Установка для электрохимического разложения водных растворов хлоридов



Установка для электрохимического разложения водных растворов хлоридов
Установка для электрохимического разложения водных растворов хлоридов
Установка для электрохимического разложения водных растворов хлоридов
C25B1/46 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2637506:

Общество с ограниченной ответственностью "Аква-Раут" (RU)

Изобретение относится к установке для электрохимического разложения водных растворов хлоридов, включающей проточные электрохимические реакторы, состоящие из внутреннего трубчатого титанового катода, внешнего трубчатого титанового анода и размещенной между ними трубчатой керамической ионопроницаемой диафрагмы, нижнего и верхнего анодных коллекторов, сепаратора, нижнего и верхнего катодных коллекторов и насосов. Установка характеризуется тем, что она дополнительно содержит программируемый контроллер, обеспечивающий корректировку режима работы каждого электрохимического реактора с помощью датчиков, при этом контроллер обеспечивает возможность регулирования скорости подаваемого водного раствора хлорида, регулирования электропитания каждого электрохимического реактора и корректировки избыточного давления в анодных камерах, кроме того, каждый электрохимический реактор имеет отдельный источник электропитания, а анодные камеры электрохимических реакторов выполнены с возможностью поддержания в них избыточного давления по отношению к давлению в катодных камерах. Технический результат заключается в повышении эффективности работы устройства за счет экономии потребляемой электрической энергии. 5 з.п. ф-лы, 2 ил.

 

Изобретение относится к области химической технологии, в частности к устройствам для электролиза водных растворов хлоридов щелочных или щелочноземельных металлов и получения газообразных продуктов электролиза, таких как хлор и кислород, и может быть использовано как в процессах очистки и обеззараживания воды, так и в процессах электрохимического получения различных химических продуктов.

Из "Уровня техники" известна установка для получения продуктов анодного окисления раствора хлоридов щелочных или щелочноземельных металлов, содержащая электрохимический реактор, выполненный из нескольких электрохимических модульных ячеек, каждая из которых содержит коаксиально установленные внутренний цилиндрические полый анод, внешний цилиндрический катод и размещенную между ними диафрагму, выполненную из керамики на основе оксидов циркония, алюминия и иттрия, установленные в нижнем и верхнем узлах крепления с образованием гидравлически замкнутых анодной и катодной камер с входом в нижнем узле крепления и выходом в верхнем. При этом вход и выход анодной камеры сообщаются с полостью анода и анод выполнен с перфорационными отверстиями, расположенными как в верхней и нижней частях анода, так и равномерно по длине анода, ячейки реактора или реакторов выполнены однотипными. Ячейки снабжены линиями подвода в катодную и анодную камеры и линиями отвода из катодной и анодной камер, соединенными соответственно с нижним и верхним узлами крепления. Ячейки реактора установлены на одном уровне и соединены гидравлически параллельно, установка содержит также линию подачи исходного раствора под повышенным давлением, коллектор подачи исходного раствора, соединенный с линией подачи исходного раствора и с линиями подвода в анодные камеры ячеек, коллектор сбора газообразных продуктов анодного окисления, соединенный с линиями отвода из анодных камер ячеек. Катодный циркуляционный контур соединен с линиями подвода и отвода катодных камер ячеек и содержит приспособление для отделения газа, регулятор давления "до себя", соединенный с коллектором сбора газообразных продуктов анодного окисления, и линию отвода газообразных продуктов из анодной камеры установки, соединенную с регулятором давления "до себя", регулятор уровня раствора хлоридов анодных камерах. Реактор или реакторы установки содержат по 2-16 электрохимических ячейки каждый, коллектор подачи исходного раствора и коллектор сбора газообразных продуктов анодных камер ячеек выполнены вертикальными с числом входных и выходных патрубков, соответствующим количеству ячеек в реакторе, и патрубки коллекторов расположены симметрично относительно вертикальной оси симметрии коллекторов. Приспособление для отделения газа катодного циркуляционного контура выполнено в виде верхнего вертикального коллектора, и установка дополнительно содержит нижний вертикальный коллектор катодного циркуляционного контура и вертикальный теплообменник, расположенный между верхним и нижним коллекторами катодного циркуляционного контура, вход и выход которого соединены соответственно с верхним и нижним коллекторами катодного циркуляционного контура, эти коллекторы также выполнены с числом выходных и входных патрубков, соответствующим количеству ячеек в реакторе, и патрубки расположены симметрично относительно вертикальной оси симметрии коллекторов, коллектор подачи исходного раствора. Нижний коллектор катодного циркуляционного контура, теплообменник, верхний коллектор катодного циркуляционного контура и коллектор сбора газообразных продуктов анодных камер ячеек расположены на одной вертикальной оси. Коллектор сбора газообразных продуктов анодных камер ячеек расположен над или под верхним коллектором катодного циркуляционного контура, линии подвода и линии отвода катодных и анодных камер ячеек выполнены в виде трубопроводов. При этом ячейки реактора установлены симметрично относительно вертикальной оси, на которой расположены верхний и нижний коллекторы катодного циркуляционного контура с установленным между ними теплообменником (см. патент РФ №2270885, кл. МПК С25В 1/46, опубл. 27.02.2006).

Технической проблемой является недостаточно высокая эффективность работы существующих устройств устройства.

Технический результат заключается в повышении эффективности работы устройства за счет экономии потребляемой электрической энергии.

Технический результат обеспечивается тем, что установка для электрохимического разложения водных растворов хлоридов, включающая проточные электрохимические реакторы, состоящие из внутреннего трубчатого титанового катода, внешнего трубчатого титанового анода и размещенной между ними трубчатой керамической ионопроницаемой диафрагмы, нижнего и верхнего анодных коллекторов, сепаратора, нижнего и верхнего катодных коллекторов и насосов, согласно изобретению дополнительно содержит программируемый контроллер, обеспечивающий корректировку режима работы каждого электрохимического реактора с помощью датчиков. При этом контроллер обеспечивает возможность регулирования скорости подаваемого водного раствора хлорида, регулирования электропитания каждого электрохимического реактора и корректировки избыточного давления в анодных камерах. Каждый электрохимический реактор имеет отдельный источник электропитания, а анодные камеры электрохимических реакторов выполнены с возможностью поддержания в них избыточного давления по отношению к давлению в катодных камерах.

В соответствии с частными случаями выполнения устройство имеет следующие особенности.

Установка по п. 1 отличается тем, что внутренняя поверхность трубчатого титанового электрода - анода имеет гальваническое покрытие металлами платиновой группы - рутением и иридием.

Установка содержит 2-16 электрохимических реакторов.

Электрохимические реакторы содержат верхнюю и нижнюю втулки, имеющие в нижней и верхней частях входы и выходы.

Нижние входы анодных камер электрохимических реакторов соединены с нижним анодным коллектором, а верхние выходы анодных камер всех электрохимических реакторов соединены с верхним анодным коллектором, верхние выходы катодных камер всех электрохимических реакторов соединены с верхним катодным коллектором, а нижние входы катодных камер всех электрохимических реакторов соединены с нижним катодным коллектором.

Для проведения самоочистки катодных камер она содержит циркуляционный насос.

Сущность настоящего изобретения поясняется следующими иллюстрациями:

Фиг. 1 отображает электрохимический реактор;

Фиг. 2 отображает схему работы устройства.

На иллюстрациях отображены следующие конструктивные элементы:

1 - катод;

2 - анод;

3 - диафрагма;

4 - анодная камера;

5 - катодная камера;

6 - катодная втулка;

7 - анодная втулка;

8 - клеммы;

9 - клеммы;

10 - катодные штуцеры;

11 - анодные штуцеры;

12 - штуцер для подачи воды;

13 - датчики;

14 - контроллер;

15 - устройство электропитания;

16 - циркуляционный насос;

17 - насос дозатор;

18 - электрохимический реактор.

Установка для электрохимического разложения водных растворов хлоридов включает 12-16 электрохимических реакторов 18. При этом каждый электрохимический реактор 18 состоит из внутреннего трубчатого титанового катода 1, внешнего трубчатого анода 2 и размещенной между ними трубчатой керамической ионопроницаемой диафрагмы 3. Нижние и верхние концы электродов 1, 2 и ионопроницаемых диафрагм 3 закрыты катодными 6 и анодными 7 втулками, благодаря которым образованы замкнутые анодная 4 и катодная 5 камеры. Камеры 4, 5 имеют сверху и снизу отдельные катодные входные и выходные штуцеры 10 и анодные входные и выходные штуцеры 11. Во внутреннюю полость трубчатого катода 1 через штуцеры 12 подается охлаждающая жидкость в противотоке по отношению движения рабочего солевого раствора электролита. На контактные клеммы 8, 9 подается электропитание.

Установка содержит 2-16 электрохимических реакторов 18. Верхние штуцеры 12 трубчатого катода 1 соединены с коллектором водяным верхним, через который сверху вниз подается охлаждающая электрохимические реакторы 18 вода, через нижние штуцеры 12 трубчатого катода 1 вода собирается в коллекторе водяном нижнем. Далее, вода поступает в регулятор давления газа для получения водного раствора хлора.

Анодные камеры 4 электрохимического реактора 18 верхними штуцерами 11 соединены с коллектором анодным верхним, а нижними штуцерами - с коллектором анодным нижним.

Катодные камеры 5 электрохимических реакторов 18 верхними штуцерами 10 соединены с коллектором катодным верхним, а нижними штуцерами 10 - с коллектором катодным нижним.

Установка содержит датчики 13, выполненные с возможности передачи сигнала на контроллер 14, который управляет режимами работы электрохимических реакторов 18 и установкой в целом.

Контроллер 14 имеет программно-аппаратный комплекс и обеспечивает возможность регулирования скорости подаваемого водного раствора хлорида, регулирования электропитания каждого электрохимического реактора и корректировки избыточного давления в анодных камерах. Контроллер 14 обеспечивает заданную величину количества получаемых продуктов электрохимического разложения за счет регулирования скорости подаваемого водного раствора хлорида путем подачи сигнала на электромагнитные клапаны и насос-дозатор 17, экономию электрической энергии путем подачи управляющего сигнала на каждое устройство электропитания 15, корректировку избыточного давления в анодных камерах 4 электрохимических реакторов 18 путем подачи управляющего сигнала на циркуляционный насос 16. Такой принцип конструктивного выполнения повышает эффективность работы устройства.

Внутренняя поверхность трубчатого титанового электрода - анода 2 имеет гальваническое покрытие металлами платиновой группы - рутением и иридием.

Устройство функционирует следующим образом.

Перед подачей электропитания для электрохимической обработки солевого раствора электролита анодные 4 и катодные 5 камеры электрохимических реакторов заполняют солевым раствором электролита через нижние коллекторы - коллектор анодный нижний и коллектор катодный нижний с помощь насоса-дозатора 17.

Одновременно с подачей электропитания для проведения электрохимической обработки солевого раствора электролита подается электропитание на циркуляционный насос 16 и насос-дозатор 17, которые обеспечивают циркуляцию солевого раствора электролита в катодных 5 и анодных камерах 4 электрохимических реакторов 18. В анодных камерах 4 поддерживают избыточное давление по отношению к давлению в катодных камерах 5, что способствует более интенсивному прохождению ионов из анодных камер 4 реакторов через керамические ионопроницаемые диафрагмы 3 в катодные камеры 5 и экономии электрической энергии.

Продукты электрохимического разложения из анодных камер 4 реакторов через коллектор анодный верхний поступают в сепаратор газ-жидкость и разделяются там на газообразную фазу оксидантов и жидкую фазу оксидантов. Газообразная фаза из сепаратора поступает на регулятор давления газа, смешивается с водой, затем полученный водный раствор газообразных оксидантов подают на выход установки. Жидкую фазу оксидантов из сепаратора через коллекторы анодные нижние подают в анодные камеры реактора 18 на вторичную переработку.

Продукты катодного разложения солевого раствора электролита из катодных камер 5 электрохимических реакторов 18 через коллектор катодный верхний поступают в емкость сбора католита, где разделяются на газообразную фазу и жидкую фазу. Избыток католита поступает из емкости сбора католита на выход установки.

1. Установка для электрохимического разложения водных растворов хлоридов, включающая проточные электрохимические реакторы, состоящие из внутреннего трубчатого титанового катода, внешнего трубчатого титанового анода и размещенной между ними трубчатой керамической ионопроницаемой диафрагмы, нижнего и верхнего анодных коллекторов, сепаратора, нижнего и верхнего катодных коллекторов и насосов, отличающаяся тем, что она дополнительно содержит программируемый контроллер, обеспечивающий корректировку режима работы каждого электрохимического реактора с помощью датчиков, при этом контроллер обеспечивает возможность регулирования скорости подаваемого водного раствора хлорида, регулирования электропитания каждого электрохимического реактора и корректировки избыточного давления в анодных камерах, кроме того, каждый электрохимический реактор имеет отдельный источник электропитания, а анодные камеры электрохимических реакторов выполнены с возможностью поддержания в них избыточного давления по отношению к давлению в катодных камерах.

2. Установка по п. 1, отличающаяся тем, что внутренняя поверхность трубчатого титанового электрода-анода имеет гальваническое покрытие металлами платиновой группы - рутением и иридием.

3. Установка по п. 1, отличающаяся тем, что она содержит 2-16 электрохимических реакторов.

4. Установка по п. 1 или 3, отличающаяся тем, что электрохимические реакторы содержат верхнюю и нижнюю втулки, имеющие в нижней и верхней частях входы и выходы.

5. Установка по п. 4, отличающаяся тем, что нижние входы анодных камер электрохимических реакторов соединены с нижним анодным коллектором, а верхние выходы анодных камер всех электрохимических реакторов соединены с верхним анодным коллектором, верхние выходы катодных камер всех электрохимических реакторов соединены с верхним катодным коллектором, а нижние входы катодных камер всех электрохимических реакторов соединены с нижним катодным коллектором.

6. Установка по п. 1, отличающаяся тем, что для проведения самоочистки катодных камер она содержит циркуляционный насос.



 

Похожие патенты:
Изобретение относится к способу получения концентрата адипиновой кислоты и натриевой щелочи из щелочных стоков производства капролактама, включающему электролиз стоков в мембранном электролизере с получением в катодном пространстве натриевой щелочи.

Изобретение относится к способу электросинтеза циклогексантиола, включающему взаимодействие циклогексена с сероводородом в апротонных органических растворителях в присутствии фонового электролита при температуре 20-25°C и атмосферном давлении.

Изобретение относится к электролитической ячейке для выработки неразделенных анодных и катодных продуктов, состоящая из литографически структурируемой подложки, имеющей поверхность, множество анодных и катодных микроэлектродов, сформированных на упомянутой поверхности, причем упомянутые анодные и катодные микроэлектроды взаимно вставлены один в другой с межэлектродным промежутком менее 100 микрометров и имеют среднюю шероховатость Ra поверхности менее 0,05 мкм.

Изобретение относится к электроду для устройства для разложения воды, содержащего: газопроницаемый материал; второй материал; разделительный слой, расположенный между газопроницаемым материалом и вторым материалом, где разделительный слой расположен рядом с внутренней стороной газопроницаемого материала, причем данный разделительный слой предоставляет газосборный слой, способен к перемещению газа внутри в электроде по меньшей мере к одной зоне выпуска газа, где перемещаемый газ является продуктом реакции разложения воды, и где газ мигрирует через газопроницаемый материал; и проводящий слой расположен рядом с внешней стороной газопроницаемого материала, на ней или частично внутри внешней стороны.

Изобретение относится к способу получения водорода на основе химической реакции электролиза алюминиевого сплава и щелочного раствора воды в заполненном электролитом электролизере, в котором расположены анод и катод.

Изобретение относится к области химической технологии, в частности к способам электрохимического окисления железа для получения реагента-окислителя феррата (VI) FeO42-.

Изобретение относится к способу получения альфа-оксида алюминия высокой чистоты. Способ включает анодное растворение алюминия высокой чистоты в водном растворе нитрата аммония, рафинирование электролита путем удаления 50-100% первой партии гидроксида алюминия с предварительным отстаиванием в электролите в течение 12-24 ч, разделение последующих партий гидроксида алюминия и электролита, промывку последующих партий гидроксида алюминия дистиллированной водой и их термическую обработку, которая осуществляется посредством предварительной сушки в течение 12-24 ч при температуре 200-250°С и окончательного прокаливания в течение 15-18 ч при температуре не менее 1100°С, при этом при прокаливании каждые 3 ч производится перемешивание продукта.

Изобретение относится к электролизеру, содержащему корпус с электролитом с размещенными в нем электролизной ячейкой с анодом, катодом и мембраной, разделяющей объем электролизной ячейки на анодное и катодное пространства, анодный контур циркуляции электролита, включающий емкость с электролитом и теплообменник, сепараторы водорода и кислорода, магистрали подвода воды и отвода кислорода и водорода, отличающемуся тем, что электролизер содержит катодный контур циркуляции, совмещенный с анодным контуром циркуляции таким образом, что катодная емкость с электролитом соединена через анодный теплообменник с анодным пространством, а анодная емкость с электролитом соединена с катодным пространством через катодный теплообменник, и байпасную линию, соединяющую катодную емкость с электролитом через кран-регулятор и катодный теплообменник с катодным пространством.
Изобретение относится к электрохимическому способу получения порошка силицида вольфрама, включающий электролиз расплава при температуре 850-950°С, содержащего хлорид натрия, вольфрамат натрия и диоксид кремния.
Изобретение относится к электрохимическому синтезу борида молибдена, включающему электролиз расплава, содержащего хлорид калия, молибдат натрия и оксид бора, хлорид натрия.

Изобретение может быть использовано в химической промышленности. Способ получения гипохлорита кальция из пересыщенного природного поликомпонентного рассола хлоридного кальциево-магниевого типа включает выделение из рассола кристаллогидрата хлорида кальция и отделение маточного рассола, обогащенного литием и бромом. Проводят мембранный или диафрагменный электролиз водного раствора хлорида натрия для производства хлора и католита. Получают раствор гипохлорита натрия путем эжектирования анодного хлора потоком католита - раствором NaOH. Гипохлорит кальция получают обменной реакцией между гидроксидом кальция и гипохлоритом натрия. Полученный гипохлорит кальция отделяют от маточного раствора и сушат. Маточный раствор перерабатывают с возвратом NaCl в производство. Сначала природный пересыщенный поликомпонентный рассол охлаждают до 0…-1°С, получая твердую фазу кристаллогидрата CaCl2⋅6Н2О с примесью кристаллогидрата MgCl2⋅6H2O и жидкую фазу. Кристаллогидраты отделяют от жидкой фазы, нагревают в присутствии NaOH и перемешивают, отделяя CaCl2⋅6Н2О от твердой фазы MgCl2⋅6H2O и образовавшейся твердой фазы Mg(OH)2. Очищенный от магния CaCl2⋅6Н2О приводят в контакт с католитом. Образующуюся пульпу центрифугируют с получением кека в виде Са(ОН)2 и фугата в виде раствора NaCl, который после очистки от кальция возвращают на операцию мембранного электролиза для получения католита и хлора. Изобретение позволяет осуществить процесс получения гипохлорита кальция в непрерывном режиме, снизить энергоемкость процесса, сократить затраты греющего пара, повысить выход гипохлорита кальция. 2 з.п. ф-лы, 3 ил., 5 пр.

Изобретение относится к получению порошкообразного оксида алюминия высокой чистоты. Устройство содержит электролизер для электролиза водных растворов с окислением металлического алюминия, соединенный трубопроводом с обратноосмотической установкой для подготовки исходной технической воды и приемной емкостью для продуктов окисления, причем в нижнем отверстии приемной емкости выполнено выходное отверстие, соединенное с верхним ситом промывного сепаратора, при этом нижнее сито промывного сепаратора соединено линией подачи продукта с блоком термической обработки продуктов окисления алюминия. Обеспечивается повышение безопасности устройства и снижение содержания основных примесных металлов воды в оксиде алюминия. 4 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к энергетике, а именно к способу получения водорода при разложении воды. Способ включает подачу нагретой воды из водяного котла в устройство разложения воды на кислород и водород, содержащее катод и анод. При этом перфорированные катод и анод представляют собой цилиндрические коаксиально расположенные обкладки водяного конденсатора, причем анод содержит по меньшей мере два трансформатора с индуктивностями, образующие магнитный поток, проходящий через воду, при этом слагаемые магнитных потоков каждого трансформатора образуются за счет намотки изолированного провода. Направления векторов магнитных напряженностей, образованных одним трансформатором совместно с нагрузочной индуктивностью, совпадают, а направление суммарного вектора магнитной напряженности одного трансформатора, за счет переключения полярности питающего напряжения, отличается от направления суммарного вектора магнитной напряженности другого трансформатора. При этом на перфорированную изолированную со всех сторон обкладку меньшего диаметра, внутренний объем которой служит для накопления и транспортировки ионов кислорода, подается положительный потенциал, а на перфорированную обкладку большого диаметра, на которой происходит нейтрализация ионов водорода, который транспортируется через отверстия корпуса устройства разложения воды, подается отрицательный потенциал. Технический результат заключается в повышении КПД устройств разложения воды. 4 з.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к получению пузырьков и пен, содержащих пузырьки. Устройство содержит: первый блок, выполненный с возможностью определять по меньшей мере одну характеристику газа в пузырьках; второй блок, выполненный с возможностью вырабатывать пузырьки, содержащий: электролизер, выполненный с возможностью проводить электролиз электролита, чтобы вырабатывать газ в электролите, тем самым вырабатывая пузырьки; контроллер выполнен с возможностью регулировать второй блок, чтобы вырабатывать пузырьки согласно по меньшей мере одной характеристике газа. Изобретение позволяет регулировать характеристику газа в пузырьке на основе практических требований к газу, а также снизить уровень шума и габариты устройства для вырабатывания пузырьков и пен. 2 н. и 11 з.п. ф-лы, 11 ил.

Изобретение относится к способу формирования барьерного покрытия на паяных алюминиевых электродах генератора озона, включающий подготовку поверхности деталей электрода к пайке, сборку конструкции в сборочно-паяльном приспособлении, выравнивание плоских поверхностей электрода за счет направленного термического удлинения ребер теплообменной насадки при температуре ниже температуры плавления припоя, пайку, в процессе которой при соответствующих температурах производят гомогенизацию металла и вакуумное травление рабочих поверхностей электрода для последующего создания на них диэлектрического барьера. Способ характеризуется тем, что формирование диэлектрического барьера в виде упорядоченной наноразмерной ячеисто-пористой структуры оксида алюминия с высокими показателями диэлектрической проницаемости и тангенса угла диэлектрических потерь производят электрохимическим путем в 3-5% растворе щавелевой кислоты при плотности анодного тока 2 А/дм2, времени оксидирования 3 ч и температуре 20-25°С. Изобретение решает задачу повышения качества, надежности и экономичности генератора озона в производстве и эксплуатации на основе применения при синтезе озона паяных алюминиевых электродов с диэлектрическим барьерным покрытием, сформированным электрохимическим путем. 1 з.п. ф-лы, 3 ил.

Изобретение относится к способу и системе управления электрическим током (ЕСМ) в по меньшей мере одном электролизере, имеющем по меньшей мере два электрода, находящихся в контакте с электролитической средой, множество сенсорных средств для измерения тока, проходящего через один или более электродов, при этом указанные сенсорные средства расположены внутри по меньшей мере одной панели ЕСМ, установленной в одном или более работающих электролизерах. Система также содержит поддерживающие средства для поддержания по меньшей мере одной панели ЕСМ в каждом электролизере, причем поддерживающие средства выполнены с возможностью предотвращения нарушений нормальных перемещений электродов и повреждений панели ЕСМ. Система выполнена с возможностью измерения электрического тока, проходящего через электрод или множество электродов в электролизере. Указанные усовершенствования включают в себя средства для минимизации воздействий на измерение тока переменных нескольких типов, например, электромагнитных помех, геометрии электролизера и конфигурации контакта, чтобы обеспечить достоверную аппроксимацию тока, проходящего через каждый электрод. Кроме того, вышеупомянутые усовершенствования относятся к максимальному повышению функциональности, адаптивности и управляемости устройства, обеспечивая полную модернизацию металлургических систем, при которой важно обеспечить надежное управление электрическим током, проходящим через электроды. Повышение точности контроля в реальном режиме времени величины тока, проходящего через каждый катод или анод, содержащийся в электролизере электролитического рафинирования металлов, а также оптимизация работы электролизеров, является техническим результатом изобретения. 3 н. и 28 з.п. ф-лы, 13 ил.

Изобретение относится к способу получения диметилдисульфона путем электролиза водного раствора диметилсульфона в кислой среде. Способ характеризуется тем, что электролиз проводят в водных растворах диметилсульфона в щелочной среде в анодном отделении диафрагменного электролизера в пределах плотностей анодного тока 0,1-0,3 А/см2, затем раствор анолита охлаждают до Т=5-8°С до образования кристаллов. Технический результат заключается в отсутствие водорастворимых побочных продуктов в проведении процесса электроокисления водных растворов диметилсульфона в щелочной среде для получения диметилдисульфона. 2 ил., 1 табл., 5 пр.

Изобретение относится к способу производства газообразного кислорода и газообразного водорода из жидкостного щелочного электролитического раствора в процессе электролиза, включающему в себя этапы: получения электролитической установки с имеющимися в ней первым и вторым разнесенными между собой параллельными дырчатыми электродами, погруженными во впускную камеру, которая окружает первый и второй электроды и в которой имеется по меньшей мере одно впускное отверстие и первое и второе выпускные отверстия; подачи электролитического раствора во впускное отверстие так, чтобы электроды были погружены в электролитический раствор; и подачи напряжения на установку по электродам, погруженным в электролитический раствор, для электролиза раствора между электродами таким образом, чтобы на первом электроде образовывался газообразный кислород, а на втором электроде образовывался газообразный водород, при этом электролитический раствор между электродами разделяется на первый и второй выходные потоки, так что первый выходной поток проходит через первый электрод, тем самым удаляя газообразный кислород из первого электрода, когда первый выходной поток проходит в первое выпускное отверстие, и так что второй выходной поток проходит через второй электрод, тем самым удаляя газообразный водород из второго электрода, когда второй выходной поток проходит во второе выпускное отверстие, и при этом первый и второй электроды расположены в относительно непосредственной близости друг от друга на расстоянии от 1 мм до 6 мм. Также изобретение относится к электролитической установке. Использование предлагаемого изобретения позволяет устранить недостатки электролизеров предшествующего уровня техники, использующих мембраны. 2 н. и 18 з.п. ф-лы, 3 ил.

Изобретение относится к способу получения окисленного лигнина путем электрохимического модифицирования гидролизного лигнина в водном кислотном электролите на углеродных электродах при температуре окружающей среды. Способ характеризуется тем, что модифицирование лигнина проводят в растворе HF, содержащем 2-3 вес. % лигнина, в присутствии фторида аммония или фторида калия в количестве 10-30% масс., при этом электролиз проводят в гальваностатическом режиме при плотности тока i=0,2-0,4 А/см2 в течение 0,25-1 часа. Предлагаемый способ позволяет получить препараты лигнина с содержанием карбоксильных групп от 20 до 40% в зависимости от времени синтеза. 1 табл.

Группа изобретений относится к пищеконцентратной промышленности, в частности к способам производства пищевых продуктов, при которых производят обезвоживание пищевых продуктов. В процессе способа из сырого или готового к употреблению пищевого продукта удаляют воду путем разложения ее с помощью электрических и магнитных полей на водород и кислород. Затем обезгазованные продукты упаковывают в герметичную тару. Упаковку производят в вакууме или в азотной среде. Устройство содержит контейнер для загрузки пищевых продуктов, внутри которого на противоположных стенках размещены не- изолированный кислородный и изолированный с увеличенной поверхностью и нейтрализационной сеткой водородный электроды. На других противоположных стенках контейнера размещены индуктивности, имеющие обмотки, выполненные изолированным электротехническим проводом. Электроды и индуктивности через контактное устройство электрически связаны с источниками питания. Использование группы изобретений позволит повысить срок хранения пищевых продуктов. 2 н.п. ф.лы, 3 ил.
Наверх