Способ формирования кумулятивного заряда, устройство для его осуществления и кумулятивный заряд

Группа изобретений относится к способам изготовления кумулятивных зарядов для перфорационных систем, применяемых для интенсификации нефтеотдачи. Способ включает изготовление наружного корпуса, засыпку основного заряда бризантного взрывчатого вещества и досылку внутренней оболочки рабочим пуансоном. Наружный корпус выполнен в виде металлического пустотелого цилиндра, внутрь его перед засыпкой основного заряда бризантного взрывчатого вещества добавляют наполнитель, который прессуют вспомогательным пуансоном. Наполнитель может быть выполнен в виде смеси мелкодисперсного металлического порошка и порошкообразного связующего, может содержать двухвалентное железо, порошок алюминия. Наполнитель может быть выполнен в виде смеси металлических порошков разных металлов, в виде порошка пластмассы. Наполнитель может содержать армирующую структуру в виде рубленых частиц стеклоткани. Устройство содержит втулку для установки корпуса, рабочий пуансон для формирования заряда и досылки внутренней оболочки, комплект пуансонов, из не менее, чем двух вспомогательных пуансонов для формирования промежуточного корпуса. Устройство для формирования кумулятивного заряда может быть оборудовано рабочим пуансоном для формирования кумулятивных зарядов «Глубокого пробития» и «Большое отверстие». Кумулятивный заряд содержит наружный корпус, внутри которого напрессовано между наружным корпусом и внутренней оболочкой бризантное взрывчатое вещество, между наружным корпусом и основным зарядом бризантного взрывчатого вещества запрессован промежуточный корпус, выполненный из наполнителя. Обеспечивается изготовление зарядов разных типов в одинаковых наружных корпусах. 3 н. и 23 з.п. ф-лы, 10 ил., 1 табл.

 

Группа изобретений относится к средствам изготовления кумулятивных зарядов для перфорационных систем, применяемых для интенсификации нефтеотдачи.

При проведении перфорации скважины в настоящее время используется так называемая комбинированная перфорация. Это когда в одном перфораторе устанавливают заряды двух типов "БО" (большое отверстие) и "ГП" (глубокое пробитие), такая комбинация позволяет упростить проведение гидроразрыва пласта. Эти заряды кардинально отличаются друг от друга, а так как посадочные размеры и каркас имеют один размер, поэтому приходится адаптировать внутреннее пространство заряда, куда запрессовывается разрывной заряд. Это не всегда является оптимальным вариантом, при котором можно получить максимальные характеристики зарядов, как по глубине пробития, так и по диаметру отверстию. Поэтому предлагается способ формирования оптимального внутреннего пространства разрывного заряда.

Известно устройство для прессования кумулятивных зарядов по патенту РФ на изобретение №2237850, МПК F42B 1/036, опубл. 10.10.2004 г., прототип способа и устройства.

Этот способ включает установку внутренней оболочки, засыпку продукта, установку внешней оболочки и прессование.

Это устройство содержит пресс-форму для сборки кумулятивного заряда. Пресс-форма включает матрицу, поддон и пуансон, установленный с возможностью перемещения в сторону поддона, при этом между пуансоном и поддоном расположен узел передачи усилия прессования на поддон, выполненный составным, по крайней мере, из двух подвижных и одной размещенной между ними неподвижной частей, одна из подвижных частей размещена напротив пуансона с возможностью перемещения в его сторону, а другая - напротив узла передачи усилия прессования на поддон с возможностью перемещения в противоположную сторону, при этом на внутренней и внешней боковых поверхностях неподвижной части выполнены проточки, а на боковой поверхности подвижной части, размещенной напротив пуансона, и на внутренней поверхности другой подвижной части выполнены выступы, причем подвижная часть, размещенная напротив пуансона, выступом входит в проточку, выполненную на внутренней поверхности неподвижной части, а другая подвижная часть выступом входит в проточку, выполненную на наружной поверхности неподвижной части.

Недостатки этого устройства: низкая производительность, плохой уровень автоматизации процесса формирования разрывного заряда, относительно большая неравномерность плотности взрывчатого вещества у основания конуса по причинам, описанным ранее.

Задача создания группы изобретений: обеспечение унификации кумулятивных зарядов.

Техническим результатом группы изобретений является обеспечение унификации кумулятивных зарядов.

Решение указанной задачи достигнуто в способе формирования кумулятивного заряда, включающем изготовление наружного корпуса, засыпку основного заряда бризантного взрывчатого вещества и досылку внутренней оболочки рабочим пуансоном, где согласно изобретению наружный корпус выполнен в виде металлического пустотелого цилиндра, и внутрь его перед засыпкой основного заряда бризантного взрывчатого вещества добавляют наполнитель, который прессуют вспомогательным пуансоном.

Наполнитель может быть выполнен в виде смеси мелкодисперсного металлического порошка и порошкообразного связующего. Наполнитель может содержать двухвалентное железо. Наполнитель может содержать порошок алюминия. Наполнитель выполнен в виде смеси металлических порошков разных металлов. Наполнитель может быть выполнен в виде порошка пластмассы. Наполнитель может содержать армирующую структуру. Армирующая структура может быть выполнена в виде рубленых частиц стеклоткани.

Решение указанной задачи достигнуто в устройстве для формирования кумулятивного заряда, содержащем втулку для установки корпуса, рабочий пуансон для формирования заряда и досылки внутренней оболочки, тем, что оно содержит дополнительно комплект пуансонов, состоящий из не менее, чем двух вспомогательных пуансонов для формирования промежуточного корпуса.

Устройство для формирования кумулятивного заряда может быть оборудовано рабочим пуансоном для формирования кумулятивного заряда «Глубокого пробития». Формообразующая часть рабочего пуансона может быть сопряжена при вершине радиусом R1=(0,2…0,3)D0, где:

R1 - радиус сопряжения при вершине конуса,

D0 - диаметр основания кумулятивного заряда.

Устройство для формирования кумулятивного заряда может быть оборудовано рабочим пуансоном для формирования кумулятивного заряда «Большое отверстие». Формообразующая часть рабочего пуансона при вершине и основании может быть сопряжена с применением радиусов, определяемых из соотношений:

R2=(0,6…0,9)D0,

R3=(0,05…0,1)D0,.

Решение указанной задачи достигнуто в кумулятивном заряде, содержащем наружный корпус, внутри которого напрессовано между наружным корпусом и внутренней оболочкой бризантное взрывчатое вещество, тем, что между наружным корпусом и основным зарядом бризантного взрывчатого вещества запрессован промежуточный корпус, выполненный из наполнителя.

В промежуточном корпусе может быть выполнено центральное отверстие, в которое запрессован передающий заряд.

Наполнитель может быть выполнен в виде смеси мелкодисперсного металлического порошка с порошкообразным связующим.

Наполнитель может содержать порошок двухвалентного железа. Наполнитель может содержать порошок алюминия. Наполнитель может содержать смесь металлических порошков разных металлов. Наполнитель может содержать порошок пластмассы и порошкообразное связующее. Наполнитель может содержать армирующую структуру. Кумулятивный заряд может быть оборудован калибрующим пуансоном для формирования кумулятивных зарядов «Глубокого пробития». Боковые стенки внутренней оболочки при вершине могут быть сопряжены радиусом R1=(0,2…0,3)D0, где:

R1 - радиус сопряжения при вершине конуса,

D0 - диаметр основания кумулятивного заряда.

Кумулятивный заряд может быть выполнен с возможностью пробивать отверстия типа «Большое отверстие». Боковые стенки внутренней оболочки при вершине и основании могут быть сопряжены с применением радиусов, определяемых из соотношений:

R2=(0,6…0,9)D0,

R3=(0,05…0,1)D0.

Сущность группы изобретений поясняется чертежами (фиг. 1…10), где:

- на фиг. 1 приведен первый образец кумулятивного заряда,

- на фиг. 2 приведен второй образец кумулятивного заряда,

- на фиг. 3 приведена засыпка наполнителя во внешний корпус,

- на фиг. 4 приведено прессование наполнителя,

- на фиг. 5 приведен внешний корпус с наполнителем,

- на фиг. 6 приведена засыпка основного заряда,

- на фиг. 7 приведена засыпка передающего заряда,

- на фиг. 8 приведена досылка внутренней оболочки,

- на фиг. 9 приведен пуансон для формирования внутренней оболочки кумулятивного заряда типа «ГП»,

- на фиг. 10 приведен рабочий пуансон для формирования внутренней оболочки кумулятивного заряда типа «БО».

Обозначения, принятые в описании:

1. наружный корпус,

2. днище,

3. промежуточный корпус,

4. внутренняя оболочка,

5. передающий заряд,

6. основной заряд,

7. отверстие,

8. центральное отверстие,

9. фольга,

10. гильза,

11. основание,

12. отверстие,

13. пуансон-выталкиватель,

14. штифт,

15. формообразующий пуансон,

16. формообразующий пуансон,

17. рабочий участок,

18. рабочий участок,

19. наполнитель,

20. полость,

21. рабочий пуансон,

22. рабочая поверхность.

На фиг. 1 и 2 показаны два варианта кумулятивных зарядов. Способ и устройство предназначены для изготовления кумулятивных зарядов, по меньшей мере, двух типов: типа «ГП» - глубокое пробитие и «БО» - большое отверстие, имеющих одинаковые внешние габариты.

ОПИСАНИЕ КУМУЛЯТИВНЫХ ЗАРЯДОВ В СТАТИКЕ

Кумулятивные заряды (фиг. 1 и 2) представляют собой наружный корпус 1. Наружный корпус 1 выполнен в виде металлического пустотелого цилиндра с днищем 2.

Внутри наружного корпуса 1 выполнен промежуточный корпус 3 и установлена внутренняя оболочка 4. Между промежуточным корпусом 3 и внутренней оболочкой 4 засыпаны: передающий заряд 5 и основной заряд 6 бризантного взрывчатого вещества.

В состав передающего заряда 5 низкоплотного бризантного взрывчатого вещества введен сенсибилизатор от 0,5% до 2,5% масс.

Обычно в качестве сенсибилизатора используют сенсибилизатор, в частности, кварцевый песок или толченое стекло. Сенсибилизатор повышает чувствительность бризантного взрывчатого вещества к детонации. Микросферы имеют большую поверхность при малом объеме.

Доказательство оптимальности заявленного диапазона процентного состава сенсибилизатора приведено в табл. 1.

Из табл. 1 видно, что при процентном соотношении сенсибилизатора менее 0,5% и более 2,5% он неэффективен и не обеспечивает 100 процентное срабатывание детонатора.

Передающий заряд 5 засыпан в отверстие 7, выполненное вдоль оси промежуточного корпуса 3 и в центральное отверстие 8, выполненное в днище 2 вдоль оси наружного корпуса 1 (фиг. 1). Передающий заряд 5 представляет собой мелкодисперсное бризантное взрывчатое вещество с добавлением сенсибилизатора в виде 0,5%..2,5% по весу микросфер. Центральное отверстие 7 закрыто фольгой 9.

В передающий заряд 5 низкоплотного бризантного взрывчатого вещества в качестве сенсибилизатора добавлены 0,5%…2,5% по весу микросферы. Целесообразно использовать алюмосиликатные полые микросферы.

Алюмосиликатные полые микросферы - стеклокристаллические алюмосиликатные шарики, которые образуются при высокотемпературном факельном сжигании угля. Являются самыми ценными компонентами зольных отходов тепловых электростанций. Представляют собой полые, почти идеальной формы силикатные шарики с гладкой поверхностью диаметром от 10 до нескольких сотен микрометров, в среднем около 100 мкм. Стенки сплошные непористые с толщиной от 2 до 10 мкм, температура плавления 1400-1500°С, плотность 580-690 кг/м3.

Как показано на фиг. 1 и 2, кумулятивные заряды во всех случаях имеют одинаковый наружный корпус 1, а форма внутренней оболочки 4 и объем основного заряда 6 бризантного взрывчатого вещества могут изменяться.

ОПИСАНИЕ УСТРОЙСТВА В СТАТИКЕ

Устройство для формирования кумулятивного заряда (фиг. 3 и 4) содержит гильзу 10, которая выполнена в виде пустотелого цилиндра с основанием 11 на нижнем торце. На основании 11 в отверстии 12 установлен пуансон-выталкиватель 13. По центру основания 11 установлен штифт 14, предназначенный для формирования отверстия 7. Внутрь гильзы установлен наружный корпус 1.

В состав устройства входит комплект формообразующих пуансонов, который содержит как минимум два формообразующих пуансона 15 и 16, имеющих разную форму рабочих участков 17 и 18 (фиг. 3).

Внутрь наружного корпуса 1 засыпают наполнитель 19 (порошок металла) для формирования промежуточного корпуса 3. Наполнитель 19 прессуют формообразующим пуансоном 15, см. фиг. 3 (или 16 - не показано). Формообразующий пуансон 15 извлекают из полости 20 (фиг. 5). В полость 20 засыпают сначала передающий заряд 5 низкоплотного бризантного взрывчатого вещества с добавление микросфер (фиг. 7), а потом - основной заряд 6 бризантного взрывчатого вещества (фиг. 6).

Прессуют передающий заряд 5 и основной заряд 6 бризантного взрывчатого вещества рабочим пуансоном 21, имеющим рабочую поверхность 22, по размерам и форме соответствующую поверхности внутренней оболочки 4 (фиг. 8).

Таким способом изготавливают не менее двух комплектов кумулятивных зарядов.

Предпочтительно этим способом изготовить два типа кумулятивных зарядов: типа «ГП» и типа «БО».

На фиг. 9 приведен вариант рабочих поверхностей 22 рабочих пуансонов 21 для формирования кумулятивных зарядов «ГП», они соответствуют форме боковых стенок внутренних оболочек 4.

Боковые стенки внутренней оболочки 4 при вершине сопряжены радиусом R1=(0,2…0,3)D0, где:

R1 - радиус сопряжения при вершине конуса,

D0 - диаметр основания кумулятивного заряда.

На фиг. 10 приведен вариант для формирования кумулятивных зарядов «БО».

Боковые стенки внутренней оболочки 4 при вершине и основании сопряжены с применением радиусов, определяемых из соотношений:

R2=(0,6…0,9)D0,

R3=(0,05…0,1)D0,

ФОРМИРОВАНИЕ ЗАРЯДОВ

Внутрь гильзы 10 устанавливают наружный корпус 1. Наружный корпус 1 выполнен пустотелым металлическим.

В состав устройства входит комплект формообразующих пуансонов, который содержит как минимум два формообразующих пуансона 15 и 16, имеющих разную форму рабочих участков 17 и 18.

Внутрь наружного корпуса 1 засыпают наполнитель 19 для формирования промежуточного корпуса 3, который прессуют формообразующим пуансоном 15 фиг. 3 (или формообразующим пуансоном 16 на втором этапе, не показано). Формообразующий пуансон 15 извлекают из полости 20 (фиг. 5). В нижнюю часть полости 20 и отверстия 7 и 8 засыпают передающий заряд 5 бризантного взрывчатого вещества. Потом засыпают основной заряд 6 бризантного взрывчатого вещества (фиг. 6 и 7).

Потом в полость 20 устанавливают внутреннюю оболочку 4 и прессуют передающий заряд 5 и основной заряд 6 бризантного взрывчатого вещества рабочим пуансоном 21, имеющим рабочую поверхность 22, по размерам и форме соответствующую поверхности внутренней оболочки (фиг. 9 и 10).

Выталкивают заряд из гильзы 10 пуансоном-выталкивателем 13.

Таким способом изготавливают не менее двух комплектов кумулятивных зарядов.

Предпочтительно изготовить два типа кумулятивных зарядов: типа «ГП» и типа «БО».

На фиг. 9 приведен вариант для формирования кумулятивных зарядов «ГП».

На фиг. 10 приведен вариант для формирования кумулятивных зарядов «БО».

В результате изготавливают два (или более) вида кумулятивных зарядов, которые устанавливают с чередованием в перфорационную систему (перфорационная система на фиг. 1…10 не показана).

ПРИМЕНЕНИЕ КУМУЛЯТИВНЫХ ЗАРЯДОВ

Два типа кумулятивных зарядов «ГП» и «БО» с чередованием устанавливают в перфоратор, который опускают в скважину на геофизическом кабеле или НКТ (не показано). Инициирующее устройство (на показано) производит детонационный импульс, который передается к кумулятивным зарядам. Кумулятивные заряды пробивают обсадную скважину и породу отверстиями двух типов. Это повышает нефтеотдачу.

Применение группы изобретений позволило:

1. Обеспечить изготовление группы кумулятивных зарядов, имеющих одинаковые внешние габариты, но различное назначение и мощность заряда бризантного взрывчатого вещества.

2. Унифицировать внешний корпус заряда.

3. Изготавливать на одном оборудовании кумулятивные снаряды, по меньшей мере, двух типов: типа «ГП» - глубокое пробитие и «БО» - большое отверстие, имеющих при этом одинаковые внешние габариты, что важно при установке обеих типов кумулятивных зарядов в один перфоратор.

1. Способ формирования кумулятивного заряда, включающий изготовление наружного корпуса, засыпку основного заряда бризантного взрывчатого вещества и досылку внутренней оболочки рабочим пуансоном, отличающийся тем, что наружный корпус выполняют в виде металлического пустотелого цилиндра, и внутрь его перед засыпкой основного заряда бризантного взрывчатого вещества добавляют наполнитель, который прессуют вспомогательным пуансоном.

2. Способ формирования кумулятивного заряда по п. 1, отличающийся тем, что наполнитель выполнен в виде смеси мелкодисперсного металлического порошка и порошкообразного связующего.

3. Способ формирования кумулятивного заряда по п. 2, отличающийся тем, что наполнитель содержит порошок двухвалентного железа.

4. Способ формирования кумулятивного заряда по п. 2, отличающийся тем, что наполнитель содержит порошок алюминия.

5. Способ формирования кумулятивного заряда по п. 2, отличающийся тем, что наполнитель содержит смесь металлических порошков разных металлов.

6. Способ формирования кумулятивного заряда по п. 1, отличающийся тем, что наполнитель выполнен в виде порошка пластмассы с порошковым связующим.

7. Способ формирования кумулятивного заряда по п. 6, отличающийся тем, что наполнитель содержит армирующую структуру.

8. Способ формирования кумулятивного заряда по п. 7, отличающийся тем, что армирующая структура выполнена в виде рубленных частиц стеклоткани.

9. Устройство для формирования кумулятивного заряда, содержащее втулку для установки корпуса, рабочий пуансон для формирования заряда и досылки внутренней оболочки, отличающееся тем, что оно содержит дополнительно комплект пуансонов, состоящий из не менее, чем двух вспомогательных пуансонов для формирования промежуточного корпуса.

10. Устройство для формирования кумулятивных зарядов плотности по п. 9, отличающееся тем, что оно оборудовано рабочим пуансоном для формирования кумулятивных зарядов «Глубокого проникновения».

11. Устройство для формирования кумулятивного заряда по п. 9, отличающееся тем, что формообразующая часть рабочего пуансона при вершине сопряжена радиусом R1=(0,2…0,3)D0, где:

R1 - радиус сопряжения при вершине конуса,

D0 - диаметр основания кумулятивного заряда.

12. Устройство для формирования кумулятивного заряда по п. 9, отличающееся тем, что оно оборудовано рабочим пуансоном для формирования кумулятивных зарядов «Большое отверстие».

13. Устройство для формирования кумулятивного заряда по п. 12, отличающееся тем, что формообразующая часть рабочего пуансона при вершине и основании сопряжена с применением радиусов, определяемых из соотношений:

R2=(0,6…0,9)D0,

R3=(0,05…0,1)D0.

14. Кумулятивный заряд, содержащий наружный корпус, внутри которого напрессовано между наружным корпусом и внутренней оболочкой бризантное взрывчатое вещество, отличающийся тем, что между наружным корпусом и основным зарядом бризантного взрывчатого вещества запрессован промежуточный корпус, выполненный из наполнителя.

15. Кумулятивный заряд по п. 14, отличающийся тем, что в промежуточном корпусе выполнено центральное отверстие, в которое запрессован передающий заряд.

16. Кумулятивный заряд по п. 14, отличающийся тем, что наполнитель выполнен в виде смеси мелкодисперсного металлического порошка с порошкообразным связующим.

17. Кумулятивный заряд по п. 16, отличающийся тем, что наполнитель содержит порошок двухвалентного железа.

18. Кумулятивный заряд по п. 16, отличающийся тем, что наполнитель содержит порошок алюминия.

19. Кумулятивный заряд по п. 16, отличающийся тем, что наполнитель содержит смесь металлических порошков разных металлов.

20. Кумулятивный заряд по п. 14, отличающийся тем, что наполнитель содержит порошок пластмассы и порошкообразное связующее.

21. Кумулятивный заряд по п. 14, отличающийся тем, что наполнитель содержит армирующую структуру.

22. Кумулятивный заряд по п. 14, отличающийся тем, что боковые стенки внутренней оболочки выполнены с возможностью формирования кумулятивных зарядов «Глубокого проникновения».

23. Кумулятивный заряд по п. 22, отличающийся тем, что боковые стенки внутренней оболочки при вершине сопряжены радиусом R1=(0,2…0,3)D0, где:

R1 - радиус сопряжения при вершине конуса,

D0 - диаметр основания кумулятивного заряда.

24. Кумулятивный заряд по п. 14, отличающийся тем, что он выполнен с возможностью пробивать отверстия типа «Большое отверстие».

25. Кумулятивный заряд по п. 24, отличающийся тем, что боковые стенки внутренней оболочки при вершине и основании сопряжены с применением радиусов, определяемых из соотношений:

R2=(0,6…0,9)D0,

R3=(0,05…0,1)D0,

где:

R2 - радиус сопряжения при вершине конуса,

R3 - радиус сопряжения у основания,

D0 - диаметр основания кумулятивного заряда.



 

Похожие патенты:

Изобретение относится к конструкциям боевых частей боеприпасов с осесимметричными кумулятивными выемками. Кумулятивный заряд содержит профилированный корпус с размещенным в нем зарядом взрывчатого вещества с кумулятивной выемкой, металлическую облицовку кумулятивной выемки, инициирующее устройство.

Изобретение относится к средствам защиты информации. Средство экстренного уничтожения носителей информации состоит из прочного металлического корпуса, пластин из пиротехнического состава, подпружиненной пружиной кнопки-бойка, размещенной во вворачиваемой в корпус втулке, капсюля воспламенителя, кумулятивного заряда, расположенного вдоль закрытых мембранами отверстий, предназначенных для истекания кумулятивных струй внутрь камеры.

Изобретение относится к средствам инициирования зарядов промышленных взрывчатых веществ. Промежуточный детонатор содержит цилиндрический корпус, выполненный за одно с гнездом под капсюль-детонатор, имеющим на внутренней поверхности не менее одного продольного выступа для фиксации капсюля-детонатора, на одной торцевой стороне и крышку, расположенную с возможностью фиксации, на противоположной от гнезда под капсюль-детонатор открытой стороне, причем заряд взрывчатого вещества выполнен из сыпучего взрывчатого вещества и прессуется до плотности на 20-35% выше насыпной.

Снарядоформирующий заряд (СФЗ) относится к устройствам формирования поражающих элементов и может быть использован в различных боеприпасах, предназначенных для поражения целей высокоскоростными поражающими элементами (ПЭ).

Снарядоформирующий боеприпас с дистанционным взрывателем относится к боеприпасам, предназначенным для пробития бронированных целей, для чего они транспортируются посредством носителя в область цели и выбрасываются там.

Изобретение относится к области изготовления удлиненных кумулятивных зарядов (УКЗ) путем снаряжения металлических трубчатых заготовок порошкообразными бризантными взрывчатыми веществами (БВВ) с последующим профилированием снаряженных заготовок для создания кумулятивной выемки строго заданной формы и размера.

Изобретение относится к взрывным работам и может быть использовано для резки корпусных конструкций сложной конфигурации. Способ включает резку в два этапа.
Изобретение относится к бортовой и наземной пироавтоматике изделий ракетно-космической, авиационной, военно-морской и специальной техники, в частности к исполнительным устройствам систем разделения - детонирующим удлиненным зарядам, а также к областям защиты металлоконструкций и изделий от коррозии и нанесения различных покрытий на узлы и детали в машиностроении.
Изобретение относится к области производства взрывчатых веществ и может быть использовано для получения пластичных ВВ с уменьшенными критическими размерами детонации, применяющихся для изготовления малогабаритных взрывных устройств различного назначения.

Изобретение относится к обработке металлов давлением, в частности к взрывной резке, и может быть использовано для резки корпусных конструкций сложной конфигурации с толщиной стенки до 23 мм на фрагменты, удобные для транспортировки и переплавки.

Изобретение относится к зарядам взрывчатых веществ, используемым в различных отраслях промышленности, преимущественно в сейсморазведке и в других геофизических исследованиях, а также для инициирования малочувствительных скважинных и шпуровых зарядов. Технический результат – обеспечение возможности безопасного обращения с зарядами, хранения и транспортировки, сохранения работоспособности при экстремальных температурах и длительном нахождении в обводненных скважинах. Заряд для возбуждения сейсмических колебаний включает удлиненную цилиндрическую оболочку из полимерного материала, снабженную с обоих концов элементами крепления для сборки зарядов в гирлянду. Заряд ВВ помещен в оболочку с центральным гнездом со стороны верхнего торца, предназначенным для размещения капсюльных средств инициирования. Заряд ВВ скомпонован из шашек разной длины и разного типа - из баллиститного ракетного твердого топлива и бризантного взрывчатого вещества по одной или по несколько шашек, обеспечивающих формирование со стороны верхнего торца центрального гнезда. Для защиты ВВ от несанкционированного внешнего воздействия в верхний конец оболочки с внутренней резьбой ввинчена пробка, а на нижний конец меньшего диаметра с наружной резьбой – крышка. При этом переход с большего диаметра на меньший выполнен изнутри оболочки в виде конфузора. В качестве бризантного ВВ использован флегматизированный гексоген, флегматизированный октоген, или тетрил, или их смеси с низкобризантными ВВ – тротилом или динитронафталином. Дополнительно могут быть использованы церезин, или стеарин, или парафин, или графит, или их композиция. 7 з.п. ф-лы, 1 табл., 4 ил.

Изобретение относится к области взрывной техники, а именно к конструированию взрывных зарядов на основе бризантных взрывчатых веществ. Комбинированный взрывной заряд из бризантного взрывчатого вещества выполнен с центральным осевым каналом, который заполнен композицией на основе неорганических окислителя и горючего, и содержит систему инициирования, включающую генераторы плоской ударной волны, расположенные на торцевых поверхностях заряда, и быстродействующие детонаторы, В качестве бризантного взрывчатого вещества используется вещество, для которого критическое значение ударно-волнового начального импульса составляет не менее 5 ГПа, а в качестве горючего в композиции используются нанопорошок алюминия или гидрид алюминия. Повышается безопасность, снижается уязвимость боеприпаса при сохранении эффективности взрыва по воздушной ударной волне (фугасности) на уровне современных мощных взрывчатых составов. 1 табл., 2 пр., 2 ил.

Изобретение относится к ручным гранатам. Новым является то, что граната имеет вид цилиндра с отношением диаметра к высоте не менее 1,5, содержит цилиндрический, или бочкообразный, или катушкообразный осколкообразующий элемент (далее «цилиндр») или несколько коаксиально расположенных таких элементов, внутри которого/которых имеется заряд взрывчатого вещества, занимающий весь внутренний объем цилиндра или расположенный на середине его высоты, причем взрыватель расположен на цилиндрической стороне гранаты. Заряд ВВ в виде диска может быть расположен свободно внутри цилиндра, в этом случае при падении гранаты на землю он занимает нижнее положение, обеспечивая лучшее распределение осколков. 3 н. и 9 з.п. ф-лы, 2 ил.
Изобретение относится к способу изготовления облицовки кумулятивного заряда из меди, конструктивно имеющей хвостовую часть длиной до 150 мм, и применяемого в БЧ противотанковых ракет. Способ включает в себя следующие переходы: холодная штамповка заготовки круга диаметром 45 мм, длиной примерно 100 мм для получения хвостовой части с промежуточной термообработкой в соляной ванне; сферодвижная штамповка с промежуточной термообработкой в соляной ванне; прогрессивная раскатка на конусной оправке с приложением усилия в сторону, противоположную направлению вращения ракеты в полете; термообработка в соляной ванне; формовка в полиуретановую матрицу; механическая обработка в размер. Изобретение позволяет повысить эффективность действия облицовки в составе кумулятивного заряда за счет получения однородного зерна размером №6-7 шкалы III ГОСТ 21073.1-75 и снизить влияние собственного вращения кумулятивного заряда путем создания остаточных касательных напряжений и анизотропии свойств материала облицовки. 5 з.п. ф-лы.

Изобретение относится к области вооружений, а именно к ракетам. Изобретение может быть использовано при оценке и анализе эффективности существующих и перспективных ракетных комплексов, подготовке предложений по их совершенствованию. Техническим результатом изобретения является обеспечение приемлемых оперативных и точностных характеристик способа оценки реализуемости боевой задачи группировки ракетных комплексов с любым типом боевого оснащения. Технический результат изобретения достигнут созданием аналитической модели динамики изменения состава боевого ресурса группировки на всех этапах её боевого применения, дополнением модели изменения боевого ресурса группировки этапом разведения боевого оснащения, учетом боевого ресурса группировки на каждом этапе её боевого применения в тех составных частях ракетных комплексов (пусковые установки, ракеты, ступени разведения, боевое оснащение), на которые непосредственно оказывается воздействие средств противника и при отказах которых образуются потери боевого оснащения группировки.
Наверх