Преобразователь внешней кинетической энергии в электроэнергию

Изобретение относится к электроэнергетике и может быть использовано для выработки электроэнергии из колебательных движений различной природы. Преобразователь выполнен с возможностью преобразования волновой энергии в электроэнергию и содержит статор с витками электрической обмотки 4, снабженный контактными клеммами 5, и ротор 9 линейного генератора. Статор содержит несущую раму 1, снабженную сквозным продольным пазом 2, у одной стороны которого закреплены магнитная система 3 статора с обмоткой 4. В проеме паза 2 установлена упругая пластина 6, один конец которой жестко связан с рамой 1, а на ее свободном конце закреплен ротор 9, выполненный в виде магнитного тела, размещенный с рабочим зазором относительно поверхности статора, с возможностью возвратно-поступательного перемещения относительно нее, через паз 2. Пластина 6 выполнена с собственной частотой резонансных колебаний большей частоты колебаний воды в волнах и обращена к их потоку одной своей стороной. Изобретение направлено на повышение выходной мощности и упрощение конструкции устройства. 4 з.п. ф-лы, 4 ил.

 

Изобретение относится к электроэнергетике и может быть использовано для выработки электроэнергии из колебательных движений различной природы, например воды, ветра, вибраций машин и механизмов.

Известен преобразователь внешней кинетической энергии в электроэнергию, включающий корпус, снабженный средствами формирования магнитного поля, в полости которого размещено магнитное тело с возможностью возвратно-поступательного перемещения под действием внешней кинетической энергии (см. М. Гольцова «Аккумулирование кинетической энергии из окружающей среды», ж-л «Электроника» №7, 2011). Примером реализации такой конструктивной схемы являются электромагнитный преобразователь PMG37 компании Perpetium, источником энергии которого являются колебания необрессоренной массы движущегося железнодорожного вагона, или электромагнитный преобразователь, изготовленный в совместном проекте Школы электроники и компьютерной техники (Унив-т Саутгемптона) и отделения микросистем (Унив-т Фрайбурга).

Недостаток таких решений - малая и сверхмалая выходные мощности, кроме того, достаточно высока конструктивная сложность. Все это исключает возможность использования таких преобразователей в конструкциях устройств, обеспечивающих выработку электроэнергии из колебательных движений, вызываемых волнением водной среды.

Известно большое количество безредукторных преобразователей, состоящих из магнитоэлектрического линейного генератора, ротор которого выполнен с возможностью восприятия колебательных движений, вызываемых волнением водной среды, и возвратно-поступательного движения относительно статора.

Известен преобразователь внешней кинетической энергии в электроэнергию, выполненный с возможностью преобразования волновой энергии в электроэнергию, включающий линейный генератор и динамический инерционный накопитель энергии, содержащий груз и упругие элементы (см. RU № 2037642, МПК F03B 13/16, 1995). При этом предполагается, что частота собственных колебаний ротора генератора соизмерима с характерной частотой колебаний удерживающего его поплавка в воде.

Известен преобразователь внешней кинетической энергии в электроэнергию, выполненный с возможностью преобразования волновой энергии в электроэнергию, содержащий корпус, с катушкой индуктивности, а также подвижную электромагнитную систему и пружину, связывающую названные элементы с неподвижным корпусом, связанным с дном. Генератор электроэнергии снабжен поплавком и может также включать упругие регулирующие средства для согласования собственных колебаний электромагнитной системы с колебаниями поплавка (см. WO № 2009/111077, МПК F03B 13/16, 2009).

Такие устройства не способны эффективно использовать энергию волн из-за нерегулярности и, зачастую, небольшой величины амплитуды, фазы и направления движения волн, малой скорости их вертикального перемещения.

Известен также преобразователь внешней кинетической энергии в электроэнергию, выполненный с возможностью преобразования волновой энергии в электроэнергию, содержащий статор с витками электрической обмотки, снабженный токосъемными шинами, и ротор линейного генератора, принятый в качестве прототипа (см. US № 2004/251692, МПК F03B 13/12, 2004). Это устройство содержит поплавок, связанный с ротором, и статор, при этом его статор прикреплен к морскому дну.

Эффективность описанного технического решения несколько выше предыдущих решений, использующих линейные генераторы, но остается достаточно низкой, так как электромагнитная мощность генератора зависит от амплитуды колебаний линейно, а от частоты колебаний - в третьей степени (см. М.Я.Хитерер и др. Синхронные электрические машины возвратно-поступательного движения. Санкт-Петербург, Корона принт, 2008, с.286, с.181).

Хотя высота морских волн исчисляется метрами, частота колебаний поплавка, находящегося на поверхности волн, является низкой и составляет доли Гц. Это не позволяет получать от таких генераторов высокую мощность. В условиях низкочастотных колебаний ротора принципиально трудно создать эффективную конструкцию преобразователя, использующего энергию волн, независимую от их скорости, направления и условий распространения. Кроме того, устройство является конструктивно сложным. Таким образом, недостаток прототипа – недостаточная эффективность преобразования внешней кинетической энергии (энергии морских волн) в электроэнергию.

Задачей изобретения является повышение эффективности преобразователя внешней кинетической энергии (энергии морских волн) в электроэнергию.

Технический результат, проявляющийся при решении поставленной задачи, выражается в повышении выходной мощности за счет повышения скорости изменения индукции магнитного поля вследствие размещения магнитов якорной части магнитной системы на подвижном основании, выполненном в виде упругой пластины, собственная частота резонансных колебаний которой больше частоты колебаний воды в морских волнах, воздействующих на нее. Возбуждение резонансных колебаний такой магнитной системы происходит непосредственно под действием скоростного напора рабочего тела на подвижное основание, что исключает необходимость введения в конструкцию генератора каких-либо промежуточных устройств – мультипликаторов и т.п., и позволяет существенно упростить конструкцию устройства.

Для решения поставленной задачи преобразователь внешней кинетической энергии в электроэнергию, выполненный с возможностью преобразования волновой энергии в электроэнергию, содержащий статор с витками электрической обмотки, снабженный контактными клеммами, и ротор линейного генератора, отличается тем, что статор содержит несущую раму, снабженную сквозным продольным пазом, у одной стороны которого закреплены магнитная система статора с обмоткой, кроме того, в проеме паза установлена упругая пластина, один конец которой жестко связан с несущей рамой, а на ее свободном конце закреплен ротор линейного генератора, выполненный в виде магнитного тела, размещенный с рабочим зазором относительно поверхности статора, с возможностью возвратно-поступательного перемещения относительно нее, через сквозной продольный паз, кроме того, упругая пластина выполнена с собственной частотой резонансных колебаний большей частоты колебаний воды в волнах и обращена к их потоку одной своей стороной. Кроме того, ротор линейного генератора, выполнен в виде пластин из магнитного материала, закрепленных на конце упругой пластины. При этом упругая пластина в плане выполнена с переменной шириной. Кроме того, зазор между кромкой упругой пластины и кромкой сквозного продольного паза выполнен переменным. Кроме того, сквозной продольный паз в плане выполнен с переменной шириной и снабжен симметричными вырезами у торцовой кромки паза со стороны закрепления упругой пластины.

Сопоставительный анализ признаков заявленного решения с признаками прототипа и аналогов свидетельствует о соответствии заявленного решения критерию «новизна».

Признаки отличительной части формулы изобретения обеспечивают решение комплекса функциональных задач.

Признаки «…статор содержит несущую раму, снабженную сквозным продольным пазом, у одной стороны которого закреплены магнитная система статора с обмоткой…» обеспечивают возможность установки магнитной системы статора с обмоткой и установки магнитного тела с возможностью его взаимодействия с магнитным полем, формируемым магнитной системой статора с обмоткой, с возможностью колебательного движения через паз упругой пластины, удерживающей магнитное тело.

Признаки, указывающие что «в проеме паза установлена упругая пластина», обеспечивают возможность свободного прохода через паз упругой пластины, в процессе ее колебательного движения.

Признак, указывающий, что один конец упругой пластины «жестко связан с несущей рамой», обеспечивает консольное закрепление упругой пластины, позволяющее колебаться ее свободному концу с достаточно высокой частотой.

Признаки, указывающий, что на свободном конце упругой пластины «закреплен ротор линейного генератора, выполненный в виде магнитного тела, размещенный с рабочим зазором относительно поверхности статора, с возможностью возвратно-поступательного перемещения относительно нее, через сквозной продольный паз», обеспечивает возможность высокой скорости изменения индукции магнитного поля, т.к. магнитное тело размещено на упругой пластине, собственная частота резонансных колебаний которой больше частоты колебаний воды в морских волнах. Причем возбуждение резонансных колебаний такой магнитной системы происходит непосредственно под действием скоростного напора рабочего тела – это исключает необходимость введения в конструкцию преобразователя каких-либо мультипликаторов.

Признаки, указывающие что «упругая пластина выполнена с собственной частотой резонансных колебаний большей частоты колебаний воды в волнах», обеспечивают высокую частоту колебаний магнитного тела и высокую скорость изменения индукции магнитного поля в магнитной системе.

Признаки, указывающие, что упругая пластина «обращена к потоку колебаний воды одной своей стороной», исключают «взаимоуничтожение» воздействия потока колебания воды на пластину, возможное при воздействии на нее с двух сторон.

Признаки второго пункта формулы изобретения раскрывают возможный конструктивный вариант выполнения магнитного тела (ротора линейного генератора).

Признаки третьего-пятого пунктов формулы изобретения обеспечивают оптимизацию частотных характеристик упругой пластины, ее работоспособность и заданные параметры взаимодействия с потоком колебаний воды (волны).

Отличие предлагаемой конструкции преобразователя внешней кинетической энергии в электроэнергию от аналогов и прототипа состоит в методе приведения в движение ротора, закрепленного на упругой пластине.

У известных решений рабочее тело (вода, воздух) или механические колебания воздействуют на упругую пластину через промежуточный элемент: корпус или систему крепления. В заявленной конструкции рабочее тело воздействует на упругую пластину непосредственно, возбуждая в ней резонансные колебания силой своего потока.

Устройство иллюстрируется чертежами, где на фиг.1 схематически показан продольный разрез преобразователя энергии, через паз несущей рамы, до воздействия на нее внешней кинетической энергии; на фиг.2 показано то же, в процессе воздействия внешней кинетической энергии; на фиг.3 показан вид преобразователя энергии в объемной проекции; на фиг.4 дана табл. 1 «Физико-механические характеристики материалов, пригодных для изготовления упругой пластины преобразователя, и ее частотные параметры».

На чертежах показаны несущая рама 1, со сквозным продольным пазом 2, магнитная система 3 и обмотка 4, с контактными клеммами 5, также показана упругая пластина 6, ее фиксатор 7, ее свободный конец 8, ротор 9, его рабочий зазор 10 относительно поверхности статора, направление 11 действия внешнего потока низкочастотных колебаний (или рабочего тела), магнитные пластины 12, зазор 13 между кромкой 14 упругой пластины 6 и кромкой 15 сквозного продольного паза 2, симметричные вырезы 16, характер колебаний 17 упругой пластины 6 и их амплитуда 18, силовые линии 19 магнитного поля.

Преобразователь внешней кинетической энергии в электроэнергию выполнен с возможностью преобразования волновой энергии (энергии волн) в электроэнергию, включает статор, содержащий несущую раму 1, снабженную сквозным продольным пазом 2, у одной стороны которого закреплены магнитная система 3 статора с обмоткой 4, снабженной контактными клеммами 5, обеспечивающими снятие энергии, выработанной преобразователем. В проеме продольного паза 2 установлена упругая пластина 6, один конец которой жестко связан с несущей рамой 1, посредством фиксатора 7, а на ее свободном конце 8 закреплен ротор 9 линейного генератора, выполненный в виде магнитного тела из двух магнитных пластин 12, закрепленных с обеих сторон упругой пластины 6.

Ротор 9 линейного генератора размещен с рабочим зазором 10 относительно обращенной к нему поверхности статора, с возможностью возвратно-поступательного перемещения относительно нее, через сквозной продольный паз 2.

Упругая пластина 6 выполнена с собственной частотой резонансных колебаний большей частоты колебаний взаимодействующего с ней рабочего тела (воды или воздуха) или поверхности машины (механизма), вибрирующей в процессе работы, и обращена к их потоку 11 одной своей стороной. Кроме того, упругая пластина 6 в плане может быть выполнена с переменной шириной, при этом зазор 13 между кромкой 14 упругой пластины 6 и кромкой 15 сквозного продольного паза 2 также может быть выполнен переменным. Было проведено компьютерное моделирование якорной пластины для выявления ее оптимальных геометрических и прочностных характеристик. В качестве основного рабочего материала планируется использовать нержавеющую сталь IASI тип 316L. Хотя возможно более высокие характеристики могут быть получены на сплавах алюминия, а также стекле и графите (см. фиг.4).

Кроме того, сквозной продольный паз 2 в плане может быть выполнен с переменной шириной и снабжен симметричными вырезами 16 у торцовой кромки паза со стороны закрепления упругой пластины фиксатором 7.

Заявленное устройство работает следующим образом (см. фиг.1 и 2).

Рабочее тело (поток воды или воздуха) воздействует на одну сторону упругой пластины 6 непосредственно, возбуждая в ней резонансные колебания своею силой. Аналогичный эффект вызовут колебания поверхности машины (механизма), вибрирующей в процессе работы, к которой может быть жестко прикреплена несущая рама 1. За счет того что упругая пластина 6 выполнена с собственной частотой резонансных колебаний большей частоты колебаний внешней кинетической энергии, обеспечивается возможность резкого повышения скорости изменения индукции магнитного поля, при взаимодействии магнитного поля статора и магнитного поля ротора.

Скорость изменения магнитного поля (V, м/с) в такой системе зависит от амплитуды колебаний (A, м) упругой пластины и её собственной резонансной частоты (f, Гц) и рассчитывается по формуле:

V = A . f

Так для пластины, колеблющейся с амплитудой 0,1 м с собственной частотой в 100 Гц, скорость будет

V = 0,1 . 100 = 10м/с

Подбирая размеры и материал пластины можно получить скорости в 100 м/с и более.

Число колебаний упругой пластины из нержавеющей стали, зафиксированной по узкой стороне, рассчитывается по формуле

,

где f - частота резонансных колебаний;

k - безразмерный «коэффициент тона», зависящий от соотношения ширины пластины (0,1 м) к её длине (1,0 м), этот коэффициент равен «3»);

l - длина пластины;

D - индекс упругости;

p – плотность материала пластины (7800 кг/м3);

h – толщина пластины.

Индекс упругости D пластины толщиной h рассчитывается по формуле

,

где D – индекс упругости;

µ - коэффициент Пуассона – для стали 0,28 ;

E – модуль Юнга – для стали 200 ГПа;

h – толщина пластины.

Таким образом, для стальной пластины с размерами 1 х 0,1 х 0,01 м (Длина х Ширина х Толщина) частота резонансных колебаний равна 456 Гц.

Амплитуда колебаний 18 конца пластины 6 не должна превышать размеры обмотки статора 4, но при этом должна быть не меньше размеров поперечного сечения её магнитной системы 3 (магнитопровода). Исходя из ограничений по усталостной прочности, для стальной платины с названными размерами, амплитуда колебаний свободного конца должна находиться в переделах 0,05 м. Тогда толщина поперечного сечения магнитопровода статора должна быть (А/2), т.е. 0,025 м (2,5 см). Из эмпирической формулы, приравнивающей мощность обмотки (Вт) к величине площади поперечного сечения стального магнитопровода (см), определяем мощность электрогенератора как 250 Вт.

Более точные расчёты должны учитывать материал, геометрию магнитных частей и частоту колебаний пластины.

В заявленной конструкции рабочее тело воздействует на упругую пластину непосредственно, возбуждая в ней резонансные колебания силой своего потока. Это позволяет обойти конструктивные и прочностные ограничения узла крепления якорной пластины и преобразовать энергию рабочего тела практически в любых количествах.

1. Преобразователь внешней кинетической энергии в электроэнергию, выполненный с возможностью преобразования волновой энергии в электроэнергию, содержащий статор с витками электрической обмотки, снабженный контактными клеммами, и ротор линейного генератора, отличающийся тем, что статор содержит несущую раму, снабженную сквозным продольным пазом, у одной стороны которого закреплены магнитная система статора с обмоткой, кроме того, в проеме паза установлена упругая пластина, один конец которой жестко связан с несущей рамой, а на ее свободном конце закреплен ротор линейного генератора, выполненный в виде магнитного тела, размещенный с рабочим зазором относительно поверхности статора, с возможностью возвратно-поступательного перемещения относительно нее, через сквозной продольный паз, кроме того, упругая пластина выполнена с собственной частотой резонансных колебаний большей частоты колебаний воды в волнах и обращена к их потоку одной своей стороной.

2. Преобразователь по п.1, отличающийся тем, что ротор линейного генератора, выполнен в виде пластин из магнитного материала, закрепленных на конце упругой пластины.

3. Преобразователь по п.1, отличающийся тем, что упругая пластина в плане выполнена с переменной шириной.

4. Преобразователь по п.1, отличающийся тем, что зазор между кромкой упругой пластины и кромкой сквозного продольного паза выполнен переменным.

5. Преобразователь по п.1, отличающийся тем, что сквозной продольный паз в плане выполнен с переменной шириной и снабжен симметричными вырезами у торцовой кромки паза со стороны закрепления упругой пластины.



 

Похожие патенты:

Настоящее изобретение относится к ветрогенераторам. Ветрогенератор по первому варианту содержит корпус, выполненный сетчатым в виде флюгера, вдоль продольной оси передней цилиндрической части которого горизонтально расположен плоский магнит, на переднем конце которого установлена ветровая ловушка, выполненная в виде боковой поверхности полого усеченного конуса.

Изобретение относится к системам управления полетом силового профиля крыла или буксировочного воздушного змея для преобразования энергии ветра в электрическую или механическую энергию.

Изобретение относится к ветроэлектрогенераторам. Ветроэлектрогенератор содержит ряд установленных в вертикальной плоскости прямоугольных ячеек, каждая из которых снабжена подпружиненным горизонтальным магнитным сердечником с возможностью осевого перемещения внутри соленоида и двумя вертикальными ветровыми щитками, установленными на концах сердечника, при этом ветровые щитки образуют две вертикальные стенки по обе стороны от плоскости ячеек.

Изобретение относится к области производства электрической энергии и может быть использовано в устройствах с автономным питанием. Ветро-пьезоэлектрогенератор, содержащий пьезоэлектрические элементы, флюгер, полотно, электроды.

Изобретение относится к возобновляемой энергетике и может быть использовано при разработке новых типов ветроустановок разной мощности, работающих в свободных воздушных потоках.

Изобретение относится к возобновляемой энергетике и может быть использовано при создании новых невращающихся преобразователей кинетической энергии для ветро- и гидроустановок, работающих в свободных воздушных или водных потоках.

Изобретение относится к энергетике и может быть использовано в устройствах для преобразовании энергии текучих сред в электрическую. Ветроэнергетическая установка содержит рабочий орган, преобразователь энергии и устройство защиты от запредельных ветровых нагрузок.

Изобретение относится к области ветроэнергетики. Способ преобразования энергии ветра в полезную энергию путем воздействия на струны набегающего потока воздуха.

Изобретение относится к установкам по использованию ветровой энергии.Ветроэлектрический генератор содержит крыльчатый ветродвигатель и электрогенератор, имеющий ротор, выполненный в виде сегментных элементов, закрепленных на крыльях ветродвигателя, и дуговой статор.

Изобретение относится к области энергетики и может быть использовано для выработки электроэнергии. Ветроэнергетическая установка содержит ветрогенератор с лопастной ветровой турбиной с вертикальным валом вращения, расположенной внутри неподвижного лопастного воздухонаправляющего аппарата с основанием и крышкой, электрогенератор, блок управления, дополнительный источник электроэнергии.

Изобретение относится к области электротехники и может быть использовано в оборудовании для передачи электропитания к подводным нагрузкам, расположенным далеко от надводных частей платформы или от берега, требующим передачи большой мощности.

Группа изобретений относится к кессонному волнолому и, в частности, к блоку кессонного волнолома, содержащему колебательный водяной столб. Блок 100 кессонного волнолома имеет наветренную и подветренную стороны 110 и 120 и содержит колебательный водяной столб.

Изобретение относится к генератору для генерирования энергии. Генератор (100) содержит плавучую платформу (1), приспособленную для частичного погружения в текучую среду, мачту (2), расположенную на платформе (1) и содержащую, по меньшей мере, один ветрогенератор (3), по меньшей мере, один первый аккумулятор энергии и один преобразователь.

Изобретение относится к области нетрадиционных и возобновляющихся источников энергии, а именно волновой энергии и преобразования ее в другие виды, преимущественно в электрическую.

Изобретение относится к гидравлическому аппарату для извлечения энергии из движения волн. Автоматически регулирующийся гидравлический аппарат 200 для преобразования энергии волн содержит насос 201, предназначенный для перекачивания через гидравлический аппарат 200 текучей среды.

Изобретение относится к устройствам для преобразования энергии волн, в частности для преобразования энергии колебания судна в гидрореактивную энергию. Гидрореактивное устройство содержит водовод с соплами, образованными вертикальными боковыми стенками и плоскими пластинами.

Изобретение относится к волновой электростанции. .

Изобретение относится к устройствам для преобразования энергии колебания судна в гидрореактивную энергию. .

Изобретение относится к системам оповещения и коммуникации в международных пространствах. .

Изобретение относится к устройству по преобразованию ветра в электрическую энергию. Устройство по преобразованию энергии ветра, содержащее опорно-несущую конструкцию, с преобразователями и аккумуляторами электрической энергии. Опорно-несущая конструкция выполнена в виде фиберглассового центрального стержня с уменьшающимися сечением от основания к вершине, при этом стержень снабжен горизонтально расположенными полками, уменьшающимися от основания к вершине, каждая полка снабжена гибкими элементами, одна сторона которых закреплена на центральном стержне, а другая - на стержнях с пружинами или демпферами по середине стержней, соединяющих полки; при этом на полках установлены трубки из немагнитного материала, радиально расположенные относительно центрального стержня, каждая из трубок содержит неподвижные и подвижные части, установленные с зазором в этих трубках и выполненные в виде постоянных магнитов, направленных одноименными полюсами друг к другу, подвижные части установлены с зазором вдоль всей длины трубок, неподвижные части выполнены в виде ограничителей движения подвижных, в них установлены штоки, жестко соединенные с ближайшими подвижными частями, а на внешней поверхности каждой трубки из немагнитного материала установлена изолированная электропроводящая обмотка, соединенная с аккумулятором электрической энергии. Изобретение направлено на повышение выработки электроэнергии при незначительных ветровых нагрузках. 1 з.п. ф-лы, 4 ил.
Наверх