Малогабаритный инфракрасный твердотельный лазер

Изобретение относится к лазерной технике. Малогабаритный инфракрасный твердотельный лазер содержит лазер накачки и кристалл Fe2+:ZnSe - пассивный модулятор добротности, При этом на грани кристалла Fe2+:ZnSe, параллельные оптической оси лазера накачки, нанесены полупрозрачное и отражающее диэлектрические покрытия. Технический результат заключается в обеспечении возможности реализации малогабаритного лазерного излучателя ИК-диапазона со сниженным количеством оптических элементов. 1 ил.

 

Изобретение относится к области лазерной физики и может быть использовано при разработке источников лазерного излучения среднего инфракрасного (ИК) диапазона (3,95...5,05 мкм).

В рамках работы [1] реализована генерация мощного малогабаритного Er:YLF-лазера с диодной накачкой в режиме модуляции добротности пассивным затвором на кристалле Fe2+:ZnSe. В качестве источника накачки использовалась матрица лазерных диодов Активный элемент лазера (Er:YLF, концентрация активатора 15 ат.%) имел форму цилиндра с размерами 02x35 мм. На один из торцов активного элемента было нанесено диэлектрическое покрытие, выполняющее роль глухого зеркала для излучения генерации и просветляющего покрытия для излучения накачки. На второй торец было нанесено просветляющее покрытие.

Ввод излучения накачки в активный элемент осуществлялся по продольно-поперечной схеме, реализованной с помощью системы призм полного внутреннего отражения. Резонатор лазера был образован плоским глухим зеркалом, напыленным на торце активного элемента, и внешним сферическим выходным зеркалом (радиус кривизны 1,2 м, коэффициент отражения 0,85 или 0,95). В экспериментах использовались два Fe2+:ZnSe-затвора с различным начальным пропусканием.

В устройстве [2] излучение лазера на основе кристалла YAG: Er3+ с длиной волны генерации 2,94 мкм, работавшего в режиме активной модуляции добротности, фокусировалось цилиндрической линзой (в линию длиной около 10 мм и шириной ~100 мкм) на поверхность кристалла ZnSe, содержавшую обогащенный ионами Fe2+ слой, длительность импульса накачки составляла ~100 нс. Излучение суперлюминесценции регистрировалось в направлении вдоль линии фокусировки накачки в области кристалла, непосредственно прилегающей к его поверхности. Грани, через которые излучение выходило из кристалла, скалывались. Ось пучка излучения являлась продолжением линии накачки с учетом преломления на грани кристалла. Поэтому резонатор, обеспечивающий обратную связь для излучения, отсутствовал.

В работе [3] приведена схема установки по исследованию Fe:ZnSe-лазера (концентрация ионов Fe2+ составляла 2,5×1018 см-3) при накачке излучением Er:YAG-лазера, работающего в режиме свободной генерации. Активный элемент представлял собой параллелепипед с поперечными размерами 9,7×10,1 мм и длиной (длина усиления) 7,7 мм, торцы которого полировались и не просветлялись. Чтобы уменьшить сброс инверсии усиленным спонтанным шумом, распространяющимся в поперечном к оптической оси резонатора направлении, боковые поверхности кристалла были заматированы и покрыты (зачернены) аквадагом. Резонатор лазера Fe:ZnSe образован «глухим» сферическим зеркалом с радиусом кривизны 1000 мм и плоски полупрозрачным зеркалом. Коэффициент пропускания выходного зеркала на длине волны генерации составлял 72%, длина резонатора - 350 мм. Пучок излучения Er:YAG-лазера, сфокусированный в пятно диаметром 6 мм (95% энергии), падал на кристалл Fe:ZnSe под углом 3° к оптической оси резонатора.

Наиболее близким к предполагаемому изобретению является устройство, описанное в [4, 5], где указано, что впервые достигнута генерация на кристалле Fe2+:ZnSe при комнатной температуре при накачке короткими (50 нс) импульсами лазера Er:YAG (2,94 мкм), запущенного в режиме модулированной добротности с помощью также кристалла Fe2+:ZnSe, но с меньшей концентрацией Fe [4].

В устройстве [5] активный элемент для Fe2+:ZnSe-лазера был изготовлен из монокристалла Fe2+:ZnSe, выращенного из паровой фазы методом свободного роста на монокристаллическую затравку. Легирование ионами Fe2+ до концентрации ~1×1018 см-3 проводилось непосредственно в процессе роста. Активный элемент лазера накачки имел длину 10 мм в поперечный размер 17×10 мм. Резонатор был образован задним сферическим зеркалом (радиус кривизны 50 см) и плоским выходным зеркалом с интерференционными покрытиями, нанесенными на подложку из CaF2. Кристалл Fe2+:ZnSe был установлен вблизи выходного зеркала под углом Брюстера к оптической оси резонатора. Накачка Fe2+:ZnSe-лазера осуществлялась излучением Er:YAG-лазера с длиной волны излучения 2,94 мкм в режиме пассивной модуляции добротности резонатора. Пассивным затвором в Er:YAG-лазере служила плоскопараллельная пластинка из монокристалла Fe2+:ZnSe.

Общим недостатком устройств [1-5] является использование двух кристаллов Fe2+:ZnSe для получения лазерного излучения среднего ИК-диапазона. Один кристалл используется в качестве пассивного модулятора добротности резонатора лазера накачки для увеличения мощности импульса накачки. Второй - для непосредственного получения генерации лазерного излучения в среднем ИК-диапазоне. Причем в устройстве [3] специально предпринимают меры для срыва генерации в кристалле Fe2+:ZnSe в направлении, поперечном к оптической оси резонатора лазера накачки.

Наиболее близким по технической сущности к предлагаемому изобретению является инфракрасный твердотельный лазер [6], в котором один кристалл Fe2+:ZnSe используется одновременно как пассивный модулятор добротности и как активный элемент. Для этого кристалл Fe2+:ZnSe имеет форму параллелепипеда и располагается внутри резонатора лазера накачки. Причем на грани кристалла, перпендикулярные оптической оси лазера накачки, наносится просветляющее диэлектрическое покрытие с максимумом пропускания на длине волны лазера накачки. На грани кристалла, параллельные оптической оси лазера накачки, наносится просветляющее диэлектрическое покрытие с максимумом пропускания на требуемой длине волны среднего ИК-диапазона (3,95…5,05 мкм). Резонатор лазера накачки представляет собой заднее сферическое и переднее плоскопараллельное зеркала с интерференционными покрытиями, нанесенными на подложку из CaF2 либо какой-либо другой оптический материал, прозрачный в ИК области спектра. Покрытия обоих зеркал имеют максимум отражения на длине волны лазера накачки, образуя «глухой» полуконфокальный резонатор. Резонатор и активная среда, выполненная из кристалла Er:YAG, представляют собой лазер накачки.

Для вывода излучения среднего ИК-диапазона устанавливают резонатор, параллельно граням кристалла Fe2+:ZnSe с нанесенным просветляющим диэлектрическим покрытием с максимумом пропускания на требуемой длине волны среднего ИК-диапазона (3,95…5,05 мкм). Недостатком устройства [6] является наличие дополнительного резонатора, который требует дополнительной трудоемкой юстировки, а также увеличивает количество оптических элементов устройства, в целом снижая его надежность.

Задачей предлагаемого изобретения является получение малогабаритного лазерного излучателя ИК-диапазона со сниженным количеством дорогостоящих оптических элементов. Для этого на грани кристалла Fe2+:ZnSe (пассивный модулятор добротности - лазерная активная среда), параллельные оптической оси лазера накачки, наносят полупрозрачное и отражающее оптические покрытия (диэлектрические или металлические интерференционные покрытия) для длины волны среднего ИК-диапазона (3,95…5,05 мкм).

Устройство работает следующим образом. Кристалл Fe2+:ZnSe имеет форму параллелепипеда и располагается внутри резонатора лазера накачки. Резонатор лазера накачки представляет собой заднее сферическое и переднее плоскопараллельное зеркала с интерференционными покрытиями, нанесенными на подложку из CaF2 либо какой-либо другой оптический материал, прозрачный в ИК области спектра. Покрытия обоих зеркал имеют максимум отражения на длине волны лазера накачки, образуя «глухой» полуконфокальный резонатор. Резонатор и активная среда, выполненная из кристалла Er:YAG, представляют собой лазер накачки. Наличие полупрозрачного и отражающего оптических покрытий обеспечивает наличие обратной положительной связи в кристалле Fe2+:ZnSe, формируя таким образом лазерное излучение среднего ИК-диапазона.

На фиг. 1 представлена схема предлагаемого изобретения, где цифрами обозначены: 1 - активная среда - кристалл Er:YAG; 2 - излучение накачки; 3 - полуконфокальный «глухой» резонатор для длины волны 2,94 мкм; 4 - кристалл Fe2+:ZnSe (пассивный модулятор добротности - лазерная активная среда); 5 - полупрозрачное оптическое покрытие для длины волны среднего ИК-диапазона (3,95…5,05 мкм); 6 - отражающее оптическое покрытие для длины волны среднего ИК-диапазона (3,95…5,05 мкм); 7 - грани кристалла Fe2+:ZnSe, просветленные для длины волны 2,94 мкм; 8 - излучение лазера накачки (2,94 мкм); 9 - лазерное излучение среднего ИК-дипазона.

Литература

1. Иночкин М.В., Назаров В.В., Сачков Д.Ю., Хлопонин Л.В., Храмов В.Ю., Коростелин Ю.В., Ландман А.И., Подмарьков Ю.П., Фролов М.П. Малогабаритный Er:YLF-лазер с пассивным Fe2+:ZnSe-затвором. "Оптический журнал", 79, 6, 2012, с. 31-35.

2. Ильичев Н.Н., Данилов В.П., Калинушкин В.П., Студеникин М.И., Шапкин П.В., Насибов А.С. Суперлюминесцентный ИК излучатель на кристалле ZnSe:Fe, работающий при комнатной температуре. Квантовая электроника. 2008, том 38, №2, с. 95-96.

3. Великанов С.Д., Зарецкий Н.А., Зотов Е.А., Козловский В.И., Коростелин Ю.В., Крохин О.Н., Манешкин А.А., Подмарьков Ю.П., Савинова С.А., Скасырский Я.К., Фролов М.П., Чуваткин Р.С., Юткин И.М. Исследование работы Fe:ZnSe-лазера в импульсном и импульсно-периодическом режимах. Квантовая электроника. 45, №1 (2015), с. 1-7.

4. Ландман А.И. Парофазный рост монокристаллов соединений AIIBVI, легированных переходными металлами, для лазеров среднего ИК диапазона. Диссертации на соискание ученой степени кандидата физико-математических наук. М.: Физический институт им. П.Н. Лебедева РАН. 2008 г., 118 с.

5. Акимов В.А., Воронов А.А., Козловский В.И., Коростелин Ю.В., Ландман А.И., Подмарьков Ю.П., Фролов М.П. Эффективная лазерная генерация кристалла Fe2+:ZnSe при комнатной температуре. Квантовая электроника. 36, №4 (2006).

6. RU №2593819, 2016 г.

Малогабаритный инфракрасный твердотельный лазер, содержащий лазер накачки, кристалл Fe2+:ZnSe - пассивный модулятор добротности, отличающийся тем, что на грани кристалла Fe2+:ZnSe, параллельные оптической оси лазера накачки, наносят полупрозрачное и отражающее диэлектрические покрытия.



 

Похожие патенты:

Изобретение относится к средствам обеспечения циркуляции активной среды жидкостных лазеров и может быть использовано преимущественно в непрерывных струйных лазерах на красителях.

Твердотельное лазерное устройство с оптической накачкой содержит активный элемент (302) в резонаторе (221, 302). Несколько лазерных диодов накачки (100) выполнены с возможностью отражения излучения накачки от одной поверхности зеркала резонатора.

Изобретение относится к лазерной технике. Инфракрасный твердотельный лазер содержит лазер накачки, кристалл Fe2+:ZnSe - пассивный модулятор добротности и дополнительный резонатор.

Высокомощный сверхъяркий малошумящий источник накачки содержит затравочный источник, который генерирует малошумящий световой сигнал, множество высокомощных полупроводниковых лазерных диодов, объединенных для испускания излучения вспомогательной накачки, и легированный Yb мультимодовый волоконный преобразователь длин волн излучения вспомогательной накачки.

Изобретение относится к лазерной технике. Дисковый лазер состоит из оптического резонатора с первой оптической осью, активной пластины, имеющей первую поверхность и вторую поверхность, размещенной внутри оптического резонатора и закрепленной на хладопроводящей подложке своей первой поверхностью, лазера накачки, системы фокусировки излучения лазера накачки и многопроходной оптической системы накачки.

Изобретение относится к способу управления импульсным режимом генерации лазерного излучения в лазерной установке на основе твердотельного лазера на кристалле Nd:YAG с диодной накачкой активной среды.

Изобретение относится к оптоэлектронике. Способ генерации электромагнитного излучения в терагерцовом диапазоне заключается во взаимодействии направленного возбуждающего излучения с активной средой образца и получении вторичного электромагнитного излучения.

Изобретение относится к лазерной технике. Твердотельный лазер дисковидной формы включает в себя матрицу (1) полупроводниковых лазеров накачки, резонатор с кристаллом (6) дисковидной формы и выходной линзой (8), ударно-струйную систему (10) охлаждения лазерного кристалла (6) и коллиматор (2) пучка накачки.

Изобретение относится к лазерной технике и может быть использовано при создании коротковолновых источников когерентного излучения Твердотельный ап-конверсионный лазер включает ап-конверсионную лазерную среду, помещенную в оптический резонатор, и устройство накачки, включающее два полупроводниковых источника излучения на длинах волн λ1 и λ2 и волоконный модуль, расположенный таким образом, что оптические выходы обоих источников излучения накачки сопряжены с волоконным модулем, а фокусирующая система выполнена ахроматической на длинах волн λ1 и λ2 и расположена таким образом, что выход волоконного модуля сопряжен через нее с ап-конверсионной лазерной средой.

Изобретение относится к физике лазеров, в частности к оптическим генераторам ультракоротких световых импульсов, и может быть использовано для создания лазерных источников стабильных импульсов света фемто-аттосекундного диапазона длительности.

Изобретение относится к области оптического приборостроения и может найти применение для изготовления резонаторных зеркал для импульсных твердотельных лазеров. Способ включает расчет количества и толщин слоев пленкообразующих материалов по программе «OptiLayer» для длины волны 1,351 мкм, введение рассчитанных данных и длины волны 1,351 мкм в фотометрическое устройство AOS 3S вакуумной установки, подготовку стеклянной подложки, обезгаживание пленкообразующих материалов, нанесение на одну сторону подложки зеркального покрытия для длины волны 1,351 мкм в виде чередующихся неравнотолщинных слоев диоксида циркония и диоксида кремния и защитного слоя из диоксида кремния путем электронно-лучевого испарения в вакуумной установке с контролем толщины каждого слоя по изменению коэффициента пропускания на длине волны 1,067 мкм.

Изобретение относится к многолучевому источнику лазерного излучения и устройству для лазерной обработки материалов. Многолучевой источник состоит из задающего генератора и многоканального усилителя.

Изобретение относится к области приборостроения и касается лазерного гироскопа с компенсацией составляющей, вносимой виброподставкой. Лазерный гироскоп (ЛГ) содержит кольцевой лазер (КЛ), устройство виброподставки, блок обработки сигналов КЛ, выход которого подключен к блоку компенсации, датчик параметров относительных крутильных колебаний КЛ в виде оптико-электронной системы определения положения КЛ.

Изобретение относится к измерительной технике, в частности к области преобразования параметров вращения в электрический сигнал с помощью гироскопов, в которых чувствительным элементом служит кольцевой лазер, и может быть использовано, например, в системах навигации.

Составной резонатор эксимерного лазера содержит разрядную камеру, выходной модуль, модуль сужения спектральной линии излучения и модуль усиления излучения. Разрядная камера лазера содержит рабочий газ для генерации излучения под действием источника возбуждения.

Изобретение относится к лазерной технике. Лазер с модуляцией добротности и синхронизацией мод содержит в первом плече оптического резонатора последовательно расположенные первое концевое зеркало, акустооптический модулятор, активный элемент и первое вспомогательное зеркало, а в другом плече вторые вспомогательное и концевое зеркала, между которыми устанавливается нелинейный элемент.

Изобретение относится к области лазерной техники и предназначено для обеспечения устойчивой генерации лазерных импульсов фемто-пикосекундного диапазона. Реализована схема с кольцевым волоконным лазером с пассивной синхронизацией мод на эффекте нелинейной эволюции поляризации, содержащая поляризующий оптический изолятор, активное волокно, накачиваемое лазерным диодом, два управляемых микроконтроллером оптических волоконных поляризационных контроллера.

Устройство для частотного преобразования лазерного излучения на основе вынужденного комбинационного рассеяния включает в себя оптически связанные и размещенные на одной оптической оси источник накачки с активным элементом.

Изобретение относится к области лазерной техники и касается устройства юстировки оправы оптического элемента. Устройство содержит закрепленный на кронштейне корпус, в отверстии которого установлен оптический элемент, фиксирующие элементы, фиксатор юстировки и пружину.

Изобретение относится к лазерной технике. Инфракрасный твердотельный лазер содержит лазер накачки, кристалл Fe2+:ZnSe - пассивный модулятор добротности и дополнительный резонатор.

Изобретение относится к лазерной технике. Волоконный лазер для генерации высокоэнергетических световых импульсов содержит источник накачки, ответвитель ввода излучения накачки, волоконный кольцевой резонатор длиной ~10 м, включающий в себя активное волокно, устройство нелинейных потерь и ответвитель вывода генерируемого излучения из кольцевого резонатора. В лазер введены дополнительный ответвитель вывода генерируемого излучения из волоконного кольцевого резонатора, пассивное волокно, дополнительный ответвитель ввода излучения в волоконный кольцевой резонатор. Источник накачки соединен с одним из концов ответвителя ввода излучения накачки, другой конец которого соединен с волоконным кольцевым резонатором. Пассивное волокно одним из своих концов соединено с дополнительным ответвителем вывода излучения из волоконного кольцевого резонатора, а другим своим концом соединено с дополнительным ответвителем ввода излучения в волоконный кольцевой резонатор. При этом длина пассивного волокна определяется по формуле: L=T⋅υ, где Т - временной интервал между соседними пичками, υ - скорость распространения света в волокне. Технический результат заключается в обеспечении возможности получения стабильных и воспроизводимых высокоэнергетических импульсов света. 1 ил.
Наверх