Сорбент на основе клетчатки бурых водорослей



Сорбент на основе клетчатки бурых водорослей
Сорбент на основе клетчатки бурых водорослей

Владельцы патента RU 2637436:

Федеральное государственное автономное образовательное учреждение высшего образования "Северный (Арктический) федеральный университет имени М.В. Ломоносова" (САФУ) (RU)

Изобретение относится к фармацевтической промышленности, а именно к сорбенту на основе клетчатки бурых водорослей. Сорбент на основе клетчатки бурых водорослей, обладающий сорбционной активностью по отношению к солям тяжелых металлов и среднемолекулярным токсикантам жидких сред, представляет собой очищенную от водорастворимых компонентов водорослевую клетчатку с размером частиц 0,05-0,2 мм, с мезопористой структурой, основными компонентами которой являются водорослевая целлюлоза и трудногидролизуемые белки, которая получена путем сверхкритической флюидной экстракции воздушно-сухих бурых водорослей, при определенных условиях. Вышеописанный сорбент обладает высокой сорбционной емкостью к солям тяжелых металлов и среднемолекулярным токсикантам жидких сред. 1 ил., 2 табл., 3 пр.

 

Изобретение относится к химико-фармацевтической промышленности, а именно к сорбенту на основе клетчатки бурых водорослей. Сорбент может быть использован в качестве средства, обладающего адсорбционной активностью по отношению к среднемолекулярным токсинам и ионам тяжелых металлов.

Бурые водоросли используются во всем мире как сырье для производства биологически активных веществ, таких как маннит, жирные кислоты, хлорофилл, соли альгиновой кислоты. В процессе получения альгинатов на одной из технологических стадий из водорослевого сырья образуется водорослевая клетчатка (ВК), представляющая собой сложную полимерную структуру на основе целлюлозной матрицы.

Основным компонентом водорослевой клетчатки является целлюлоза, содержащая остаточные количества компонентов: нерастворимые белки, соли, альгиновые кислоты, нерастворимые формы ламинирана и фукоидана, низкомолекулярные продукты деструкции водорослевых компонентов, а также микроколичества хлорофилла и каротиноидов, обуславливающие окраску препарата.

Водорослевая целлюлоза несколько отличается от целлюлозы высших растений, поэтому она получила названия «эуцеллюлоза» или «альгулеза» [Подкорытова А.В., Кладникова И.А. Качество, безопасность и методы анализа продуктов из гидробионтов. Вып. 3. Руководство по современным методам исследований морских водорослей, трав и продуктов их переработки. – М.: Изд-во ВНИРО. – 2009. – 108 с., Пан Л.С., Бахирева О.И., Балабенко Е.А., Аншкенис А.И., Вольхин В.В. Синтез биосорбентов на основе морских водорослей для извлечения цезия из водных сред // Вестник Пермского Национального Исследовательского Политехнического университета. Химическая технология и биотехнология. – 2010. - №11 . С. 143-149] и характеризуется преобладанием кристаллической фракции Iα [Алешина Л.А. Современные представления о строении целлюлоз (обзор) / Л.А. Алешина, С.В. Глазкова, Л.А. Луговская, М.В. Подойникова, А.Д. Фофанов, Е.В. Силина. // Химия растительного сырья. – 2001. - №1. – С. 5-36]. Обычное содержание ее в бурых водорослях не превышает 2-5% масс.

Установлено, что водорослевая клетчатка имеет сложную структуру на основе целлюлозной матрицы, представляя собой природный полисахарид [Плечова, 2002]. Также за счет присутствия остаточных количеств альгиновой кислоты, лигниноподобных веществ ВК обладает полифункциональными свойствами. Ионообменный механизм сорбции осуществляется за счет наличия карбоксильных групп, а также сульфатных, карбонильных, гидроксильных. Влияние оказывают и процессы комплексообразования с участием вышеперечисленных групп. Благодаря их наличию клетчатка способна к катионному обмену и к сорбции тяжелых металлов биомассой водорослей.

В настоящее время известны сорбенты, обладающие аналогичным действием: углеродные сорбенты на основе активированного угля (Патент Ru № 2180231, МПК А61К 35/78, А61К 33/44, 2002 г.), сорбенты на основе лигнина, например полифепан (Патент Ru № 2440125, МПК А61К 36/00, А61К 31/715, А61Р 33/00 2010 г.) и прочие. К недостаткам таких сорбентов можно отнести тот факт, что требуется дополнительная обработка сырья с использованием едких реактивов и повышенных температур.

Ионообменные сорбенты из древесины могут быть получены обработкой серной кислотой [Крайнова Е.А., Родионов А.И., Ким А.В. Получение углеродного сульфокатионита методом сернокислотного обугливания из целлюлозосодержащих отходов // Экология и промышленность России. – 2008. – № 3. – С. 21-23]. В данном процессе происходит сульфирование сырья, что придает матрице дополнительную катионообменную способность. Недостатком является разложение и обугливание биомассы под действием кислоты.

Известен сорбент на основе высушенных растений сфагнум (Патент Ru № 2183501, МПК В01J 20/24 1996 г.). Сорбент преимущественно применим для очистки вод от разливов нефти и гидрофобных соединений. Его недостатком является отсутствие информации о его применимости по отношению к ионам тяжелых металлов.

Известен волокнистый сорбент на основе целлюлозосодержащих продуктов, модифицированный соединениями типа полидиенов (Патент Ru 2152250, МПК B01J 20/00, B01J 20/22, B01J 20/26, 1999 г.). Сорбент преимущественно применим для очистки почвы и воды от разливов нефтепродуктов. Недостатком сорбента является необходимость дополнительной обработки целлюлозосодержащих продуктов соединениями типа полидиенов, а также отсутствием информации о способности сорбировать молекулярные токсиканты и тяжелые металлы.

Некоторые авторы в качестве сорбента ионов металлов предлагают использовать непосредственно водоросли, прошедшие очистку дистиллированной водой для удаления солей, песка [Romera E., Gonzalez F., Ballester A., Blazquez M.L., Munoz J.A. Comparative study of biosorption of heavy metals using different types of algae // Bioresource Technology. – 2007. – Vol.98. – P.3344-3353, Montazer-Rahmati M.M., Rabbani P., Abdolali A., Keshtkar A.R. Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae // Journal of Hazardous Materials. – 2001. – Vol.185. – P.401-407] или после экстракции органическими растворителями (гексан) [Клочкова Н.Г., Березовская В.А. Водоросли камчатского шельфа. Распространение, биология, химический состав. – Владивосток; Петропавловск-Камчатский: Дальнаука. – 1997. – 155 с.]. Недостатком данных сорбентов является присутствие в водорослях больших количеств водорастворимых компонентов, что затрудняет отделение сорбента от сорбата.

Наиболее близким к предлагаемому изобретению является способ получения целлюлозного полуфабриката из бурых водорослей (патент РФ № 2556115, МПК С08В 15/02, 2014 г.), заключающийся в последовательной обработке сырья 5-6% серной кислотой при температуре кипения и последующим кипячением твердого остатка с 2,5-5,0% гидроксидом калия, промывание и сушку целевого продукта. Недостатком способа является значительная гидролитическая деструкция целлюлозной составляющей сырья ввиду использования повышенных температур и агрессивных сред. Отсутствие перспективы использования продуктов в качестве сорбента. Разрушение прочих водорослевых биологически активных веществ, что ставит под вопрос экономическую эффективность получения данного продукта.

Целью предлагаемого изобретения является разработка сорбента с высокими сорбционными характеристиками, при этом простого и дешёвого, без использования дорогостоящих материалов.

Поставленными задачами являются очистка и повышение адсорбционной способности сорбента к ионам тяжелых металлов.

Технический результат данного изобретения достигается за счет очистки ВК от водорастворимых компонентов и раскрытия пористой структуры данной растительной матрицы путем многостадийной обработки водой при температуре 100°С. Преимуществом данного сорбента также является то, что в качестве сырья используют ВК, образующуюся в ходе переработки биомассы бурых водорослей, что позволяет решить проблему утилизации ВК, являющейся многотоннажным отходом.

Технический результат: 1) способность предлагаемого сорбента эффективно связывать ионы тяжелых металлов и среднемолекулярные токсиканты из жидких сред; 2) решение проблемы с утилизацией многотоннажных отходов комплексной химической переработки биомассы бурых водорослей.

Сорбент представляет собой бурый порошок с размерами частиц 0,05-0,2 мм, полученный в результате очистки водорослевой клетчатки (ВК), образующейся в ходе комплексной химической переработки бурых водорослей. Сорбент обладает мезопористой структурой и высокой сорбционной емкостью по отношению к солям тяжелых металлов.

Предлагаемый сорбент получают следующим образом.

Для экстракции используют воздушно-сухие бурые водоросли, измельченные до размера частиц 0,1-0,3 мм.

На первой стадии водоросли подвергают сверхкритической флюидной экстракции бинарным растворителем: сверхкритический диоксид углерода - этанол (10:1) (фиг.1, блок 1). На данной стадии происходит выделение липидно-пигментного комплекса, содержащего жирные кислоты, хлорофилл и каротиноиды. Параметры экстракции: размер фракции 0,2-0,03 мм, влажность сырья 9% масс., температура 60°С, давление 300 атм, время экстракции 60 мин, расход углекислого газа 5,4 мл/мин, расход этанола 0,6 мл/мин.

На второй стадии экстракции извлекается комплекс водорастворимых веществ (маннит, ламинаран, фукоидан, полифенолы, белки и аминокислоты). Проводится обработка биомассы 0,1н HCl при 60°С в три стадии по 60 минут, гидромодуль 1:20 (фиг.1, блок 2).

На третьей стадии из остатка после кислотной экстракции проводится выделение альгиновых кислот обработкой его щелочью (1,5% NaHCO3) при 50°С в 2 стадии, каждая стадия по 60 минут, гидромодуль 1:20 (фиг.1, блок 3).

При проведении экстракции бурых водорослей по предлагаемой нами комплексной схеме переработки образуется клетчатка, содержащая целлюлозу и остаточные количества компонентов, содержащихся в биомассе водоросли (нерастворимые белки, альгиновые кислоты, нерастворимые формы ламинирана и фукоидана, низкомолекулярные продукты деструкции водорослевых компонентов).

Очистку ВК проводят путем четырехкратной экстракции водой при температуре кипения с гидромодулем 1:20, каждая стадия по 60 минут. Таким образом, происходит удаление низкомолекулярных легкогидролизуемых углеводов и остаточных количеств альгиновых кислот.

Полученный препарат – очищенная ВК, представляет собой волокнистую массу бурого цвета. Массу измельчают до размера частиц 0,05-0,2 мм. Данная субстанция обладает высокими сорбционными характеристиками по отношению к ионам тяжелых металлов и обладает мезопористой структурой (табл. 1).

Стоит отметить, что использование предложенного метода очистки ВК для получения сорбента не ограничивается применением в рамках предложенной выше схемы (фиг. 1).

В качестве объектов испытаний использовали очищенную ВК.

Высушенная ВК представляет собой порошок буро-зеленого цвета со специфическим запахом. Химический состав ВК представлен в таблице 1.

В качестве объекта сравнения был использован образец активированного угля марки “Медисорб”. Таблетированный образец был размолот и фракционирован. Для анализа использовали частицы размером 0,08-0,25 мм.

В качестве маркеров, позволяющих определять эффективность действия сорбентов в отношении среднемолекулярных токсинов и тяжелых металлов, использовали краситель метиленовый синий и соли тяжелых металлов (на примере ионов Cd2+ и Pb2+).

Для определения осветляющей способности по метиленовому синему пользовались стандартной методикой по ГОСТ 4453-74, основанной на фотоколориметрическом определении светопропускания раствора метиленового синего до и после обработки сорбентом. Результат выражали в мг/г воздушно-сухой клетчатки.

Эксперименты по определению сорбционной емкости по отношению к ионам тяжелых металлов проводились с растворами солей Cd(NO3)2⋅4H2O и Pb(NO3) с концентрациями ионов металлов 35-700 мг/л и 300-4800 мг/л соответственно.

В ходе эксперимента в колбу вносили навески сорбентов массой 0,1 г и добавляли 100 мл раствора соли. Колбы помещали в термостатирующее устройство с магнитным перемешиванием. По окончании времени сорбции отбирали пробу раствора с отстоявшегося сорбента. Равновесную концентрацию ионов металла определяли на атомно-абсорбционном спектрометре.

Зависимость сорбционной способности от времени

В эксперименте использовались растворы с концентрацией ионов металлов Cd2+ 35 мг/л и Pb2+ 600 мг/л.

В колбы вносили навеску сорбента массой 0,5 г и добавляли 500 мл раствора соли. Сорбция проводилась в термостатирующем устройстве (27±1°C) с магнитным перемешиванием. pH раствора сорбата соответствовал pH водного раствора исследуемой соли. Время сорбции: 2,5, 5, 10, 15, 60, 240, 480, 1440 минут. По истечении времени отбиралась проба раствора, в дальнейшем анализируемая на остаточное содержание ионов металла методом атомно-абсорбционной спектроскопии.

Зависимость сорбционной способности от температуры

К навеске сорбента массой 0,1 г добавляли 100 мл раствора соли и помещали колбу в перемешивающее устройство с термостатированием. Эксперименты проводились при температурах 27±1, 37±1, 47±1°С. Время сорбции - 2 часа. pH раствора сорбата соответствовал pH водного раствора исследуемой соли.

Зависимость сорбционной способности от рН раствора

В 100 мл раствора соли задавали уровень рН (1,5-5) добавкой концентрированной азотной кислоты. Верхний уровень рН соответствует водному раствору соли.

Навеску сорбента 0,1 г помещали в колбы и добавляли 100 мл раствора соли. Сорбция проводилась в термостатирующем устройстве (27°C) с магнитным перемешиванием. Время сорбции – 2 часа.

Полученные результаты представлены в таблице 2 и свидетельствуют, что предполагаемый сорбент обладает повышенной сорбционной емкостью по отношению к ионам тяжелых металлов в сравнении с активированным углем.

Объем пор и площадь поверхности сопоставимы с параметрами некоторых активированных углей. ВК обладает высокой предельной удельной адсорбционной емкостью по отношению к ионам тяжелых металлов: 60±3 и 60±3 по отношению к ионам кадмия, 105±5 и 128±6 мг/г по отношению к ионам свинца, 130±10 мг/г и 72±3 мг/г по отношению к метиленовому синему для клетчатки L.digitata и F.vesiculosus соответственно, при pH водного раствора соответствующих солей тяжелых металлов и температуре 37°С.

Вышеизложенное поясняется следующими примерами.

Пример 1.

0,5 кг сушеных слоевищ фукуса пузырчатого (fucus vesiculosus) (влажность составляет 9% масс.) измельчают до размера частиц 0,03-0,2 мм, помещают в полупрепаративный сверхкритический флюидный экстрактор MV-10ASFE (Thar Process, США). Параметры процесса: температура 60°С, давление 300 атм, время экстракции 60 мин, состав флюида: сверхкритический СО2, (расход 5,65 г/мин (5,4 мл/мин)) + сорастворитель этанол с расходом 10% об. от флюида (0,6 мл/мин (0,47 г/мин)). В результате получен сверхкритический экстракт с выходом 29 г или 6,4% масс. от исходной водоросли.

Водорослевой остаток I после сверхкритической флюидной экстракции помещают в емкость и заливают 8,5 л 0,1н соляной кислоты и трехкратно экстрагируют при температуре 60оС по 60 минут при постоянном перемешивании. Экстракты отделяют от водорослей путем фильтрования через капроновый фильтр.

Водорослевой остаток II экстрагируют 15 л 1,5% раствора гидрокарбоната натрия в две стадии по 60 минут при температуре 50оС при перемешивании. Экстракты отделяют от водорослей путем фильтрования через капроновый фильтр.

Водорослевой остаток III представляет собой бурую массу - клетчатку. Очистку водорослевого остатка III проводят четырехкратной экстракцией 10 л воды при температуре кипения, при постоянном перемешивании. Экстракты отделяют от водорослей путем фильтрования через капроновый фильтр. Экстракты отбрасывают. Водорослевой остаток IV – очищенная ВК представляет собой волокнистую бурую массу с выходом 14 г (3,1% масс. от водоросли). Сорбционные характеристики продукта приведены в таблице 2.

Пример 2.

Аналогичен примеру 1, но для экстракции взяты водоросли вида ламинария пальчаторассеченная (laminaria digitata). В результате было получено 10 г очищенной клетчатки. Сорбционные характеристики продукта приведены в таблице 2.

Пример 3.

В 100 мл воды растворили массу соли Pb(NO3)2, соответствующую 100 мг ионов свинца. В колбу поместили 500 мг ВК fucus vesiculosus. Смесь термостатировали при постоянном перемешивании 60 минут. По истечении часа содержание ионов свинца в растворе уменьшилось до 40 мг.

Сорбент на основе клетчатки бурых водорослей, обладающий сорбционной активностью по отношению к солям тяжелых металлов и среднемолекулярным токсикантам жидких сред, представляющий собой очищенную от водорастворимых компонентов водорослевую клетчатку с размером частиц 0,05-0,2 мм, с мезопористой структурой, основными компонентами которой являются водорослевая целлюлоза и трудногидролизуемые белки, которая получена путем сверхкритической флюидной экстракции воздушно-сухих бурых водорослей, измельченных до размера частиц 0,1-0,3 мм, бинарным растворителем: сверхкритический диоксид углерода - этанол, при соотношении растворителей 10:1, температуре 60°С, давлении 300 атм, в течение 60 мин с последующей очисткой остатка от водорастворимых веществ обработкой биомассы 0,1 н HCl при 60°С в три стадии по 60 минут, от альгиновых кислот - 1,5% раствором NaHCO3 при 50°С в 2 стадии и последующей четырехкратной экстракцией остатка водой при температуре кипения.



 

Похожие патенты:

Изобретение относится к фармацевтической промышленности, а именно к способу получения средства, обладающего противовоспалительной активностью. Способ получения средства, обладающего противовоспалительной активностью, включающий трехкратную экстракцию спиртом этиловым кровохлебки лекарственной, фильтрацию, упаривание, концентрирование и высушивание спиртового экстракта, при этом используют траву кровохлебки лекарственной, измельченную до размера частиц 2,0 мм, экстракцию проводят 70%-ным спиртом при 90°C при соотношении сырье - экстрагент 1:50 в течение 2 ч, при этом первую экстракцию проводят в течение 60 мин, вторую и третью - по 30 мин.

Изобретение относится к способу получения водорастворимых полисахаридов из корней одуванчика лекарственного. Указанный способ характеризуется тем, что корни одуванчика лекарственного измельчают, экстрагируют троекратно горячей очищенной водой при соотношении сырье:экстрагент 1:10, причем колбу с сырьем и экстрагентом помещают в ультразвуковую ванну, после экстракции растительный материал отделяют путем фильтрации, водорастворимые полисахариды осаждают троекратным количеством 95%-ного этилового спирта при перемешивании, охлаждая в морозильной камере, фильтруют осадок через предварительно высушенный беззольный бумажный фильтр под вакуумом, промывают осадок на фильтре последовательно раствором 95%-ного этилового спирта в очищенной воде и смесью этилацетата и 95%-ного этилового спирта, высушивают фильтр с осадком до постоянной массы.

Изобретение относится к фармацевтической промышленности, а именно к способу получения средства, обладающего противовоспалительным действием. Способ получения лекарственного средства, обладающего противовоспалительным действием, представляющего собой сухой экстракт, полученный путем трехкратной экстракции растительного сырья: плодов граната, коры корицы, плодов кардамона, плодов перца длинного, корня имбиря, плодов яблони, корней девясила, плодов кориандра, плодов солодки, которое измельчают до размера частиц диаметром 1 мм и экстрагируют 50% этиловым спиртом в соотношении сырье : экстрагент, равном 1:(14-16), при температуре 60°C и постоянном перемешивании, при этом 1-ю и 2-ю экстракцию проводят в течение 60 минут, 3-ю экстракцию в течение 30 минут, объединенные извлечения упаривают до 1/3 первоначального объема и очищают сепарированием, очищенный экстракт доупаривают до 1/5 первоначального объема, высушивают в вакуумной сушилке при температуре 60°C в течение 8 ч, измельчают на мельнице пропеллерного типа и получают средство с содержанием глицирризиновой кислоты не менее 20%.

Изобретение относится к фармации, а именно к фармацевтической химии, и может быть использовано для количественного определения биологически активных веществ - флавоноидов в осине обыкновенной.

Изобретение относится к фармацевтической промышленности и касается разработки получения антимикробного пептида цекропина Р1 из экстракта трансгенных растений каланхоэ перистого.

Изобретение относится к фармацевтической промышленности, а именно к средству, обладающему гастропротекторным действием. Гастропротекторное средство, содержащее комплекс 4-х флавоноидов, выделенный из надземной части растения Lychnis chalcedonica L.

Изобретение относится к способу экстракции активных молекул из растительного субстрата. Способ экстракции активных молекул из растительного субстрата согласно изобретению включает стадию, на которой указанный субстрат приводят в контакт с экстракционной жидкостью, причем указанная экстракционная жидкость содержит: экстракционный газ, который находится в газообразном состоянии при температуре 23°С и давлении 1 атм (101,325 кПа), и экстракционный растворитель в жидком состоянии, содержащий или состоящий из уксусной кислоты самой по себе или в смеси с по меньшей мере одним из: воды и первичного алифатического спирта, имеющего формулу (V) R-OH, где R представляет собой С1-С10 алкильную группу, предпочтительно С1-С5, где указанный экстракционный газ выбран из группы, состоящей из гелия, неона, аргона, криптона, ксенона, диоксида углерода и азота или их смесей; где указанный экстракционный газ вводят в указанный экстракционный растворитель в концентрации, составляющей от 0,1 до 10 объемных % относительно 100 массовых частей экстракционного растворителя.

Изобретение относится к способу получения биологически активной добавки к пище из листьев и (или) цветков персика. Способ получения биологически активной добавки к пище включает подготовку сырья - листьев и/или цветков персика обыкновенного, которое заливают очищенной водой, проводят первичное экстрагирование, полученный экстракт отделяют от растительной массы, полученный в конце способа концентрат консервируют, при этом при подготовке сырья из него удаляют некондиционные части, измельчают, после 1-го экстрагирования повторно проводят 2 экстрагирования при тех же условиях с добавлением к растительной массе воды очищенной, полученные экстракты объединяют и фильтруют, объединенный экстракт концентрируют в условиях вакуума, полученный первичный концентрат охлаждают и подвергают очистке, концентрат декантируют и фильтруют или центрифугируют, отделяя взвесь от балластных веществ, проводят вторичное концентрирование, а для консервации используют кислоту сорбиновую или сорбат калия до содержания в экстракте не более 0,2%, при определенных условиях.

Изобретение относится к фармацевтической, пищевой промышленности, в частности к получению пищевых добавок, обогащенных эссенциальными микронутриентами - фитоэкдистероидами, для использования в функциональном питании, восстановительной медицине, гериатрии и спорте для повышения адаптационных возможностей организма в условиях стресса, повышенных физических и психических нагрузок, при нарушении углеводного и липидного обмена, профилактики и компенсации абдоминального ожирения, для улучшения памяти.

Изобретение относиться к фармацевтической промышленности, в частности к способу получения экстракта из лишайников рода Cladonia Hill ex P. Browne, смеси лишайниковых кислот и лихенинов, обладающего бактерицидными свойствами.

Изобретение относится к области биотехнологии, конкретно к носителю для лекарственного средства для лечения фиброза кишечника посредством доставки лекарственного средства для ингибирования активности или роста клеток, продуцирующих внеклеточный матрикс в кишечнике, что может быть использовано в медицине.

Изобретение относится к области биотехнологии, конкретно к получению светочувствительного химерного белка, способного включать световой сигнал в сигнальный каскад метаботропного глутаматного рецептора 6 (mGluR6), который является природным компонентом клеточной мембраны ON-биполярных клеток во внутреннем слое сетчатки, что может быть использовано в медицине.

Изобретение относится к области ветеринарии и может быть использовано для профилактики энзоотической атаксии ягнят, макро-микроэлементозов и коррекции дисбиотических расстройств.

Группа изобретений относится к химико-фармацевтической или косметической промышленности и представляет собой фармацевтическую или косметическую композицию для применения в борьбе с потерей волос, в которой соединение, выбранное среди соединений формулы: ,,,,или их фармацевтически приемлемых солей, смешано с наполнителями, подходящими для местного нанесения на кожу головы, а также соединение N1-изобутилспермидин или соединение N-(3-аминопропил)-N1-изобутил-1,4-бутандиамин формулы:.

Изобретение относится к медицине, а именно к кардиохирургии, и может быть использовано для ведения кардиоплегии. Для остановки и поддержания сердца в остановленном состоянии используют кардиоплегический раствор, полученный из следующих компонентов: хлорид калия - 7,45 г; сульфат магния - 2,34 г; трометамол - 0,5 г; маннитол - 35,9 г; дистиллированная вода - до 1000 мл, при условии введения 1 М хлористоводородной кислоты до установления pH 7,6-8,0, который смешивают с кровью из оксигенатора в соотношении от 1:1 до 1:4 и вводят в сердце со скоростью 100-300 мл/мин при использовании не менее 400 мл раствора; а для поддержания асистолии используют кардиоплегический раствор, полученного из следующих компонентов: хлорид калия - 2,125 г; сульфат магния - 2,34 г; трометамол - 0,5 г; маннитол - 58,28 г; дистиллированная вода - до 1000 мл, при условии введения 1 М хлористоводородной кислоты до установления pH 7,6-8,0, который смешивают с кровью из оксигенатора в соотношении 1:4 и вводят в сердце со скоростью 100-150 мл/мин.

Группа изобретений относится к медицине, а именно к тканевой инженерии. Предложена лишенная клеток путем перфузии сосудистая ткань свиньи, коровы, овцы, собаки или человека, содержащая лишенный клеток внеклеточный матрикс указанной ткани.

Настоящее изобретение относится к носителю для доставки вещества в продуцирующие внеклеточный матрикс клетки в почке, причем носитель состоит из липидной структуры, содержащей ретиноид в качестве нацеливающего агента, где носитель имеет форму липосомы.

Изобретение относится к медицине, а именно к онкологии. Используют перфорированный листок ацеллюлярного матрикса и устанавливают активный дренаж.
Изобретение относится к фармацевтической промышленности, к способу для похудения, а также для постоянного поддержания оптимальной массы тела при ожирении. Способ уменьшения массы тела путем перорального введения действующего компонента, отличающийся тем, что действующий компонент принимают совместно с продуктами питания, в качестве действующего компонента используют порошок моркови, полученный путем термолабильной сушки при температуре не свыше 40°C при одновременном измельчении сырья до получения частиц порошка размером менее 100 мкм, причем пероральное введение осуществляют 3 раза в сутки при содержании действующего компонента от 2,5 до 3,5% от массы использованных продуктов питания.

Изобретение относится к области органической химии, а именно к галогенидам 1-(4-трет-бутилфенил)-2-{3-[2-(4-фторфенокси)этил]-2-метил-3Н-бензимидазол-1-ил}этанона формулы 1, обладающим свойством разрывателей поперечных сшивок гликированных белков.

Изобретение относится к медицине, в частности к терапевтической стоматологии, и может быть применено для лечения хронического генерализованного пародонтита легкой и средней степени тяжести.
Наверх