперечную гибкость протекторных блоков (параллельно оси качения шины) и продольную (по окружности, т.е. по касательной к периферии шины), что значительно увеличивает деформацию протекторных блоков при воздействии поперечных сил (при повороте) или продольных сил (при торможении или ускорении). Значительная деформация протекторных блоков поперечными или продольными силами всегда является неблагоприятной из-за уменьшения площади контакта между поверхностью качения (т.е. внешней поверхностью протекторных блоков) и поверхностью дороги, что уменьшает общее усилие, которое шина способна передать на поверхность дороги.

В патентном документе ЕР 1669217 А1 раскрыт протекторный браслет зимней шины, содержащий продольные и поперечные канавки, которые ограничивают блоки, выступающие радиально вверх от поверхности основания протекторного браслета, и прорези, образованные по меньшей мере в блоках и проходящие радиально внутрь от верхней поверхности соответствующего блока, образующей поверхность качения протекторного браслета. Каждая прорезь выполнена с волнообразным профилем в плоскости, образованной продольной осью Тс и поперечной осью Tw, посредством сдвига этого волнообразного профиля вдоль радиальной оси Тг и волнообразно вдоль продольной оси Тс.

Прорези, описанные в патентном документе ЕР 1669217 А1, увеличивают жесткость блоков вдоль продольной оси Тс и поперечной оси Tw вследствие наличия двойного волнообразного профиля в плоскости, образованной продольной осью Тс и поперечной осью Tw, и в плоскости, образованной продольной осью Тс и радиальной осью Tr.

В патентном документе ЕР 1987964 А1 раскрыта пневматическая шина, которая включает в себя протекторные блоки, разделенные множеством кольцевых канавок, проходящих в окружном направления шины, и множеством боковых канавок, проходящих вдоль направления по ширине шины, причем в этих блоках выполнены кольцевые прорези, проходящие в окружном направления шины. Внутренние кольцевые прорези проходят вдоль радиального направления шины, а внешние кольцевые прорези проходят вдоль радиального направления шины зигзагообразно.

Раскрытие изобретения

Задачей изобретения является создание протекторного браслета зимней шины с блоками высокой жесткости вдоль продольной и поперечной осей, а также недорогого, простого в изготовлении и не имеющего вышеуказанных недостатков.

В соответствии с изобретением разработан протекторный браслет зимней шины, раскрытый в формуле изобретения.

Изобретение поясняется чертежами.

Краткое описание чертежей

На фиг. 1 схематично показан фрагмент протекторного браслета зимней шины в соответствии с изобретением;

на фиг. 2 - блок с радиальными прорезями протекторного браслета, показанного на фиг. 1, схематичный вид в перспективе в увеличенном масштабе;

на фиг. 3 - блок, показанный на фиг. 2, с волнообразной конфигурацией прорезей в плоскости XY, вид сверху (т.е. в плоскости XY);

на фиг. 4 - блок, показанный на фиг. 2, с волнообразной конфигурацией прорезей в плоскости ZX, вид сбоку (т.е. в плоскости ZX);

на фиг. 5 - волнообразная конфигурация прорезей блока, показанного на фиг. 2, в плоскости YZ;

на фиг. 6 - другой вариант выполнения блока, показанного на фиг. 2, с волнообразной конфигурацией прорезей в плоскости ZX, вид сбоку (т.е. в плоскости ZX);

на фиг. 7 - прорезь блока протекторного браслета, показанного на фиг. 1, вид в перспективе;

на фиг. 8 - диаграмма, иллюстрирующая повышение жесткости, достигаемое при использовании изобретения.

Варианты осуществления изобретения

На фиг. 1 позицией 1 обозначен протекторный браслет зимней шины. Протекторный браслет 1 имеет тороидальную поверхность 2 основания, проходящую вокруг центральной оси вращения.

Протекторный браслет 1 имеет рельефный профиль, выступающий радиально вверх от поверхности 2 основания и ограниченный продольными (или кольцевыми) канавками 3 (т.е. проходящими вдоль окружности протектора поперечно оси вращения), и поперечными (или осевыми) канавками 4 (т.е. параллельными оси вращения и в связи с этим перпендикулярными продольным канавкам 3). Продольные и поперечные канавки 3 и 4 образуют блоки 5, которые выступают радиально вверх от поверхности 2 основания протекторного браслета 1. Каждый блок 5 имеет форму по существу параллелепипеда с прямоугольным поперечным сечением и содержит две продольные боковые поверхности 6, перпендикулярные к поверхности 2 основания и ограничивающие две соответствующие продольные канавки 3 на внутренних блоках 5; две поперечные боковые поверхности 7, перпендикулярные к поверхности 2 основания и ограничивающие две соответствующие поперечные канавки 4; верхнюю поверхность 8, параллельную поверхности 2 основания, определяющую поверхность качения, которая и опирается на поверхность дороги во время качения шины.

Как показано на фиг. 2, каждый блок 5 имеет зигзагообразные радиальные прорези 9, радиально проходящие через верхнюю поверхность 8 блока 5. Иными словами, каждая прорезь 9 проходит радиально (т.е. в радиальном направлении) внутрь от верхней поверхности 8 соответствующего блока 5 (т.е. от поверхности качения).

Как показано на фиг. 3-5, каждая прорезь 9 имеет волнообразную конфигурацию W1, W2, W3 в любой из трех взаимно перпендикулярных плоскостей XY, ZX, YZ, образованных продольной (окружной) осью х (т.е. касательной к окружности шины), поперечной (аксиальной) осью «y» (т.е. параллельной оси качения шины и перпендикулярной продольной оси «х») и радиальной осью «z» (т.е. перпендикулярной продольной и поперечной осям х» и «y»). Иными словами, каждая прорезь 9 имеет волнообразную конфигурацию W1, если смотреть на блок 5 (как на фиг. 3) в плоскости XY, ограниченной продольной осью «х» и поперечной осью у (т.е. если смотреть сверху); волнообразную конфигурацию W2, если смотреть на блок 5 (как на фиг. 4) в плоскости ZX, образованной радиальной осью «z» и продольной осью «х» (т.е. если смотреть сбоку); и волнообразную конфигурацию W3, если смотреть на блок 5 (как на фиг. 5) в плоскости YZ, образованной поперечной осью у и радиальной осью «z».

Иными словами, в плоскости XY каждая прорезь 9 имеет волнообразную конфигурацию W1, одинаковую, даже если блок 5 рассечен вдоль любой плоскости, параллельной плоскости XY, т.е. в любой радиальной точке z блока 5. В различных радиальных точках z волнообразная конфигурация W1 в плоскости XY остается одинаковой (имеет одинаковую форму, т.е. остается недеформированной), но сдвинутой (смещенной) вдоль продольной оси «х» по волнообразной конфигурации W2 и вдоль поперечной оси «у» по волнообразной конфигурации W3. Таким образом, каждая прорезь 9 вначале имеет волнообразную конфигурацию W1 в плоскости XY посредством сдвига волнообразной конфигурации W1 параллельно самой себе (т.е. без изменения формы или ориентации) вдоль радиальной оси «z», а также вдоль поперечной оси «у» по волнообразной конфигурации W2 и вдоль продольной оси «х» по волнообразной конфигурации W3 (без изменения формы волнообразной конфигурации W1).

В предпочтительном варианте выполнения три волнообразные конфигурации W1, W2, W3 отличаются формой и/или размером.

Как показано на фиг. 3, волнообразная конфигурация W1 прорези 9 в плоскости XY является кусочно-линейной (т.е. представляет собой зигзагообразную линию) и содержит последовательность прямых участков, расположенных под углами друг к другу. Предпочтительно шаг (период) Р1 волнообразной конфигурации W1 находится в диапазоне между 3 и 4 мм, а его амплитуда HI находится в диапазоне от 1,2 до 2,0 мм.

Как показано на фиг. 4, волнообразная конфигурация W2 прорезей 9 в плоскости ZX является кусочно-линейной с кривой, соединяющей каждый наклонный участок сверху и снизу (в качестве альтернативы он может являться кусочно-линейным с острыми углами, т.е. без соединительных кривых, что улучшает характеристики, но усложняет производство). Предпочтительно шаг (период) Р2 волнообразной конфигурации W2 находится в диапазоне от 2 до 3 мм, а ее амплитуда Н2 находится в диапазоне от 0,6 до 1,0 мм.

Как показано на фиг. 5, волнообразная конфигурация W3 прорезей 9 в плоскости YZ является кусочно-линейной с кривой, соединяющей каждый наклонный участок сверху и снизу (в качестве альтернативы он может являться кусочно-линейным с острыми углами, т.е. без соединительных кривых, что улучшает характеристики, но усложняет производство). Предпочтительно шаг (период) Р3 волнообразной конфигурации W3 находится в диапазоне от 1,5 до 2,0 мм, а ее амплитуда Н3 находится в диапазоне от 0,5 до 0,9 мм.

Как показано на фиг. 4, волнообразная конфигурация W2 прорезей 9 в плоскости ZX содержит полуволну А (т.е. половину полной волны), которая начинается на верхней поверхности 8 (т.е. поверхности качения) блока 5, и две последовательные полные волны 8 и С после полуволны А. Амплитуда Н2 полуволны А меньше (предпочтительно около половины) амплитуды Н2 двух полных волн В и С. Шаг (период) Р2 полуволны А отличается от шага двух полных волн В и С. Например, полуволна А имеет шаг (период) Р2 около 1,8 мм (относительно, разумеется, полной волны); полная волна В имеет шаг (период) Р2 около 2,7 мм; а полная волна С имеет шаг (период) Р2 около 3,1 мм.

Когда блок 5 подвергается воздействию продольной силы (т.е. силы, направленной вдоль продольной оси х, силы ускорения или торможения), волнообразная конфигурация W2 прорезей 9 в плоскости ZX создает блокирующее взаимодействие между двумя противолежащими поверхностями каждой прорези 9, и блокирующие усилия между двумя противолежащими поверхностями каждой прорези 9 имеют два положительных эффекта:

1. Продольная составляющая (параллельная поверхности дороги) блокирующих сил между двумя противолежащими поверхностями каждой прорези 9 непосредственно увеличивает продольную жесткость блока 5.

2. Радиальная составляющая (перпендикулярная поверхности дороги) блокирующих сил между двумя противолежащими поверхностями каждой прорези 9 создает моменты реакции, которые исключают или по меньшей мере уменьшают моменты, стремящиеся деформировать блок 5 радиально (радиальная деформация блока 5 имеет отрицательные эффекты из-за тенденции к уменьшению площади контакта между верхней поверхностью 8 блока 5 и поверхностью дороги).

Две полные волны В и С в волнообразной конфигурации W2 прорези 9 в плоскости ZX обычно выполнены с возможностью оптимизации двух описанных выше эффектов.

Основное назначение полуволны А в волнообразной конфигурации W2 прорези 9 в плоскости ZX заключается в увеличении моментов реакции, противоположных деформирующим моментам, что достигается посредством увеличения расстояния приложения (и в связи с этим плеча) блокирующих усилий между двумя противолежащими поверхностями каждой прорези 9. Вышеописанная функция увеличения моментов реакции полуволны А в волнообразной конфигурации W2 прорезей 9 в плоскости ZX является направленной, т.е. работает только в случае продольного или поперечного напряжения в зависимости от ориентации полуволны А. Иными словами, если полуволна А ориентирована, как показано на фиг. 4, вышеописанная функция увеличения моментов реакции работает только в случае продольного напряжения при ускорении; а если полуволна А ориентирована, как показано на фиг. 6, вышеописанная функция увеличения моментов реакции работает только в случае продольного напряжения при торможении. Полуволна А на фиг. 4 является зеркальным отражением полуволны А на фиг. 6. Две полные волны В и С являются потенциально независимыми от полуволны А и должны быть ориентированы согласно установленным целям: если волнообразная конфигурация W2 прорезей 9 в плоскости ZX выполнена с возможностью улучшения характеристики только в одном продольном направлении (т.е. только при ускорении или торможении), две полные волны В и С и полуволна А всегда обращены одинаковым образом, а если волнообразная конфигурация W2 прорезей 9 в плоскости ZX выполнена с возможностью компромисса, две полные волны В и С обращены противоположно к полуволне А (т.е. две полные волны В и С ориентированы для улучшения торможения или тяги на сухом покрытии, а полуволна А ориентирована противоположно для улучшения тяги или торможения на снегу).

Для обеспечения направленности эффектов полуволны А в волнообразной конфигурации W2 прорезей 9 в плоскости ZX центральные блоки 5 (т.е. расположенные вдоль или близко к осевой линии протекторного браслета 1) могут отличаться от боковых блоков 5 (т.е. расположенных вдоль или близко к плечам протекторного браслета 1): центральные блоки 5, которые подвергаются воздействию больших продольных сил ускорения, имеют волнообразную конфигурацию W2 прорезей 9 в плоскости ZX, показанную на фиг. 4 (для оптимизации тяги); а боковые блоки 5, которые подвергаются воздействию больших продольных усилий торможения, имеют волнообразную конфигурацию W2 прорезей 9 в плоскости ZX, которая показана на фиг. 6 (для оптимизации торможения).

Установлено, что полуволна А волнообразной конфигурации W2 прорезей 9 осуществляет микроврезание в снег (на покрытых снегом поверхностях), увеличивая количество снега, захватываемого в прорези 9, а также (незначительно) улучшая характеристику на снегу или льду.

В варианте выполнения, соответствующем показанному на фиг. 4, в каждом блоке 5 волнообразная конфигурация W2 прорезей 9 в плоскости ZX прекращается, немного не доходя до поверхности 2 основания (т.е. в нижней части блока 5), и на последнем элементе (т.е. на последних 0,3-0,5 мм до поверхности 2 основания) прорези 9 в плоскости ZX являются прямыми (т.е. не имеют волн). В другом варианте выполнения, не показанном на чертежах, волнообразная конфигурация W2 прорезей 9 в плоскости ZX сохраняется плавной от верхней поверхности 8 (т.е. верхней части блока 5) до поверхности 2 основания (т.е. нижней части блока 5). Иными словами, в каждом блоке 5 волнообразная конфигурация W2 прорезей 9 в плоскости ZX продолжается на полную радиальную глубину блока 5.

В варианте выполнения, соответствующем показанному на фиг. 5, в каждом блоке 5 волнообразная конфигурация W3 прорезей 9 в плоскости YZ сохраняется плавной от верхней поверхности 8 (т.е. верхней части блока 5) до поверхности 2 основания (т.е. нижней части блока 5). Иными словами, в каждом блоке 5 волнообразная конфигурация W3 прорезей 9 в плоскости YZ проходит полностью на радиальную глубину блока 5. В другом, не показанном на чертежах варианте выполнения, волнообразная конфигурация W3 прорезей 9 в плоскости YZ прекращается, немного не доходя до поверхности 2 основания (т.е. в нижней части блока 5), и на последнем элементе (т.е. на последних 0,3-0,5 мм до поверхности 2 основания) прорези 9 в плоскости YZ являются прямыми (т.е. не имеют волн).

На фиг. 7 представлен трехмерный вид прорезей 9.

Описанный протекторный браслет 1 зимней шины имеет некоторые преимущества.

Во-первых, по сравнению со стандартным протекторным браслетом описанный выше протекторный браслет 1 хорошо функционирует на снегу или льду благодаря прорезям 9, в то же время намного лучше функционируя на мокрых и сухих покрытиях. Это достигается благодаря конструкции прорезей 9, которые имеют волнообразную конфигурацию W1, W2, W3 при рассмотрении блока 5 в любой одной из трех взаимно перпендикулярных плоскостей XY, ZX, YZ.

Волнообразная конфигурация W1 в плоскости XY является вполне стандартной и служит исключительно для захвата большего количества снега на покрытых снегом поверхностях. Волнообразные конфигурации W2 и W3 в соответствующих плоскостях ZX и YZ способствуют исключительно увеличению жесткости блоков 5 вдоль поперечной оси «у» (для улучшения характеристик при повороте) и вдоль продольной оси «х» (для улучшения характеристик при ускорении и торможении) посредством улучшения блокировки между двумя противолежащими поверхностями каждой прорези 9. Важно отметить, что волнообразная конфигурация W2 в плоскости ZX главным образом способствует увеличению жесткости блоков 5 вдоль продольной оси «х», но посредством взаимодействия с волнообразной конфигурацией W3 в плоскости YZ также способствует увеличению жесткости блоков 5 вдоль поперечной оси «у». Таким образом, волнообразная конфигурация W3 в плоскости YZ, главным образом способствующая увеличению жесткости блоков 5 вдоль поперечной оси «у», также способствует увеличению жесткости блоков 5 вдоль продольной оси «х» посредством взаимодействия с волнообразной конфигурацией W2 в плоскости ZX.

Численное моделирование и испытания показали, что волнообразные конфигурации W2 и W3 в соответствующих плоскостях ZX и YZ обеспечивают достижение сверхсуммарного эффекта, т.е. эффекты при их объединении увеличиваются намного больше, чем их алгебраическая сумма. Иными словами, используя обе волнообразные конфигурации W2 и W3 в соответствующих плоскостях ZX и YZ можно достичь намного большей жесткости каждого блока 5 вдоль продольной оси «х», чем при использовании только волнообразного профиля W2 в плоскости ZX, а также достичь намного большей жесткости каждого блока 5 вдоль поперечной оси «у», чем при использовании только волнообразного профиля W3 в плоскости YZ. Это показано на диаграмме, приведенной на фиг. 8, ясно показывающей, как, используя все три волнообразные конфигурации W1, W2, W3, можно достичь намного большей жесткости Sx блоков 5 вдоль продольной оси «х» и намного большей жесткости Sy блоков 5 вдоль поперечной оси «у» по сравнению с использованием только волнообразных конфигураций W1 и W2 или волнообразных конфигураций W1 и W3.

Посредством регулирования формы и/или размера волнообразных конфигураций W2 и W3 в соответствующих плоскостях ZX и YZ можно регулировать жесткость блоков 5 вдоль продольной оси «х» и поперечной оси «у» для достижения заданной характеристики зимней шины (т.е. преимущественного сцепления на снегу и льду, преимущественного сцепления на мокром покрытии, преимущественного сцепления на сухом покрытии или для достижения хорошо сбалансированного компромисса). Иными словами, жесткости Sx и Sy блоков 5 могут регулироваться воздействием на два различных параметра (волнообразных конфигураций W2 и W3), позволяя тем самым достаточно точно достигать заданных показателей жесткости Sx и Sy.

Испытания показали, что по сравнению с подобной зимней шиной со стандартным протекторным браслетом описанная зимняя шина с протекторным браслетом 1 показывает увеличение продольного или поперечного сцепления на сухом или мокром покрытии более чем на 10% без заметного ухудшения сцепления на снегу или льду.

Более того, описанный протекторный браслет 1 зимней шины является недорогим и простым в производстве без включения значительных дополнительных расходов по сравнению со стандартным протекторным браслетом. К тому же, конструкция прорезей 9 просто требует соответствующей конструкции пластин, устанавливаемых внутрь пресс-формы для вулканизации и негативно копирующих форму прорезей 9 (пластины штампуются из листового металла и в связи с этим являются простыми для производства даже в сложных формах).

1. Протекторный браслет (1) зимней шины, содержащий продольные и поперечные канавки (3, 4), ограничивающие блоки (5), выступающие радиально вверх от поверхности (2) основания протекторного браслета (1); и прорези (9), образованные по меньшей мере в некоторых блоках (5) и проходящие радиально внутрь от верхней поверхности (8) соответствующего блока (5), образующей поверхность качения протекторного браслета (1); причем каждая прорезь (9) в сечении блока (5) первой плоскостью (XY), образованной продольной и поперечной осями (x, y), имеет первую волнообразную конфигурацию (W1), постоянную в этой плоскости сечения; вдоль радиальной оси (z), первая волнообразная конфигурация (W1) каждой прорези (9) сдвинута вдоль продольной оси (x), образуя вторую волнообразную конфигурацию (W2), являющуюся кусочно-линейной; а вдоль радиальной оси (z), в дополнение к сдвигу вдоль продольной оси (х) с образованием второй волнообразной конфигурации (W2), первая волнообразная конфигурация (W1) каждой прорези (9) сдвинута вдоль поперечной оси (y), образуя третью волнообразную конфигурацию (W3), отличающийся тем, что вторая волнообразная конфигурация (W2) прорезей (9) содержит полуволну (А), начинающуюся от верхней поверхности (8) соответствующего блока (5), и две последовательные полные волны (В, С), следующие за указанной полуволной (А).

2. Протекторный браслет по п. 1, отличающийся тем, что три волнообразных конфигурации (W1, W2, W3) прорезей (9) различаются формой и/или размером.

3. Протекторный браслет по п. 1, отличающийся тем, что первая волнообразная конфигурация (W1) прорезей (9) является кусочно-линейной.

4. Протекторный браслет по п. 1, отличающийся тем, что полуволна (А) имеет меньшую амплитуду (H2), чем полные волны (В, С).

5. Протекторный браслет по п. 1, отличающийся тем, что шаг (P2) полуволны (А) меньше шага двух полных волн (В, С).

6. Протекторный браслет по п. 1, отличающийся тем, что полуволна (А) ориентирована так же, как и две полные волны (В, С).

7. Протекторный браслет по п. 1, отличающийся тем, что полуволна (А) ориентирована противоположно двум полным волнам (В, С).

8. Протекторный браслет по п. 1, отличающийся тем, что третья волнообразная конфигурация (W3) прорезей (9) является кусочно-линейной.

9. Протекторный браслет по п. 1, отличающийся тем, что прорези (9) центральных блоков (5) отличаются от прорезей (9) боковых блоков (5).

10. Протекторный браслет по п. 9, отличающийся тем, что прорези (9) центральных блоков (5) отличаются от прорезей (9) боковых блоков (5) формой второй волнообразной конфигурации (W2).

11. Протекторный браслет по п. 10, отличающийся тем, что полуволна (А) в центральных блоках (5) второй волнообразной конфигурации (W2) прорезей (9) ориентирована отлично от боковых блоков (5).

12. Протекторный браслет по п. 1, отличающийся тем, что каждая прорезь (9) сформирована, начиная с первой волнообразной конфигурацией (W1) в первой плоскости (XY), образованной продольной и поперечной осями (x, y), посредством перемещения этой первой волнообразной конфигурации (W1) параллельно самой себе вдоль радиальной оси (z) с одновременным движением первой волнообразной конфигурации (W1) вдоль продольной оси (x) по второй волнообразной конфигурации (W2) и вдоль поперечной оси (y) по третьей волнообразной конфигурации (W3).

13. Способ формирования прорезей (9) в блоке (5) протекторного браслета (1) зимней шины, причем протекторный браслет (1) содержит продольные и поперечные канавки (3, 4), ограничивающие блоки (5), выступающие радиально вверх от поверхности (2) основания протекторного браслета (1); и прорези (9), образованные по меньшей мере в некоторых блоках (5) и проходящие радиально внутрь от верхней поверхности (8) соответствующего блока (5), образующей поверхность качения протекторного браслета (1), при этом способ включает в себя этапы, на которых каждую прорезь (9) формируют начиная с первой волнообразной конфигурации (W1) в первой плоскости (XY), образованной продольной и поперечной осями (x, y), путем перемещения первой волнообразной конфигурации (W1) параллельно самой себе вдоль радиальной оси (z) с одновременным движением первой волнообразной конфигурации (W1) вдоль продольной оси (x) по второй волнообразной конфигурации (W2), являющейся кусочно-линейной, а также вдоль поперечной оси (y) по третьей волнообразной конфигурации (W3), отличающийся тем, что вторая волнообразная конфигурация (W2) прорезей (9) содержит полуволну (А), начинающуюся от верхней поверхности (8) соответствующего блока (5), и две последовательные полные волны (В, С), следующие за указанной полуволной (А).



 

Похожие патенты:

Изобретение относится к автомобильной шине, предназначенной преимущественно для использования в условиях зимнего вождения. В каждой половине протектора проходит по две пары (2, 3) рядов блоков, отделенных одна от другой первыми окружными канавками (4, 5), проходящими опоясывающим образом по окружности и сформированными на максимальной глубине профиля.

Протектор содержит множество окружных канавок (2), ограничивающих, по меньшей мере, три нервюры (4, 5, 6). Протектор (1) ограничен в осевом направлении двумя боковыми рядами (7, 8).

Изобретение относится к автомобильной промышленности. В протекторе предусмотрена упрочняющая часть (7) на боковых стенках (52, 53) блока (5) протектора (1) шины, образующих фронтальные поверхности.

Изобретение относится к шине для колес транспортных средств и касается зимней шины. Шина содержит протекторный браслет, в котором образован рисунок протектора, содержащий две окружные канавки, множество поперечных канавок, множество щелевидных дренажных канавок.

Изобретение относится к автомобильной промышленности. Протектор шины имеет ребристый рисунок, который включает в себя по меньшей мере четыре основные канавки (11, 12) и по меньшей мере пять рядов контактных участков (10, 20, 30).

Шина // 2626446
Изобретение относится к автомобильной промышленности. На протекторе (2) расположено множество блоков (70А, 70В, 70С), разделенных кольцевыми канавками (50), проходящими в окружном направлении (L) шины, и поперечными канавками (60), проходящими в направлении (W) по ширине шины.

Изобретение относится к протектору шины. Протектор (110) для шины содержит множество ребер (122-126) или блоков, множество канавок (142, 144, 146, 148) и множество прорезей.

Изобретение относится к автомобильной промышленности. Шина включает кольцевой протектор, имеющий размещенный на нем элемент протектора.

Изобретение относится к шинам для мотоциклов, в частности к шинам, предназначенным для установки на колесах мотоциклов, имеющих средний/большой литраж двигателя (например, 600 см3 или более) и/или высокую мощность (например, 130-140 л.с.

Изобретение относится к шинам для мотоциклов, в частности к шинам, предназначенным для установки на колесах мотоциклов, имеющих средний/большой литраж двигателя (например, 600 см3 или более) и/или высокую мощность (например, 130-140 л.

Изобретение относится к автомобильной шине, предназначенной для зимних условий эксплуатации. Пневматическая шина (1a) в центральной области включает в себя экваториальную плоскость, в которой расположен первый набор блоков (16a), разделенный и образованный двумя первыми продольными канавками (24), и множество первых поперечных канавок (26a). На самом внешнем участке в поперечном направлении шины с каждой стороны в поперечном направлении шины расположен второй набор блоков (20a), разделенный и образованный одной второй продольной канавкой (28) и множеством вторых поперечных канавок (30a). Между первым набором блоков (16a) и вторыми наборами блоков (20a) расположено ребро (22), причем ребро (22) разделено по меньшей мере одной третьей продольной канавкой (32), и причем в первом наборе блоков (16a), втором наборе блоков (20a) и ребре (22) сформировано множество щелевидных прорезей (34a). Технический результат – улучшение характеристик шины при торможении на льду при минимизации любого снижения характеристик торможения на снегу. 11 з.п. ф-лы, 7 ил., 1 табл.

Изобретение относится к большегрузным транспортным средствам. Протектор шины имеет толщину PMU изнашиваемого материала и содержит, по меньшей мере, две основные канавки (3, 4) с глубиной Р1, близкой к PMU или равной PMU, при этом указанные основные канавки (3, 4) ограничивают выступающий элемент (2), по меньшей мере, одну вспомогательную канавку (5) с глубиной Р2, которая меньше глубины Р1 основных канавок (3, 4). Указанная вспомогательная канавка (5) проходит непрерывно через весь выступающий элемент (2) и содержит дно (50) канавки. Каждая из основных и вспомогательных канавок ориентирована в основном направлении вдоль окружности. Имеется множество щелевидных дренажных канавок (6), которые образованны в выступающем элементе (2). Каждая из указанных щелевидных дренажных канавок содержит боковые части (61, 62), образованные по одной с каждой стороны вспомогательной канавки (5). Указанные боковые части (61, 62) соединены друг с другом соединительной частью (63), при этом указанная соединительная часть (63) образована в радиальном направлении внутрь по отношению к протектору от дна (50) вспомогательной канавки (5). Соединительная часть (63) содержит участок (630) щелевидной дренажной канавки, ориентированный в основном направлении вспомогательной канавки (5), а именно образующий угол, равный самое большее 30 градусов, относительно направления вдоль окружности. Технический результат – улучшение эксплуатационных характеристик шины при движении по мокрому дорожному полотну. 2 н. и 7 з.п. ф-лы, 4 ил.

Изобретение относится к автомобильной промышленности. Протектор (1) содержит множество канавок (3а, 3b), сформированных на каждой половине протектора с двух сторон от центральной плоскости Х-Х’. Каждая из этих канавок выходит в осевом направлении наружу и продолжена в осевом направлении в сторону центральной плоскости Х-Х’ таким образом, что множество канавок образуют первый рисунок на протекторе, имеющим общую V-образную форму, ориентированную в направлении Xr канавки. Протектор содержит также множество насечек (5). Начиная с определенной степени износа все или часть насечек этого протектора расширяются, образуя полости (7), причем эти полости проходят в наклонном направлении, образуя второй рисунок общей V-образной формы, ориентированный в направлении Хс полости. Каждая из этих полостей (7) выходит только в одну из канавок (3а, 3b) протектора, и на этом уровне износа множество канавок (3а, 3b) образуют этот же первый рисунок. Технический результат – улучшение характеристик шин при езде зимой и по мокрой дороге. 5 з.п. ф-лы, 5 ил.

Изобретение относится к автомобильной промышленности. Протекторный браслет шины содержит продольные и поперечные канавки, ограничивающие блоки, выступающие радиально вверх от поверхности основания протекторного браслета ; и прорези, образованные по меньшей мере в некоторых блоках и проходящие радиально внутрь от верхней поверхности соответствующего блока, образующей поверхность качения протекторного браслета. Каждая прорезь имеет волнообразную конфигурацию, если смотреть на соответствующий блок в любой одной из трех взаимно перпендикулярных плоскостей, образованных продольной осью, поперечной осью и радиальный осью. Технический результат – повышение жесткости протектора шины без ухудшения качества его сцепления со снежной поверхностью. 2 н. и 11 з.п. ф-лы, 8 ил.

Наверх