Моностатический оптический приемопередатчик



Моностатический оптический приемопередатчик
Моностатический оптический приемопередатчик
Моностатический оптический приемопередатчик
Моностатический оптический приемопередатчик
H04B10/00 - Передающие системы, использующие потоки корпускулярного излучения или электромагнитные волны, кроме радиоволн, например световые, инфракрасные (оптические соединения, смешивание или разделение световых сигналов G02B; световоды G02B 6/00; коммутация, модуляция и демодуляция светового излучения G02B,G02F; приборы или устройства для управления световым излучением, например для модуляции, G02F 1/00; приборы или устройства для демодуляции, переноса модуляции или изменения частоты светового излучения G02F 2/00; оптические мультиплексные системы H04J 14/00)

Владельцы патента RU 2638095:

Закрытое акционерное общество "Мостком" (RU)

Изобретение относится к оптическому приборостроению. Моностатический оптический приемопередатчик содержит передающее оптическое волокно, соединенное с передатчиком, приемное оптическое волокно, соединенное с приемником, объединенные через волоконно-оптический дуплексер, торец выходного волокна которого размещен вблизи фокальной плоскости моностатической оптической системы. Передающее оптическое волокно выполнено в виде световода с одной оболочкой, имеющего числовую апертуру NA1, диаметр сердцевины D1 и показатель преломления сердцевины n1. Приемное и выходное оптическое волокно выполнено в виде единого световода с одной оболочкой, имеющего числовую апертуру NA2, диаметр сердцевины D2 и показатель преломления сердцевины n2, с условием, что NA1/n1<NA2/n2 и D1<D2. Дуплексер выполнен в виде углового оптического соединения передающего и приемного волокна, причем торец выходного волокна дуплексера шлифован под углом (90°-β) к геометрической оси волокна. Технический результат заключается в обеспечении возможности увеличения уровня изоляции встречных каналов, уменьшения потерь принимаемого излучения и использования обычных, многомодовых и одномодовых оптических волокон с одной оболочкой. 3 з.п. ф-лы, 2 ил.

 

Изобретение относится к оптическому приборостроению и может быть использовано в фотоэлектрических устройствах по преобразованию оптической информации в электрический сигнал и обратно, в частности в системах беспроводной оптической связи, оптических локаторах и других устройствах.

Во многих оптических приборах для реализации их функций по назначению в состав системы должны входить источник и приемник оптического излучения. К таким приборам относятся, например, системы оптической связи, лазерные дальномеры, лидары и т.п. С целью уменьшения габаритов и улучшения стабильности оптических осей такие устройства стараются делать моностатическими. Это означает, что по крайней мере по части оптической системы встречные пучки излучения передачи и приема распространяются по одному и тому же оптическому пути. При этом возникают эффекты влияния излучения передатчика на собственный приемник, а также дополнительные потери света на устройствах, обеспечивающих совмещение встречных пучков, - оптических дуплексерах. Особенно остро эти вопросы стоят в системах оптической связи, где передатчик и приемник должны работать одновременно для получения полнодуплексного режима работы оборудования. Настоящее изобретение направлено на решение вопросов по улучшению разделения каналов передачи и приема в моностатической оптической системе и снижению потерь в оптическом тракте.

Из уровня техники известно приемопередающее устройство оптической атмосферной линии связи, выполненное в виде внешнего и внутреннего блоков и содержащее интерфейс, источник оптического излучения, приемник оптического излучения, фокусирующую систему, оптический волоконный объединитель каналов и волоконный световод, один конец которого закреплен на внешнем блоке, так что торец его расположен в фокусе фокусирующей системы, а другой конец волоконного световода через оптический волоконный объединитель каналов оптически соединен с источником оптического излучения и приемником оптического излучения, причем внешний блок выполнен во всепогодном исполнении и в нем расположена фокусирующая система (см. патент РФ №2239285, с приоритетом от 31.10.2001, МПК 7 Н04В 10/10, опубликованный 27.10.2004 г. "Приемопередающее устройство оптической атмосферной линии связи"). Волоконный объединитель каналов в устройстве выполнен в виде оптического спектрального мультиплексора/демультиплексора. Очевидно, что в качестве волоконного объединителя могут использоваться и другие известные решения: оптические циркуляторы на основе эффекта Фарадея, различные виды волоконных разветвителей, широко применяемых в волоконно-оптических сетях (см. Листвин В.Н., Трещиков В.Н. «DWDM системы»: Научное издание. - М.: Издательский дом «Наука», 2013. - С. 143-144).

Недостатком известного приемо-передающего устройства является низкий коэффициент разделения каналов приема и передачи. Для волоконно-оптических мультиплексоров коэффициент разделения каналов составляет 15 дБ для соседних полос и 30-35 дБ - для не смежных каналов. Использование для решения задачи волоконных разветвителей вносит большие потери в оптический тракт (для разветвителя 1×2 потери превышают 7 дБ). К недостаткам устройства при применении циркулятора можно отнести возможность работы только с одинаковыми волокнами и небольшой уровень изоляции (обратного отражения), который не превышает 36-38 дБ, а также ограниченный диапазон длин волн для одного устройства.

Из уровня техники также известен приемопередатчик для оптического устройства связи, который выполнен в виде внешнего и внутреннего блоков, которые соединены между собой волоконным световодом (патент РФ №2311738, с приоритетом от 13.03.2006 г., МПК Н04В 10/10, опубликованный 27.11.2007 г. "Приемопередатчик для оптического устройства связи"). Внешний блок приемопередатчика выполнен во всепогодном исполнении и содержит фокусирующую систему, а внутренний блок выполнен для комнатных условий, и в нем установлены расположенные на одной подложке вплотную друг к другу излучатели, представляющие собой лазерные диоды или светодиоды, которые образуют источник оптического излучения, и фотоэлементы, которые образуют приемник оптического излучения. Излучатели и фотоэлементы, расположенные на одной подложке вплотную друг к другу, представляют собой матрицу, состыкованную с торцом волоконного световода и соразмерную его торцу. Матрица, состоящая из множественных излучателей и фотоэлементов, принимает и преобразует оптический сигнал, что позволяет исключить волоконно-оптические объединители-разветвители.

Недостатком данного устройства является низкий уровень разделения каналов приема-передачи и высокий уровень потерь световой энергии. При излучении света излучателями часть его будет отражаться как от ближнего, так и от дальнего торца световода и попадать на фотоприемники, расположенные вплотную к излучателям. Потери света увеличиваются вследствие того, что площадь, занимаемая фотоприемниками, составляет значительно меньше 50% площади сердцевины световода, по которому распространяется свет, как из-за присутствия излучателей, расположенных на той же площадке, так и из-за наличия обязательных защитных барьеров между приемниками и излучателями.

Наиболее близким по технической сущности к предлагаемому решению является устройство компактного моностатического приемопередатчика (патент США US20120154783 А1 от 9 ноября 2010, МПК G02B 6/32, «СОМРАСТ MONOSTATIC OPTICAL RECEIVER AND TRANSMITTER»), которое и выбрано в качестве прототипа.

Компактный моностатический приемопередатчик состоит из передающего волокна, соединенного с передатчиком, приемного волокна, соединенного с приемником, объединенных через волоконно-оптический дуплексер, торец выходного волокна которого находится в фокусе оптической моностатической системы. Дуплексер выполнен на основе волокна с двойной оболочкой (ВДО), при этом излучение передатчика распространяется через сердцевину ВДО, а принимаемое излучение сосредоточено во внутренней оболочке ВДО. Разделение каналов осуществляется за счет того, что ВДО сплавлено с многомодовым волокном так, чтобы обеспечить оптический контакт для перехода принимаемого излучения с внутренней оболочки волокна с двойной оболочкой в многомодовое волокно, которое является приемным и состыковано с приемником оптического излучения.

К недостаткам данного устройства можно отнести сложность конструкции волокна с двумя оболочками, небольшой уровень изоляции между приемником и передатчиком (обратного отражения), потери для входного излучения (на серийных образцах эта величина достигает 3 дБ).

Техническим результатом изобретения является расширение функциональных возможностей устройства моностатического оптического приемопередатчика, а именно увеличение уровня изоляции, уменьшение потерь принимаемого излучения и возможность использования обычных, многомодовых и одномодовых оптических волокон с одной оболочкой.

Технический результат достигается тем, что моностатический оптический приемопередатчик, содержащий передающее оптическое волокно, соединенное с передатчиком, приемное оптическое волокно, соединенное с приемником, объединенные через волоконно-оптический дуплексер, торец выходного волокна которого размещен вблизи фокальной плоскости моностатической оптической системы, отличается тем, что:

передающее оптическое волокно выполнено в виде световода с одной оболочкой, имеющего числовую апертуру NA1, диаметр сердцевины D1 и показатель преломления сердцевины n1,

приемное и выходное оптическое волокно выполнено в виде единого световода с одной оболочкой, имеющего числовую апертуру NA2, диаметр сердцевины D2 и показатель преломления сердцевины n2,

дуплексер выполнен в виде углового оптического соединения передающего и приемного волокна так, чтобы выполнялось соотношение

,

где α - угол между геометрическими осями приемного и передающего волокна, отсчитываемый от конца волокна, соединенного с фотоприемником,

торец выходного волокна дуплексера шлифован под углом (90°-β) к геометрической оси выходного волокна при условии, что угол β лежит в диапазоне

,

а также при условии, что NA2/n2>NA1/n1 и D2>D1.

Угловое оптическое соединение передающего и приемного волокон выполняется путем сплавного изготовления X-разветвителя из двух волокон, причем оставшийся свободный конец волокна, соединенного с передатчиком, обрабатывается под углом β, или выполняется в виде шаровой поверхности с радиусом, значительно большим, чем диаметр сердцевины, или наматывается на катушку с радиусом изгиба, меньшим критического.

Работа предлагаемого устройства поясняется Фиг. 1, где изображено устройство моностатического оптического приемопередатчика. Цифрами на чертеже обозначено:

1 - фотоприемник;

2 - оптическое волокно, присоединенное к фотоприемнику;

3 - источник излучения;

4 - оптическое волокно, присоединенное к источнику излучения;

5 - дуплексер;

6 - выходное оптическое волокно;

7 - приемопередающая моностатическая оптическая система;

8 - передаваемое излучение;

9 - принимаемое излучение.

Устройство моностатического оптического приемопередатчика содержит: фотоприемник 1, присоединенный к оптическому волокну 2; источник излучения 3, соединенный с оптическим волокном 4; дуплексер 5, соединенный оптическими волокнами 2 и 4 с фотоприемником 1 и источником излучения 3 соответственно, а торец выходного волокна 6 дуплексера 5 размещен в фокусе моностатической оптической системы 7.

Дуплексер 5 обеспечивает разделение передаваемого 8 и принимаемого 9 излучений за счет сварного соединения приемного волокна 2, имеющего диаметр сердцевины D2, числовую апертуру NA2 и показатель преломления сердцевины n2, и оптического волокна 4, соединенного с передатчиком и имеющего диаметр сердцевины D1, числовую апертуру NA1 и показатель преломления сердцевины n1, при этом NA2/n2>NA1/n1 и D2>D1. Оптическое волокно 4 оптически соединено с боковой поверхностью оптического волокна 2 под углом α, отсчитываемым со стороны конца оптического волокна 2, соединенного с фотоприемником 1, таким образом, чтобы выполнялось условие

.

Торец выходного конца 6 дуплексера 5, оптически соединенный с приемопередающей моностатической оптической системой 7, шлифован под углом (90-β) к оси выходного волокна при условии, что

.

Технических решений, совпадающих с совокупностью существенных признаков заявляемого изобретения, не выявлено, что позволяет сделать вывод о соответствии заявляемого изобретения условию патентоспособности "новизна".

Заявляемые существенные признаки, предопределяющие получение указанного технического результата, явным образом не следуют из уровня техники, что позволяет сделать вывод о соответствии заявляемого изобретения такому условию патентоспособности, как "изобретательский уровень".

Моностатический оптический приемопередатчик работает следующим образом.

Лазерное излучение от лазера или после оптического усилителя, создаваемое источником излучения 3, направляется в оптическое волокно 4 (например, кварцевое одномодовое с NA1=0.12, D1=8 мкм, n1=1.485). Затем излучение по этому волокну входит в дуплексер 5, который образован сваркой волокна 4 и оптического волокна 2 (например, кварцевого многомодового с NA2=0.27, D2=62.5 мкм, n2=1.485) под углом α.

В соответствии с законами оптики внутри оптического волокна могут распространяться моды оптического излучения только с углами, обеспечивающими полное внутреннее отражение. Данное излучение, выходящее из волокна, характеризуется числовой апертурой NA, которая равна NA=Sin(γ), где γ - половинный угол расходимости излучения, вышедшего из оптического волокна в воздух. Соответственно числовая апертура излучения внутри волокна равна , где n - показатель преломления сердцевины оптического волокна. Поэтому при вводе излучения из одного волокна в другое угол ввода входящего излучения должен создать условия, при которых угловые параметры вводимого излучения обеспечили бы полное внутреннее отражение при распространении данного излучения в другом волокне. Вывод условий для такого согласования показан на Фиг. 2. На Фиг. 2 введены обозначения:

1 - оптическая ось вводимого излучения;

2 - оптическая ось многомодового оптического волокна;

3 - многомодовое волокно;

α - угол между оптической осью вводимого излучения и оптической осью многомодового волокна;

θ1 - угол расходимости вводимого излучения, соответствующий числовой апертуре оптического волокна 4;

θ2 - угол расходимости излучения, соответствующий числовой апертуре многомодового оптического волокна 2.

Углы θ1 и θ2 связаны соотношениями с числовыми апертурами оптических волокон следующими выражениями:

Поскольку должно выполняться условие полного внутреннего отражения, то из Фиг. 2 следует, что угол между оптической осью вводимого излучения и оптической осью многомодового волокна должен соответствовать условию, чтобы конус оптического вводимого излучения находился внутри конуса допустимых углов распространения излучения в многомодовом волокне. Исходя из Фиг. 2 это сводится к условию

α<θ2-θ1 или .

Например, для указанных выше параметров волокна 4 и волокна 2 это условие выполняется при Sin(α)<0,101 или α<5,8°. Если угол α не будет выполнять это условие, то часть вводимого излучения выйдет из многомодового волокна, и это приведет к потерям на излучение. Следует также отметить, что еще одним дополнительным условием работы дуплексера является соотношение NA2/n2>NA1/n1. Это связано с тем, что при уменьшении разницы величин NA2/n2-NA1/n1 угол α стремится к нулю. Для одинаковых оптических волокон (например, в оптоволоконных разветвителях) при равенстве указанных величин возникает оптическая передача из одного волокна в другое с использованием оптического «туннельного» перехода оптического излучения, которое зависит от длины волны излучения и длины оптического контакта. Это обеспечивает работу разветвителя для целей разделения исходного излучения по разным каналам, но приводит к большим потерям как на ввод, так и на прием излучения (суммарно более 7 дБ) в случае его использования в качестве дуплексера, который по своей сути является оптическим циркулятором.

После ввода оптического излучения через дуплексер 5 в многомодовое волокно 2 это излучение без потерь, но с измененным пространственным распределением достигнет торца выходного волокна 6, оба волокна на практике составляют единое целое. Для исключения обратного отражения излучения 8 от торца оптического волокна 6 торец шлифован под углом 90°-β к оси оптического волокна 6. Данный угол должен соответствовать условию, чтобы излучение 8 распространяющееся внутри волокна с максимально допустимым углом, соответствующим числовой апертуре NA2/n2, при отражении от полированного торца на двойной угол β не лежало внутри конуса с углом, соответствующим числовой апертуре NA2/n2. Данное требование выполняется при условии, что

.

С другой стороны, угол β не должен превышать угла полного внутреннего отражения для всех мод в многомодовом волокне, что выполняется при условии

.

Таким образом, на угол β накладывается условие

.

Так, например, для многомодового волокна 6 с указанными ранее параметрами 0,492>Sin(β)>0,183 или 29,4°>β>10,5°.

При исключении отраженного излучения остается еще рассеянный свет. Для оптически полированных поверхностей доля рассеянного света составляет 0,1-0,01% от мощности падающего на поверхность излучения. Если принять, что излучение рассеивается во все стороны, то только та доля рассеянного излучения, которая попадает в телесный угол, соответствующий числовой апертуре NA2/n2, возвращается назад. Таким образом, доля Р излучения 8 Р0, которая может вернуться назад, определяется выражением

,

или коэффициент изоляции I в децибелах

,

где K - коэффициент рассеяния. Для приведенных ранее параметров многомодового волокна расчетный коэффициент изоляции должен составлять минус 51-61 дБ.

Затем выходное излучение 8 выходит через торец волокна 6 в пространство и поступает в оптически сопряженную моностатическую оптическую систему. Оптическая система может быть линзовой, зеркальной или зеркально-линзовой. Данная система формирует требуемый в зависимости от применения пучок излучения 8 необходимой расходимости и направляет его в открытое пространство. В случае лидара это излучение отражается от цели и возвращается назад, а в случае систем беспроводной оптической связи на вход моностатической оптической системы поступает излучение от удаленного терминала.

Принимаемое излучение 9 (фиг. 1) фокусируется на торце волокна и попадает в сердцевину волокна 6, где оно канализируется в пределах его числовой апертуры. По условиям работы оптических приборов пространственное, амплитудное и фазовое распределение параметров света на приеме никогда не соответствует аналогичным параметрам при его излучении. Поэтому при распространении принимаемого излучения через дуплексер 5 в нем создается совершенно другое модовое состояние излучения. При прохождении этого нового состава пространственного распределения излучения через сечение ввода излучения передатчика, часть излучения может перетекать в волокно 4, приводя к потерям излучения. Эти потери пропорциональны площади контакта волокон 2 и 4, которая зависит от угла сварки волокон α, от отношения квадрата числовых апертур этих волокон, а также от модового состава излучения, возбуждаемого в волокне принимаемым сигналам. Проведенные оценки для указанных выше параметров волокон показывают, что потери от перетекания излучения в волокно 4 могут составлять от 0,6 до 25% в зависимости от угла сварки. Практическое измерение потерь при возбуждении волокна принимаемым сигналом с углом сходимости, соответствующим 0,8*NA2, показало величину потерь в пределах 10%.

Условие патентоспособности "промышленная применимость" подтверждено на примере конкретного осуществления заявляемого приемопередатчика для оптического беспроводного устройства связи.

При практической реализации заявляемого решения дуплексор каналов изготавливался на основе сплавного (сварного) X-разветвителя. Для его изготовления были использованы стандартные кварцевые волокна для телекоммуникаций: одномодовые 9/125, соответствующие стандартам G.652C и IEC 60793-2-50 Туре В 1.3, и многомодовые 62,5/125 по стандарту IEC 60793-2-10 Type A 1.b. Технология сплавления волокон позволяла получить их оптическое соединение с углом α в пределах 1,5-3 градуса. Для исключения обратного отражения от свободного 4-го конца одномодового волокна его торец обрабатывался под сферу с радиусом 2 мм путем нанесения капли компаунда с близким к 1,485 значением коэффициента преломления. Выходное волокно дуплексера полировалось в плоскость с оптическим качеством под углом β=13 градусов. В качестве моностатической оптической системы для приемопередатчика использовался трехлинзовый объектив дифракционного качества с фокусным расстоянием 200 мм. В качестве передатчика использовался лазер с длиной волны 1550 нм, а в качестве приемника - PIN фотодиод.

Измерение параметров моностатического оптического приемопередатчика продемонстрировало следующие результаты: потери излучения на передачу - до 10%, потери излучения на прием - до 15%, изоляция каналов составила 62÷64 дБ.

Таким образом, суммарные потери в приемопередатчике (передача плюс прием) составляют не более 1 дБ, а измеренная величина изоляции каналов оказалась даже лучше расчетной величины. Это можно объяснить тем, что рассеяние на полированном торце волокна имеет не всенаправленный характер, как это было принято в расчетной модели, а более вытянутую вперед индикатрису, что соответствует закону рассеяния Ми.

1. Моностатический оптический приемопередатчик, содержащий: передающее оптическое волокно, соединенное с передатчиком, приемное оптическое волокно, соединенное с приемником, объединенные через волоконно-оптический дуплексер, торец выходного волокна которого размещен вблизи фокальной плоскости моностатической оптической системы, отличающийся тем, что:

передающее оптическое волокно выполнено в виде световода с одной оболочкой, имеющего числовую апертуру NA1, диаметр сердцевины D1 и показатель преломления сердцевины n1,

приемное и выходное оптические волокна выполнены в виде световода с одной оболочкой, имеющего числовую апертуру NA2, диаметр сердцевины D2 и показатель преломления сердцевины n2,

дуплексер выполнен в виде углового оптического соединения передающего и приемного волокна так, чтобы выполнялось соотношение

где α - угол между геометрическими осями приемного и передающего волокна, отсчитываемый от конца волокна, соединенного с приемником,

торец выходного волокна дуплексера шлифован под углом (90°-β) к геометрической оси волокна при условии, что угол β лежит в диапазоне

а также при условии, что NA2/n2>NA1/n1 и D2>D1.

2. Моностатический приемопередатчик по п. 1, отличающийся тем, что угловое оптическое соединение передающего и приемного волокон выполняется путем сварного изготовления X-разветвителя, причем оставшийся свободный конец волокна, соединенного с передатчиком, обрабатывается под углом β.

3. Моностатический приемопередатчик по п. 1, отличающийся тем, что угловое оптическое соединение передающего и приемного волокон выполняется путем сварного изготовления X-разветвителя, причем оставшийся свободный конец волокна, соединенного с передатчиком, выполняется в виде шаровой поверхности с радиусом, значительно большим, чем диаметр сердцевины.

4. Моностатический приемопередатчик по п. 1, отличающийся тем, что угловое оптическое соединение передающего и приемного волокон выполняется путем сварного изготовления X-разветвителя, причем оставшийся свободный конец волокна, соединенного с передатчиком, наматывается на катушку с радиусом изгиба, меньшим критического.



 

Похожие патенты:

Автоматизированный корабельный комплекс светосигнальной связи содержит прибор оптической связи направленного действия, прибор оптической связи всенаправленного действия, блок электропитания, автоматизированное рабочее место оператора (АРМ), общекорабельную систему стабилизации качки корабля, автоматизированную систему управления кораблем, соединенные определенным образом.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в повышении качества связи.

Изобретение относится к лазерной технике, касается переговорного устройства, которое может быть использовано в бортовых приемно-передающих терминалах лазерных систем передачи и приема закодированной информации между экипажами самолетов, вертолетов, надводных кораблей и подводных лодок, в режиме «радиомолчания».

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в повышении качества связи путем повышения точности мониторинга питания.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в повышении надежности связи.

Устройство передачи аналогового электрического сигнала по ВОЛС содержит N≥1 каналов. Каждый канал состоит из лазерного модуля, входного волокна, выходного волокна, электрооптического модулятора интенсивности по схеме интерферометра Маха-Цандера, источника питания для модулятора, приемника оптического излучения и оцифровщика.

Изобретение относится к области аудио- и радиотехники, в частности к защите информации от ее утечки по техническим каналам, и может преимущественно использоваться для контроля защищенности акустической речевой информации, циркулирующей в помещении, от утечки из помещения наружу сквозь оконную конструкцию (ОК).

Изобретение относится к технике связи и может использоваться в системах передачи информации через свободное пространство. Технический результат состоит в повышении эффективности способа и устройства за счет учета спектральных характеристик оптической среды и стабильности разделения потоков при взаимном перемещении объектов связи.

Изобретение относится к оптическим способам определения взаимного положения объектов и замкнутым телевизионным системам, в которых сигнал не используется для широкого вещания.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в повышении достоверности приема в системе связи.

Изобретение относится к интегральной оптике и используется в оптических линиях связи. .

Изобретение относится к области интегральной и волоконной оптики и может быть использовано при конструировании волоконно-оптических гироскопов и других волоконных датчиков физических величин.

Изобретение относится к оптическим световодам типа оптической интегральной схемы и может использоваться в световодных системах связи и обработки информации. .

Изобретение относится к оптическим волноводам, в частности к оптическим интегральным схемам, и может быть использовано в световодных системах связи. .

Изобретение относится к оптическим волноводам, а именно к оптическим интегральным схемах, и может быть использовано в световодных системах связи. .

Изобретение относится к оптическим интегральным схемам со сложным волноводным трактом и может быть ис;пользовано в оптических системах обработки , распределения и передачи информации.

Компонент спектрального разделения имеет две стороны – плоскую переднюю сторону, содержащую дихроичное покрытие, и заднюю сторону. Задняя сторона является выпуклой и формирует цилиндрическую поверхность, задаваемую образующей фиксированного направления, перемещающейся перпендикулярно по дуге круга, содержащей два конца.
Наверх