Способ определения отклонения продольной оси наноспутника класса cubesat от местной вертикали и устройство для его осуществления (варианты)

Группа изобретений относится к управлению ориентацией космических аппаратов, преимущественно пико- и наноспутников (класса CubeSat). Способ осуществляется устройством, включающим в себя оптическую систему с фотоприемниками каналов тангажа и рысканья, а также средство определения отклонения продольной оси наноспутника от местной вертикали. Это отклонение устанавливается по анализу изображений линии горизонта планеты (Земли) группой фотоприемников, размещенных на боковых гранях корпуса наноспутника. Техническим результатом является создание легкого малогабаритного построителя местной вертикали с низким энергопотреблением и точностью, сравнимой с инфракрасными построителями местной вертикали. 3 н.п. ф-лы, 3 ил.

 

Изобретение относится к области навигации и управления ориентацией космического аппарата (КА).

Во время орбитального полета КА при совершении различных маневров требуется знание положения осей связанной системы координат (СК) в пространстве, в частности, при съемке подстилающей поверхности критически важным является направление оси визирования (ОВ), которая, как правило, должна совпадать с местной вертикалью (MB).

В качестве аналогов способа определения направления на местную вертикаль и устройства для его осуществления можно привести способы и устройства, использующие знание или построение MB, описанные в ряде патентов.

Известен способ, описанный в патенте РФ №2400406 (МПК B64G 1/24, опубл. 27.09.2010 г.), включающий анализ сигналов с фотоприемников. При этом определение направления на MB производится с использование ориентиров на подстилающей поверхности посредством сравнения их относительной скорости движения.

Недостатком данного способа является невозможность определения направления на местную вертикаль в условиях отсутствия наземных ориентиров, например при пролете над открытым океаном.

Наиболее близким к предлагаемому устройству является система построения местной вертикали космического объекта при орбитальной ориентации, описанная в патенте РФ №2021173 (МПК B64G 1/24, опубл. 15.10.1994 г.), включающая оптическую систему с фотоприемниками каналов тангажа и крена, а также устройство определения направления на местную вертикаль

Недостатком данного устройства является невозможность определения направления на местную вертикаль в условиях засветки при попадании солнца в поле зрения фотоприемника, а также невозможность ориентации продольной оси аппарата по местной вертикали небесных тел, имеющих низкое инфракрасное излучение.

В основу изобретения поставлена задача создания легкого, малогабаритного построителя местной вертикали с низким энергопотреблением для наноспутника.

Технический результат достигается тем, что в способе определения отклонения продольной оси наноспутника класса CubeSat от местной вертикали, основанном на анализе сигналов с фотоприемников и определении направления на местную вертикаль, производится анализ выделенных на изображениях границ горизонта Земли, используя четыре фотоприемника, ортогонально расположенных по отношению к боковым граням наноспутника.

Технический результат также достигается тем, что в устройстве определения отклонения продольной оси наноспутника класса CubeSat от местной вертикали, включающем оптическую систему с фотоприемниками каналов тангажа и рысканья, а также устройство определения отклонения от местной вертикали, одновременно используются четыре фотоприемника, расположенных на боковых гранях наноспутника класса CubeSat с возможностью исключения одновременной засветки всех фотоприемников, при этом оси визирования фотоприемников принадлежат одной плоскости, ортогональной продольной оси наноспутника.

Также технический результат может быть достигнут тем, что в устройстве определения отклонения продольной оси наноспутника класса CubeSat от местной вертикали, включающем оптическую систему с фотоприемниками каналов тангажа и рысканья, а также устройство определения отклонения от местной вертикали, одновременно используются четыре фотоприемника, расположенных на боковых гранях наноспутника класса CubeSat с возможностью исключения одновременной засветки всех фотоприемников, при этом оси визирования фотоприемников не принадлежат одной плоскости.

Изобретение иллюстрируется следующими чертежами:

на фиг. 1 представлена схема построения местной вертикали;

на фиг. 2 представлен первый вариант устройства;

на фиг. 3 представлен второй вариант устройства.

При этом параметры фотоприемной матрицы, объектива и угол установки выбираются исходя из параметров орбиты и требований по точности определения отклонения продольной оси от местной вертикали.

Для определения отклонения продольной оси наноспутника класса CubeSat от местной вертикали из изображения на фотоприемной ПЗС матрице выделяется линия горизонта Земли. Выделение линии горизонта Земли на изображении производится путем применения детектора границ Канни. После выделения линии горизонта Земли на полученном изображении определяется радиус кривизны и центр дуги, являющейся линией горизонта Земли. Крайние точки дуги являются точками начала и конца вектора. Данный вектор V1 является перпендикуляром к плоскости, проходящей через центр Земли и центр масс наноспутника класса CubeSat. Аналогичные вычисления производятся и на втором изображении (вычисляется вектор V2). Векторное произведение двух векторов V1 и V2 дает вектор направления на центр Земля в связанной с наноспутником системе координат.

Устройство определения отклонения продольной оси наноспутника класса CubeSat от местной вертикали по анализу изображений Земли может быть реализовано в двух вариантах.

Первый вариант представляет собой устройство, состоящее из фотоприемников канала тангажа 1, фотоприемников канала рысканья 2 и бортового вычислительного устройства. Фотоприемники расположены таким образом, что их оси визирования 3 перпендикулярны между собой и лежат в одной плоскости, ортогональной продольной оси наноспутника 4.

Второй вариант представляет собой устройство, состоящее из фотоприемников канала тангажа 1, фотоприемников канала рысканья 2 и бортового вычислительного устройства. Фотоприемники расположены таким образом, что их оси визирования 3 не перпендикулярны между собой и не лежат в одной плоскости. Оси визирования фотоприемников устанавливаются таким образом, что составляют определенный угол α с продольной осью наноспутника 4.

Предлагаемый способ и устройства определения отклонения продольной оси наноспутника класса CubeSat от местной вертикали по анализу изображений группы специально размещенных фотоприемников, по сравнению с известными техническими решениями, расширяют функционально-эксплуатационные возможности наноспутников класса CubeSat в области систем управления движением, а также предоставляют возможность попутного наблюдения за Земной поверхностью.

1. Способ определения отклонения продольной оси наноспутника класса CubeSat от местной вертикали, основанный на анализе сигналов с фотоприемников и определении направления на местную вертикаль, отличающийся тем, что производят анализ выделенных на изображениях границ горизонта Земли, используя четыре фотоприемника, ортогонально расположенных по отношению к боковым граням наноспутника.

2. Устройство определения отклонения продольной оси наноспутника класса CubeSat от местной вертикали, включающее оптическую систему с фотоприемниками каналов тангажа и рысканья, а также устройство определения отклонения от местной вертикали, отличающееся тем, что в устройстве одновременно используются четыре фотоприемника, расположенных на боковых гранях наноспутника класса CubeSat с возможностью исключения одновременной засветки всех фотоприемников, при этом оси визирования фотоприемников принадлежат одной плоскости, ортогональной продольной оси наноспутника.

3. Устройство определения отклонения продольной оси наноспутника класса CubeSat от местной вертикали, включающее оптическую систему с фотоприемниками каналов тангажа и рысканья, а также устройство определения отклонения от местной вертикали, отличающееся тем, что в устройстве одновременно используются четыре фотоприемника, расположенных на боковых гранях наноспутника класса CubeSat с возможностью исключения одновременной засветки всех фотоприемников, при этом оси визирования фотоприемников не принадлежат одной плоскости.



 

Похожие патенты:

Группа изобретений относится к управлению ориентацией космических (КА) и авиационных летательных аппаратов (ЛА) с помощью чувствительных элементов. Устройство содержит размещённые на основании датчики (Д) ориентации (гироскопические или звёздные) аппарата относительно инерциальной системы координат.

Группа изобретений относится к управлению ориентацией космических (КА) и авиационных летательных аппаратов (ЛА) с помощью чувствительных элементов. Устройство содержит размещённые на основании датчики (Д) ориентации КА относительно астрономических объектов.

Группа изобретений относится к управлению ориентацией космических (КА) и авиационных летательных аппаратов (ЛА) с помощью чувствительных элементов. Устройство содержит размещённые на основании датчики (Д) ориентации относительно инерциальной системы координат и относительно астрономических объектов.

Группа изобретений относится к управлению ориентацией космических (КА) и авиационных летательных аппаратов (ЛА) с помощью чувствительных элементов. Устройство содержит размещённые на основании датчики (Д) ориентации (гироскопические или звёздные) аппарата относительно инерциальной системы координат.

Изобретение относится к управлению угловым движением космического аппарата (КА) с силовыми гироскопами (СГ) и солнечными батареями (СБ), установленными на взаимно противоположных сторонах КА.

Способ формирования управляющих воздействий на космический аппарат включает в себя определение силы, действующей на рабочую поверхность от давления поглощённого и отражённого света.

Группа изобретений относится к космической технике. В способе контроля нештатных ситуаций на пилотируемом КА определяют параметры относительного положения излучателей инфракрасных импульсных сигналов, размещенных на подвижных частях космонавтов, осуществляют измерение параметров, определяют значения координат местоположений излучателей инфракрасных импульсных сигналов в системе координат КА, определяют параметры текущего положения космонавтов, перемещаемых элементов относительно КА, осуществляют определение необходимых для выполнения операций на КА в случае выявления нештатной ситуации с учетом значений параметров текущего и прогнозируемого положения космонавтов.

Группа изобретений относится к космической технике. В способе определения положения объекта преимущественно относительно КА определяют параметры относительного положения излучателей инфракрасных импульсных сигналов, осуществляют формирование управляющих воздействий на излучатели, осуществляют измерение параметров, генерируемых позиционно-чувствительными детекторами инфракрасного излучения.

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Способ включает ориентацию КА и стабилизацию в инерциальной системе координат (ИСК) его строительной оси, ближайшей к оси максимального момента инерции.

Изобретение относится к управлению подготовкой и осуществлением спуска космического аппарата (КА). Способ включает построение требуемой для проведения наблюдений ориентации КА, определение остатка топлива на борту КА, а также орбиты спуска, проходящей максимальное число раз над заданными наземными пунктами и отвечающей требованиям светотеневой обстановки на орбите КА и в этих пунктах.

Группа изобретений относится к космической технике. Космический аппарат (КА) содержит по меньшей мере один основной бак ракетного топлива, основной двигатель, питаемый ракетным топливом из основного бака, и устройство сведения с орбиты.

Изобретение относится к области космической техники и может использоваться для определения ускорения поступательного движения космического аппарата (КА). В способе коррекции орбитального движения КА в процессе приложения тестовых и корректирующих воздействий фиксируют начало стационарного режима нагревания стенки камеры сгорания двигателя, фиксируют число срабатываний электроклапанов на входе в блок стабилизации давления, определяют средние частоты срабатывания электроклапанов и ускорения от работы двигателя коррекции.

Изобретение относится к управлению полетом специализированных космических аппаратов (КА). Способ включает построение инерциальной солнечной ориентации КА системой силовых гироскопов, измерение векторов их кинетических моментов, поддержание данной ориентации с одновременной разгрузкой гироскопов.

Группа изобретений относится к управлению ориентацией космических (КА) и авиационных летательных аппаратов (ЛА) с помощью чувствительных элементов. Устройство содержит размещённые на основании датчики (Д) ориентации относительно инерциальной системы координат и относительно астрономических объектов.

Группа изобретений относится к управлению ориентацией космических (КА) и авиационных летательных аппаратов (ЛА) с помощью чувствительных элементов. Устройство содержит размещённые на основании датчики (Д) ориентации относительно инерциальной системы координат и относительно астрономических объектов.

Группа изобретений относится к космической технике. В способе управления ориентацией КА в пространстве формируют эталонный вектор выходных угловых скоростей ориентации, усиливают вектор выходных угловых скоростей ориентации и суммируют его с вектором сигналов управления.

Изобретение относится к межорбитальным перелётам в системе Земля-Луна. Способ включает отстыковку КА от околоземной орбитальной космической станции (ОКС) и перевод на траекторию перелёта к Луне.

Изобретение относится к межорбитальным маневрам космических аппаратов (КА) в системе Земля-Луна. Способ включает отстыковку КА от околоземной орбитальной космической станции (ОКС) и выведение его на траекторию облета Луны с возвратом.

Группа изобретений относится к управлению движением нежёсткого летательного аппарата (1) с помощью двигателя (2). Пилотирование осуществляется системой управления с измерительным средством (3А), расположенным вблизи заднего конца (1R) аппарата.

Изобретение относится к управлению относительным движением космических аппаратов (КА), преимущественно с одноосно вращающимися панелями солнечных батарей (СБ). В процессе полета ориентированный по местной вертикали КА непрерывно вращается по курсу, а панели СБ синхронно и непрерывно поворачиваются нормалью к Солнцу.

Изобретение относится к управлению ориентацией космических аппаратов (КА), осуществляемой в солнечно-земной системе координат. Способ включает ориентацию первой оси КА на Землю путем разворотов вокруг второй и третьей осей КА с помощью электромеханических исполнительных органов. При отсутствии тени Земли управляющие воздействия вокруг второй оси КА формируют по информации с прибора ориентации на Землю, а относительно третьей оси КА - по информации с прибора ориентации на Солнце. Техническим результатом изобретения является уменьшение погрешности ориентации КА на Землю. 3 ил.
Наверх