Способ моделирования процессов тепло- и массообмена с окружающей средой элемента конструкции летательного аппарата и устройство для его реализации

Изобретение относится к ракетно-космической технике. Способ моделирования процесса тепло- и массообмена элемента конструкции летательного аппарата (ЭКЛА) с окружающей средой в условиях снижения абсолютного давления основан на введении в экспериментальную модельную установку (ЭМУ) потока газа, обеспечении условий взаимодействия потока газа в зоне контакта с ЭКЛА, измерении температуры, давления, скорости. К ЭКЛА подают дополнительное количество теплоты путем сжигания пиротехнической смеси, закрепленной на ЭКЛА. Параметры потока газа, давление и состав газа в ЭМУ выбирают в соответствии с параметрами атмосферы на текущей высоте при движении ЭКЛА. Дополнительное количество теплоты подают путем нагрева ЭКЛА тепловым эквивалентом пиротехнической смеси, например электронагревателем. В зону нагрева ЭКЛА дополнительно подают энергию в виде акустического, лазерного воздействия, параметры которых определяют из условия повышения эффективности нагрева ЭКЛА. Устройство для реализации способа включает в свой состав экспериментальный стенд, в виде замкнутого объема для создания пониженного абсолютного давления, ЭМУ, содержащую систему фиксации ЭКЛА, датчики температуры, давления, входной и выходной патрубки, газоанализатор для определения процентного содержания газов на входе и выходе. В состав ЭМУ дополнительно введены пиротехническая смесь с системой зажигания, скоростная видеокамера, система подготовки потока газа, система поворота ЭКЛА с закрепленным источником подвода теплоты относительно направления потока газа, акустический, лазерный излучатели, электрический нагреватель. Изобретение позволяет расширить границы моделирования процесса тепло- и массообмена элемента конструкции ЭКЛА с окружающей средой в условиях снижения абсолютного давления. 2 н. и 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к ракетно-космической технике и может быть использовано при проведении физического моделирования процессов тепло- и массообмена при нагреве элемента конструкции летательного аппарата (ЭКЛА) на основе подачи теплоты с использованием различных механизмов ее передачи, например, конвективный теплообмен с использованием теплоносителя (ТН) в виде горячих газов, кондуктивный теплообмен, например, с помощью пиротехнических составов (ПС), электрических нагревателей, лучевой теплообмен, например, лазерное или акустическое воздействие и т.д. с осуществлением условий, реализующихся при движении ЭКЛА на атмосферном участке траектории (давление, набегающий аэродинамический поток, состав атмосферы).

Известен способ моделирования процесса тепло- и массообмена, с окружающей средой, например, при газификации топлива и устройство, его реализующее, которые описаны на стр. 163-174 в кн. 1 «Снижение техногенного воздействия ракетных средств выведения на жидких токсичных компонентах ракетного топлива на окружающую среду» (Монография) под ред. В.И. Трушлякова, Омск: Изд-во ОмГТУ, 2004. 220 с. Однако этот способ преимущественно ориентирован на работу с высококипящими и токсичными компонентами топлива типа несимметричный диметилгидразин, азотная кислота, азотный тетраксид.

Наиболее близким по технической сущности к предлагаемому решению является Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива в условиях пониженного давления и устройство для его реализации по патенту РФ МПК F02K 9/96 №2493414, основанный на введении в экспериментальную модельную установку (ЭМУ) ТН, обеспечении условий взаимодействия в зоне контакта ТН с поверхностью жидкого компонента ракетного топлива, проведении измерений температуры, давления в различных точках ЭМУ, перед подачей ТН осуществляют понижение давления в ЭМУ до 0,01 МПа через дренажный электропневмоклапан (ДЭПК), а в качестве газа наддува используют гелий с параметрами избыточного давления до 0,3 МПа со сбросом до 0,01 МПа абсолютного, в качестве ТН используют азот, массовый секундный расход которого равен производительности вакуумного насоса, а процентное содержание газифицированных продуктов определяют исключением из показаний газоанализатора состава ТН и газа наддува.

К недостаткам способа по прототипу относятся трудности его адаптации при проведении исследований различных процессов тепло- и массообмена ЭКЛА с окружающей средой при пониженном давлении, т.к. по прототипу рассматривается только конвективный механизм тепло- и массообмена (воздействие потока горячего газа в виде ТН) при наличии модельной жидкости, располагаемой на элементе поверхности ЭМУ.

Техническим результатом предлагаемого технического решения является расширение границы применимости известного способа для исследования различных механизмов процесса тепло- и массообмена ЭКЛА с окружающей средой при его движении в различных диапазонах высот и скоростей.

Указанный технический результат достигается тем, что в известном способе по моделированию процесса тепло- и массообмена с окружающей средой, основанном на введении в ЭМУ потока газа, обеспечения условий взаимодействия потока газа в зоне контакта с ЭКЛА, измерению температуры, давления, скорости, вводят следующие действия:

а) подают дополнительное количество теплоты путем сжигания ПС, закрепленной на ЭКЛА, а параметры потока газа (скорость, состав газов, температуру, направление обдува ЭКЛА), давление и состав газа в экспериментальной модельной установке выбирают в соответствии с параметрами атмосферы на текущей высоте при движении ЭКЛА;

б) обеспечивают начальную температуру ЭКЛА, соответствующую фактической температуре ЭКЛА на исследуемой высоте (до 300°С), например, электронагревателем;

в) в зону нагрева ЭКЛА дополнительно подают энергию в виде акустического и лазерного воздействий, параметры которых (амплитуду, частоту) определяют из условия повышения эффективности нагрева ЭКЛА.

Устройство для реализации способа, включающее в свой состав экспериментальную установку в виде замкнутого объема для создания пониженного абсолютного давления, ЭМУ, содержащую систему фиксации ЭКЛА, датчики температуры, давления, входной и выходной патрубки, газоанализатор для определения процентного содержания газов на входе и выходе, дополнительно введены:

а) электрический подогреватель ЭКЛА;

б) система поворота ЭКЛА, относительно потока газа, с закрепленной ПС и системой зажигания;

в) система подготовки потока газа;

г) акустический и лазерный излучатели;

д) скоростная видеокамера.

Реализация предлагаемого решения.

Параметры газового потока, соответствующего исследуемой высоте (химический состав, плотность, температура, скорость натекания, направление), обеспечиваются соответствующей системой подготовки газового потока.

Электрический подогреватель имитирует начальный нагрев (или уменьшение температуры) ЭКЛА, который он получает при движении в окружающей среде на текущей высоте, на которой исследуются параметры системы ЭКЛА + ПС + воздействие атмосферы. Например, начальная температура на старте соответствует температуре окружающей среде, в процессе активного участка траектории выведения различные ЭКЛА могут нагреваться до 300°С и выше, после отделения от ракеты-носителя, в зависимости от параметров движения в атмосфере эта температура, например, для створок головного обтекателя снижается из-за их «порхающего» характера полета.

Подача дополнительной энергии в виде оптического (лазерного) или акустического/ультразвукового (в различной форме, например, путем использования газоструйного воздействия или непосредственного ультразвукового воздействия на ЭКЛА), а также их совместного воздействия приводит к изменению коэффициентов теплопроводности, скорости горения и т.д., что и является одним из предметов исследования.

Сущность предлагаемого способа и устройства для его реализации поясняется чертежом, где на фиг. 1 изображена пневматическая схема ЭМУ для моделирования процесса тепло- и массообмена ЭКЛА с окружающей средой.

1. ЭМУ 1 с находящейся на подложке ЭКЛА 2, фиксированной на системе поворота 3 относительно потока газа, имеющей электрический подогреватель 4 с закрепленной ПС 5 и системой зажигания, соединена через гермоввод 6 с системой подготовки потока газа 7, акустическим излучателем 8, сопловым подводом газа 9 и лазерным излучателем 10. Температуру нагрева ЭКЛА 2 контролируют датчиком 11.

2. Система подготовки потока газа 7 подготавливает газовый поток с заданными физико-химическими характеристиками. Газы из газовых баллонов 12-14 (12 - газовый баллон с газообразным азотом, 13 - газовый баллон с газообразным кислородом, 14 - газовый баллон с газообразным аргоном) подаются в коллектор 15 для смешивания в соответствующей концентрации для каждой высоты, путем открытия вентилей 16-18 и электропневмоклапанов 19-21. Давление и массовый расход газов, поступающих из баллонов 12-14, задаются редукторами 22-24 и клапанами 25-27. Полученный газовый поток нагревают теплоэлектронагревателем 28 до заданной температуры и подают через гермоввод 6 в ЭМУ 1.

3. Газовый поток воздействует на ЭКЛА 2 и ПС 5, при этом фиксируются параметры датчиком 11 и регистрируются скоростной видеокамерой 29. Газ из ЭМУ 1 утилизируется через предохранительный клапан 30 и газоанализатор 31. Параметры газа в ЭМУ 1 контролируются датчиками давления и температуры 32.

4. С помощью вакуумного насоса 33 создают давление Рвк в вакуумной камере 34 в диапазоне (1,0-0,01) атм, контролируемое датчиками 35. Величина исходного давления Рвк варьируется в соответствии с программой экспериментов.

Эффект предлагаемого способа и устройства для его осуществления заключается в возможности проведения физического моделирования процессов тепло- и массообмена при нагреве ЭКЛА, движущегося на атмосферном участке траектории, на основе подачи теплоты с использованием различных механизмов ее передачи: конвективный теплообмен с использованием ТН в виде горячих газов, кондуктивный теплообмен с использованием ПС, лучевой теплообмен с использованием лазерного или акустического/ультразвукового, а также их совместного воздействия.

1. Способ моделирования процессов тепло- и массообмена элемента конструкции летательного аппарата (ЭКЛА) с окружающей средой, основанного на введении в экспериментальную модельную установку потока газа, обеспечении условий взаимодействия потока газа в зоне контакта с ЭКЛА, измерении температуры, давления, скорости, отличающийся тем, что подают дополнительное количество теплоты путем сжигания пиротехнической смеси, закрепленной на ЭКЛА, а параметры потока газа, давление и состав газа в экспериментальной модельной установке выбирают в соответствии с параметрами атмосферы на текущей высоте при движении ЭКЛА, обеспечение начальной температуры ЭКЛА, соответствующей фактической температуре ЭКЛА на исследуемой высоте, осуществляют электронагревателем, в зону нагрева ЭКЛА дополнительно подают энергию в виде акустического воздействия, параметры которого определяют из условия повышения эффективности нагрева ЭКЛА.

2. Способ по п. 1, отличающейся тем, что в зону нагрева ЭКЛА дополнительно подают энергию в виде лазерного воздействия, параметры которого определяют из условия повышения эффективности нагрева ЭКЛА.

3. Способ по п. 1, отличающейся тем, что в зону нагрева ЭКЛА дополнительно подают энергию в виде акустического и лазерного воздействий, параметры которых определяют из условия повышения эффективности нагрева ЭКЛА.

4. Устройство для реализации способа по п. 1, включающее в свой состав экспериментальную установку в виде замкнутого объема для создания пониженного абсолютного давления, ЭМУ, содержащую систему фиксации ЭКЛА, датчики температуры, давления, входной и выходной патрубки, газоанализатор для определения процентного содержания газов на входе и выходе отличающееся тем, что в состав введены электрический подогреватель ЭКЛА, система поворота ЭКЛА, относительно потока газа, с закрепленной пиротехнической смесью и системой зажигания, система подготовки потока газа, акустический и лазерный излучатели, скоростная видеокамера.



 

Похожие патенты:

Изобретение относится к области энергомашиностроения и предназначено для осуществления испытаний энергоустановок с последующим проведением контроля параметров и состава продуктов сгорания.

Изобретение относится к измерительной технике: устройству приборов, предназначенных для определения скорости горения твердых топлив, используемых в аккумуляторах давления нефтеносных скважин, ствольных системах различного назначения, работающих при высоких давлениях.

При экспериментальном определении поправки к суммарному импульсу тяги двигателя при стендовых огневых испытаниях, включающих регистрацию диаграммы тяги датчиком силы, определяют силу сопротивления перемещению подвижных опор стенда с закрепленным на них двигателем путем приложения силовых нагрузок.

Изобретение относится к области ракетной техники, а именно к стендовому оборудованию, применяемому при огневых стендовых испытаниях ракетных двигателей на твердом топливе, и предназначено для гашения РДТТ при наземной отработке, в том числе высотных РДТТ.

Изобретение относится к ракетной технике, а именно к стендовому оборудованию, применяемому при огневых стендовых испытаниях ракетных двигателей твердого топлива с имитацией высотных условий.

Изобретение относится к радиотехническому испытательному оборудованию, предназначенному для проведения стендовых испытаний ракетных двигателей космических аппаратов, в частности для измерения электромагнитного излучения.

Изобретение относится к машиностроению и может быть использовано при испытании жидкостных ракетных двигателей (ЖРД) и других энергетических установок. Стенд для испытаний энергетических установок содержит систему подачи компонентов топлива с агрегатами управления и систему подачи технологического газа, при этом на выходе энергетической установки установлен трубопровод, связанный с газгольдером, газгольдер соединен с компрессором, который в свою очередь соединен с системой баллонов высокого давления, газгольдер установлен на подвижной платформе, полость наддува газом расходной емкости с компонентом топлива соединена со входом компрессора, а выход компрессора соединен со входом газа в систему баллонов высокого давления.

Изобретение относится к ракетной технике, а именно к ракетным двигателям твердого топлива, и, в частности, может найти применение при испытаниях скрепленных с корпусом крупногабаритных зарядов в ракетных системах различного назначения, преимущественно эксплуатирующихся на подвижных носителях автомобильного или железнодорожного типа.

Изобретение относится к ракетной технике, а именно к способам определения характеристик новых композиций твердого ракетного топлива, в частности для прямоточных воздушно-реактивных двигателей.

Изобретение относится к области машиностроения, в частности к ракетной технике, и может быть использовано при отработке корпусов ракетных двигателей твердого топлива.

Изобретение относится к ракетно-космической технике. Способ моделирования процесса газификации жидкого компонента ракетного топлива в баке ступени ракеты-носителя, основанный на подводе в экспериментальную модельную установку (ЭМУ) теплоты, проведении измерений температуры, давления в различных точках ЭМУ, сбросе парогазовой смеси (ПГС) через дренажную магистраль (ДМ), при этом осуществляют подвод газа наддува и кондуктивный подвод теплоты в ЭМУ, количество которых определяют из условия равенства парциальных давлений газа наддува и паров жидкости в ЭМУ и топливном баке, а суммарное давление соответствует началу сброса ПГС в ДМ, диаметр ДМ определяют из условия сброса заданного избытка давления за такое же время, как и в реальном баке, при этом давление срабатывания дренажного клапана выбирают предварительно из заданного интервала, нижняя граница которого - минимальное давление наддува в баке, а верхняя - максимальное давление, при котором сохраняется прочность конструкции ЭМУ, осуществляют определение области параметров процесса газификации, при которых появляется конденсат на внутренней поверхности ДМ и кристаллизация, осуществляют дополнительный подвод тепла к ДМ для предотвращения ее замерзания. Рассмотрено устройство для реализации способа, включающее в свой состав ЭМУ в виде модельного бака, содержащего поддон для жидкости, датчики температуры, давления, входной патрубок, ДМ, дренажный клапан, газоанализатор, при этом дополнительно в ЭМУ введены нагревательные элементы для жидкости и ДМ, в ДМ установлена аппаратура регистрации конденсата и его кристаллизации, а ЭМУ и ДМ выполнены из материала, аналогичного материалу исследуемого топливного бака ракеты-носителя. Изобретение обеспечивает выявление условий появления конденсата в дренажной магистрали с последующей кристаллизацией при заправке ракеты-носителя криогенными компонентами топлива или стоянки в заправленном состоянии на старте при тепловом нагружении топливного бака от окружающей среды. 2 н.п. ф-лы, 1 ил.

Изобретение относится к ракетной технике, а именно к стендовому оборудованию, применяемому при огневых стендовых испытаниях ракетных двигателей с имитацией высотных условий. Стенд для высотных испытаний ракетных двигателей содержит барокамеру и выхлопной диффузор с выходной секцией, включающей две торцевые, внешнюю и внутреннюю стенки, образующие кольцевое пространство рубашечной системы охлаждения. По периметру задней торцевой стенки выходной секции выхлопного диффузора равномерно расположены отверстия или форсунки, обеспечивающие выход рабочей жидкости из рубашечной системы охлаждения за срез выхлопного диффузора. Изобретение позволяет повысить эффективность охлаждения стенок выходной секции диффузора за счет формирования равномерного течения рабочей жидкости вдоль горячей стенки рубашечной системы охлаждения, а также позволяет обеспечить орошение струи продуктов сгорания ракетного двигателя за срезом выхлопного диффузора. 2 з.п. ф-лы, 5 ил.

Изобретение относится к области ракетной техники, а именно к стендовому оборудованию, применяемому при огневых стендовых испытаниях ракетных двигателей твердого топлива (РДТТ), и предназначено для гашения РДТТ при наземной отработке, в том числе удлиненных РДТТ сложной конфигурации корпуса. Установка для гашения ракетного двигателя твердого топлива при испытаниях содержит полую штангу с форсункой, связанную с системой подачи охлаждающей жидкости телескопически сочлененными между собой полыми поршнями с коллекторами, форсунками и выполненными у днищ поршней радиальными каналами. На полом поршне, расположенном в выдвинутом положении за соплом ракетного двигателя твердого топлива, соосно закреплена крыльчатка, а сочленение этого полого поршня со смежным полым поршнем, расположенным ближе к системе подачи охлаждающей жидкости, выполнено с зазором с возможностью вращения под действием возникающего на крыльчатке осевого момента вращения при ее обтекании паром охлаждающей жидкости в процессе гашения. Изобретение позволяет обеспечить эффективное гашение РДТТ и получение достоверной информации о состоянии материальной части, в том числе удлиненных РДТТ сложной конфигурации корпуса. 5 ил.
Наверх