Способ термической переработки кека иловых осадков в шлаковом расплаве

Изобретение относится к области утилизации органических отходов, в частности осадков городских сточных вод, с получением продуктового газа и дальнейшего его сжигания для получения тепла, а также с получением гранулированного шлака и его использования в качестве строительного материала. Технический результат заявленной системы заключается в увеличении выхода целевых продуктов с пониженной эмиссией загрязнителей в окружающую среду. Способ термической переработки кека иловых осадков в шлаковом расплаве включает подачу в систему сушильных установок с нагревом кека и получением испаренной влаги и осушенного кека, после чего осуществляют подачу кека в бункер-накопитель с последующим направлением кека в печь-газификатор, которая оснащена горелкой и блоком молибденовых электродов и блоком слива жидкого шлака. Через блок жидкий шлак подают в гранулятор. В печи–газификаторе органическую составляющую кека преобразуют в продуктовый газ, который через контактный теплообменник подают в водяной теплообменник, после чего продуктовый газ охлаждают и направляют в камеру полного сжигания с тангенциальным входом. Камера полного сжигания выполнена суженной в области между входом и выходом для газа. После камеры полного сжигания продукты сгорания подают в котел-утилизатор тепла, из которого отходящий газ подают через систему газоочистки в дымовую трубу. 4 з.п. ф-лы, 3 ил.

 

Изобретение относится к области утилизации органических отходов, в частности, осадков городских сточных вод, с получением продуктового газа и дальнейшим его сжиганием для получения тепла, а также с получением гранулированного шлака и его использования в качестве строительного материала.

Из уровня техники известны следующие решения, используемые для термической переработки кека илового осадка.

Известны способы сжигания кека с получением зольного остатка, например способ, раскрытый в авторском свидетельстве №545827 (опубликовано 05.02.1977), в котором подачу отходов осуществляют двумя прямолинейными потоками навстречу друг другу, топливо и воздух подают в зону столкновения потоков отходов, а продукты горения отводят двумя потоками в зонах подачи отходов. Схема включает циклонную печь, куда подают прямолинейные потоки диспергированных отходов и которая имеет зону столкновения диспергированных потоков, куда осуществляют подачу потока топлива и воздуха, которые, сгорая, образуют вихревой поток, движущийся в зону подачи отходов, и каналы выхода продуктов сгорания.

Также для сжигания илового кека применяются установки с котлами кипящего слоя, колосниковые котлы и установки для каталитического сжигания.

Недостатки чисто термической утилизации иловых осадков заключаются в необходимости использования сложных систем газоочистки из-за летучей золы, а также в необходимости захоронения зольного остатка.

Кроме того, для сжигания иловых осадков, применяют пиролиз, например способ газификации твердых видов углеродного топлива, включающий нагрев, пиролиз подаваемого в ванну с расплавленным шлаком герметичной электродной электропечи углеродного топлива при пропускании через шлаковый расплав газифицирующих агентов, а также пропускании электрического тока, удаление из рабочего пространства печи синтез-газа, шлака и металлического сплава, при этом через шлаковый расплав пропускают трехфазный электрический ток (патент РФ №2521638, опубликован 10.07.2014).

Получаемые продукты при пиролизном сжигании кека: углеродный и зольный остатки, а также тепло/электроэнергия.

Наиболее близким аналогом патентуемого решения является способ переработки кека илистых осадков, в котором отходы обрабатывают электрическим разрядом высокой энергии в плазменной печи. Аппарат для плазменной обработки для использования в настоящем изобретении содержит печь и систему графитовых электродов для образования плазменной дуги внутри печи. Во время работы отходы подают в печь через впускное отверстие. Плазменная дуга перемещается от конца графитового электрода к отходам. Стадия плазменной обработки дает расплавленный шлак. Нелетучие опасные неорганические материалы, такие как тяжелые металлы или их соединения, включаются в расплавленный шлак, давая инертный стекловидный или полукристаллический продукт, в зависимости от скорости охлаждения и состава. Способ предусматривает восстановление твердого остеклованного шлака и/или отходящего газа. Отходящий газ содержит теплотворные компоненты и может быть использован для выработки энергии в газовой турбине или при помощи сжигания (патент РФ №2592891, опубликован 27.07.2016).

Недостаток известных пиролизных технологий утилизации иловых осадков заключается в сложности схемы газоочистки из-за жидких продуктов и недостаточности степени очистки целевых продуктов от загрязнителей.

Техническая задача, на решение которой направлено заявленное изобретение, заключается в разработке термической технологии переработки кека илового осадка с использованием энергетического потенциала кека максимальным полезным использованием получаемых отходов в промышленности.

Технический результат заявленной системы заключается в использовании энергетического потенциала отходов, в увеличении выхода целевых продуктов с низкой эмиссией загрязнителей в окружающую среду, а также исключении необходимости захоронений отходов и обеспечении максимального использования их потенциала в промышленности.

Указанный технический результат достигается за счет осуществления способа термической переработки кека иловых осадков в шлаковом расплаве, в котором кек, после предварительного механического обезвоживания, подают на систему роторных сушильных установок с косвенным нагревом кека перегретым паром, испаренную влагу из сушильных установок подают на теплообменник охлаждения и конденсации воды, далее на циклон очистки выпара и систему биологической очистки воздуха перед подачей в дымовую трубу, осушенный кек из сушильных установок подают в бункер-накопитель, из которого кек посредством шнекового питателя подают в печь, оснащенную горелкой и блоком молибденовых электродов с системой электропитания, а также блоком слива жидкого шлака, через который жидкий шлак подают в гранулятор, в печи-газификаторе органическую составляющую кека преобразуют в продуктовый газ, который для закалки и понижения температуры до 1200°C проводят через контактный теплообменник и подают в водяной теплообменник, где продуктовый газ охлаждают до 200°C и подают в камеру полного сжигания продуктового газа с тангенциальным входом, где летучие органические соединения газа полностью сжигают в избытке кислорода при температуре около 1300°C, при этом камера полного сжигания включает горелку, факел которой ориентирован по оси камеры от входа к выходу, и сужение в средней части, продукты сгорания после камеры полного сжигания через газоход подают в паровой котел-утилизатор тепла, выполненный с возможностью выработки пара для аппаратов сушки исходного кека иловых осадков и оснащенный дополнительной горелкой для сжигания топлива, из которого отходящий газ подается в систему газоочистки и через дымосос - в дымовую трубу.

Продуктовый газ, полученный из органической составляющей кека, представляет собой синтез-газ в результате газификации высушенного кека при ограниченной подачи кислорода.

Продуктовый газ, полученный из органической составляющей кека, представляет собой пирогаз при пиролизе высушенного кека в отсутствие кислорода.

Система очистки отходящего газа после котла утилизатора обеспечивает его очистку от золы и кислых газов известными методами.

Подача отходящего газа в дымовую трубу и разрежение в технологической линии от печи-газификатора до котла утилизатора обеспечивается дымососом.

Максимальное использование целевых продуктов переработки кека иловых осадков с пониженным содержанием загрязнителей и их выбросов в атмосферу достигается за счет конструктивных особенностей печи-газификатора и камеры полного сжигания, а именно за счет применения комбинированной системы нагрева высушенного кека в печи-газификаторе, образованной горелками и дополнительным омическим подогревом шлакового расплава с помощью молибденовых электродов, на которые подается напряжение источника питания, а также за счет тангенциальной подачи продуктового газа в камеру полного сжигания, имеющей специальное сужение в средней области камеры для более эффективного перемешивания потока. Указанные особенности обеспечивают более эффективное очищение продуктового газа от загрязнителей, а также позволяют получить максимальный полезный эффект от продуктов переработки для потребления внутри системы (например, подогрев сетевой воды паром из парового котла-утилизатора), а также позволяют получить инертный и химически стойкий продукт - остеклованный гранулированный шлак, который может быть использован как строительный материал.

Далее решение поясняется ссылками на фигуры, на которых приведено следующее.

Фиг. 1 - общая схема процесса термической переработки кека илового осадка в шлаковом расплаве.

Фиг. 2 - общая схема печи-газификатора.

Фиг. 3 - общая схема камеры полного сжигания.

На фиг. 1 приведена схема, описывающая процесс переработки кека и дальнейшего использования продуктов переработки.

Кек, после предварительного механического обезвоживания, подается на систему роторных сушильных установок 1 с косвенным нагревом кека перегретым паром и получением испаренной влаги и осушенного кека. Система очистки нагретого воздуха после сушильных установок и перед дымовой трубой включает теплообменник 2 охлаждения и конденсации воды, циклон 3 очистки выпара и систему биологической очистки воздуха 4. Влага выдувается воздухом (подается вентилятором), насыщенный парами воды нагретый воздух подается на теплообменник 2 охлаждения и конденсации воды, далее на циклон 3 очистки выпара и систему биологической очистки воздуха 4 от летучих органических соединений и запахов перед подачей в дымовую трубу 5. Осушенный кек подается в бункер-накопитель 6.

Из бункера-накопителя иловый кек подается шнековым питателем в футерованную печь-газификатор 7 (ПГ, фиг. 2), где происходит процесс пиролиза/газификации органической составляющей и плавление минеральной составляющей. Органическая составляющая кека преобразуется в синтез-газ в присутствии необходимого количества кислорода и паров воды или в пирогаз процесса пиролиза высушенного кека при отсутствии кислорода. Нагрев печи 7 осуществляется сжиганием газового (или жидкого) топлива в горелке 8, куда подается воздух или обогащенный кислородом воздух, и системой дополнительного подогрева шлакового расплава омическим нагревом с помощью молибденовых электродов 9, на которые подается напряжение источника электропитания 10. Печь-газификатор 7 имеет вход для подачи сырья, выход синтез-газа (пирогаза), а также оснащена системой слива жидкого шлака 11, которая подает жидкий шлак в гранулятор 12, обеспечивающий получение гранулированного остеклованного шлака. Рабочая температура печи-газификатора составляет порядка 1600°С.

Продуктовый газ из печи-газификатора 7 подается через контактный теплообменник 13 (для закалки и понижения температуры до 1200°С) в водяной теплообменник 14, где охлаждается до 200°С, полученное тепло используется для собственных нужд.

Охлажденный продуктовый газ подается в футерованную камеру полного сжигания 15 (фиг. 3), где происходит полное сгорание синтез-газа, летучих органических соединений и аэрозолей в избытке кислорода. Температурный режим и стабилизация горения обеспечиваются горелкой 16, куда подается газовое/жидкое топливо и воздух, обогащенный кислородом. Подача продуктового газа в камеру осуществляется тангенциально, факел горелки ориентирован вертикально вниз по оси камеры от входа 24 к выходу 25, камера имеет сужение 22 в средней области между входом и выходом для газа для более эффективного перемешивания потока. Камера также включает узел вывода накопившейся золы 23 и узел вывода отходящего газа. Рабочая температура камеры при сжигании составляет порядка 1300°С.

Продукты сгорания подаются через футерованный газоход в паровой котел-утилизатор тепла 17, который вырабатывает пар, необходимый для аппаратов сушки исходного кека иловых осадков, деаэратора 18, избыток тепла подается на пароводяной подогреватель сетевой воды. Котел-утилизатор оснащается дополнительной горелкой для сжигания жидкого/газового топлива при нехватке тепла от сжигания продуктового газа и в момент старта системы.

Система очистки отходящего газа 19 после котла-утилизатора 17 обеспечивает его очистку от золы и кислых газов известными методами.

Подача отходящего газа в дымовую трубу 20 и разрежение в технологической линии от печи-газификатора 7 до котла-утилизатора 17 обеспечивается дымососом 21.

Таким образом, получаемые в результате переработки кека продукты:

- тепло/электроэнергия;

- гранулированный остеклованный шлак (строительный материал).

Преимущества перед известными способами переработки:

- нулевое захоронение;

- максимальное использование энергетического потенциала отходов;

- низкая эмиссия загрязнений в отходящем газе;

- сравнительно простая система газоочистки.

1. Способ термической переработки кека иловых осадков в шлаковом расплаве, характеризующийся тем, что кек подают на систему сушильных установок с нагревом кека и получением испаренной влаги и осушенного кека, после чего осушенный кек подают в бункер-накопитель, из которого кек направляют в печь-газификатор, оснащенную горелкой и блоком молибденовых электродов, а также блоком слива жидкого шлака, через который жидкий шлак подают в гранулятор, в печи-газификаторе органическую составляющую кека преобразуют в продуктовый газ, который через контактный теплообменник подают в водяной теплообменник, где продуктовый газ охлаждают и направляют в камеру полного сжигания с тангенциальным входом, где летучие органические соединения газа полностью сжигают в избытке кислорода, при этом камера полного сжигания выполнена суженной в области между входом и выходом для газа, продукты сгорания после камеры полного сжигания через газоход подают в паровой котел-утилизатор тепла, из которого отходящий газ подается через систему газоочистки в дымовую трубу.

2. Способ термической переработки по п. 1, характеризующийся тем, что система очистки нагретого воздуха после сушильных установок и перед дымовой трубой включает теплообменник охлаждения и конденсации воды, циклон очистки выпара и систему биологической очистки воздуха.

3. Способ термической переработки по п. 1, характеризующийся тем, что продуктовый газ, полученный из органической составляющей кека, представляет собой синтез-газ процесса газификации высушенного кека при подаче определенного расхода кислорода.

4. Способ термической переработки по п. 1, характеризующийся тем, что продуктовый газ, полученный из органической составляющей кека, представляет собой пирогаз процесса пиролиза высушенного кека в отсутствие кислорода.

5. Способ термической переработки по п. 1, характеризующийся тем, что подача отходящего газа в дымовую трубу и разрежение в линии от печи-газификатора до котла-утилизатора обеспечивается дымососом.



 

Похожие патенты:

Способ обезвреживания и утилизации нефтесодержащего шлама включает смешивание негашеной извести с нефтесодержащим шламом и поверхностно-активным веществом, затем осуществляют гашение извести путем добавления воды в количестве, необходимом для полного гашения извести, после гашения извести добавляют обезвреживающие сорбенты, после чего осуществляют итоговое перемешивание, при этом в качестве ПАВ используют ПАВ, придающее гидрофобность, а в качестве обезвреживающих сорбентов используют отработанный силикагель, который является отходом от установок осушки природного газа, и отработанный цеолит, который является отходом от установок сероочистки газов.

Способ переработки отходов сортирования сульфатной целлюлозы относится к безотходным и ресурсосберегающим технологиям в целлюлозно-бумажной промышленности и может быть использован в производстве формованных изделий различного назначения.

Изобретение относится к способу удаления органических растворителей из влажной багассы растения, не являющегося гевеей, содержащего природный каучук в отдельных клетках растения, включающему использование некоторого количества указанной влажной багассы, которая содержит до 45 мас.% объединенных органических растворителей и воды (в расчете на общую массу влажной багассы) и не более 0,1 мас.% каучука; нагревание указанной влажной багассы до температуры по меньшей мере 100°С, в результате чего происходит выпаривание органических растворителей; получение высушенной багассы, которая содержит не более 1 мас.% органических растворителей.

Техническим результатом предлагаемого изобретения является полное обеззараживание строительных материалов и грунта без вывоза их на специализированные полигоны захоронения при ликвидации последствий деятельности объектов по хранению и уничтожению химического оружия, производству химического оружия и высокотоксичных веществ, включая рекультивацию прилегающей территории.

Настоящее изобретение относится к охране окружающей среды, а конкретно к снижению негативного влияния на экологию и увеличению эффективности обезвреживания твердых отходов, и может быть использовано для обезвреживания твердых отходов, в том числе ртутьсодержащих отходов, образующихся результате производственной деятельности, в том числе ртутных термометров, энергосберегающих ламп, люминесцентных ламп и прочих отходов, содержащих ртуть.

Изобретение относится к утилизации органических отходов, а именно к устройствам для их переработки путем пиролиза с получением генераторного газа, и может быть использовано для утилизации отходов заводов по производству риса и овса с получением аморфного кремнийсодержащего остатка.

Изобретение направлено на повышение мобильности установки и снижение транспортных расходов установки для переработки отходов бурения в готовый прочный сыпучий формованный строительный материал - искусственный камень.

Изобретение относится к утилизации углеродсодержащих смесей и может быть использовано при утилизации промышленных, сельскохозяйственных, производственных и бытовых отходов, содержащих твердые и жидкие углеводороды, для получения из них синтетического жидкого топлива как источника энергии.

Изобретение относится к очистке воды в непроточных водоемах от нефтепродуктов и тяжелых металлов. Способ очистки непроточных водоемов от тяжелых металлов и нефтепродуктов включает использование сорбента, коагулянта и грубодисперсного минерального вещества.

Способ для обезвреживания и утилизации массива бытовых отходов содержит бурение скважин в толще массива и установку в них вертикальных перфорированных отводящих труб, солнечный нагрев и увлажнение массива, размещенного под пирамидальными прозрачными колпаками, атмосферными осадками и питательной водой из канавок между колпаками, анаэробное брожение в толще массива с получением био–газа (метана), вывод его из колпаков и пор массива через вертикальные перфорированные отводящие трубы, соединенные через газопроводы с компрессором, который создает разрежение в полости колпаков и соединенных с ним на всасе газопроводов и сжимает на выходе биогаз, который под давлением поступает в трубное пространство воздушного холодильника, охлаждаемого наружным воздухом за счет естественной тяги, где происходит его охлаждение с конденсацией значительной части водяных паров и тяжелых углеводородов.

Изобретение относится к устройствам для переработки отходов и может быть использовано при утилизации нефтешламов для получения альтернативного вида топлива. Устройство для утилизации нефтешламов содержит топку с газовой горелкой, которая выполнена с возможностью установки в ней и подключения к технологическим магистралям и съема, приемный бункер для загружаемых в него нефтешламов для проведения термолиза с образованием парогазовой смеси и твердого углеродистого остатка. Приемный бункер имеет в верхней части патрубок вывода парогазовой смеси, выполненный с возможностью сообщения его через холодильник-конденсатор с емкостью для отделения термолизной жидкости от термолизного газа, которая соединена с магистралью вывода термолизной жидкости и через по меньшей мере один каплеотбойник сообщена с осушительной колонной для термолизного газа, выход которой сообщен с газовой горелкой топки печи. Использование данного изобретения позволит повысить экологичность процесса утилизации нефтешламов, а также позволит получить альтернативные виды топлива. 1 ил.

Изобретение относится к устройствам сепарации пластикового лома, который представляет собой полимерные отходы разной фактуры, имеющие различную плотность и аэродинамические характеристики, и может быть использовано для сепарации измельченных отходов, образующихся при переработке ПЭТ бутылки. Устройство сепарации измельченных полимерных отходов, содержащих две фракции с различным удельным весом, содержит сепарационную камеру с одним впускным окном для подачи потока измельченных отходов, размещенным в верхней части упомянутой камеры, и по меньшей мере двумя выпускными окнами, одно из которых, предназначенное для приема тяжелой фракции, выполнено в нижней части камеры и размещено непосредственно под впускным окном, а другое для приема легкой фракции, циклон для отделения воздуха от потока измельченных отходов, выходной патрубок которого расположен над упомянутой сепарационной камерой, и нагнетающий вентилятор для подачи потока воздуха с измельченными отходами в циклон. Устройство снабжено по меньшей мере одним воздуходувным агрегатом, связанным воздуховодом с входным окном, выполненным в боковой стенке сепарационной камеры, для формирования в верхней части последней, в зоне впускного окна, горизонтально направленного рабочего потока воздуха, и негерметично примыкающим к выходному патрубку циклона распределителем потока измельченных отходов, связывающим его с впускным окном сепарационной камеры. Впускное окно сепарационной камеры выполнено в ее верхней стенке, имеет щелевидную форму и расположено вдоль боковой стенки камеры для образования в сепарационной камере двух перекрещивающихся потоков воздуха - рабочего, подаваемого в горизонтальном направлении через упомянутое входное отверстие, и второго - несущего вышеупомянутые измельченные отходы, поступающие сверху через впускное окно в сепарационную камеру. Выпускное окно тяжелой фракции снабжено диффузором, расширяющимся в сторону впускного окна. Выпускное окно легкой фракции выполнено в нижней части камеры и расположено за выпускным окном тяжелой фракции по направлению движения горизонтального воздушного потока в сепарационной камере. Технический результат – повышение эффективности сепарации, а также увеличение ее производительности. 2 з.п. ф-лы, 2 ил.

Изобретение относится к производству строительных материалов и может быть использовано в технологии изделий стеновой керамики, в частности декоративных керамических кирпича и камней. Технический результат – увеличение прочности и морозостойкости, снижение водопоглощения, получение декоративных изделий. Способ получения сырьевой смеси для декоративной стеновой керамики, содержащей шламистую часть отходов обогащения железных руд, глинистое сырье и ванадиевый шлак, включающий сушку компонентов, измельчение указанных шлака и сырья и их последующее смешение, гранулирование с получением гранулированной пресс-массы, ее полусухое прессование и обжиг изделий, где осуществляют увлажнение указанной шламистой части и гранулирование ее в турболопастном смесителе-грануляторе до получения гранул преимущественного размера 1-3 мм при частоте вращения лопастей 20-25 с-1, с последующим опудриванием их смесью глинистого сырья и ванадиевого шлака при следующем соотношении компонентов, масс. %: шламистая часть отходов обогащения железных руд 80-88, глинистое сырье 10-15, ванадиевый шлак 2-10. 1 ил., 3 табл., 1 пр.
Изобретение относится к области химической технологии и предназначено для утилизации отходов производства, содержащих фторсиликаты: тетрафторид кремния, кремнефтористую кислоту, гексафторсиликат натрия. Фторсиликаты обрабатывают гидроксидом натрия и/или карбонатом натрия при температуре 80-100°С. Полученные фторид натрия и раствор силиката натрия разделяют фильтрацией. Фторид натрия либо выделяют, либо обрабатывают концентрированной серной кислотой при температуре 130-150°С и выделяют фторид водорода, который поглощают водой с образованием фтороводородной кислоты. Полученный после выделения фторида водорода остаток обрабатывают гидроксидом и/или карбонатом натрия с образованием сульфата натрия. Раствор силиката натрия подвергают обработке углекислым газом и выделяют диоксид кремния. Обеспечивается утилизация отходов производства, образующихся при производстве фосфорных удобрений и переработке алюминиевых руд, с получением из них чистых продуктов. 6 табл., 10 пр.

Изобретение относится к системам предотвращения протечки фильтрата в полигонах твердых бытовых отходов, способным продлить время до разрушения фильтратом стенок полигона и способам изготовления таких систем. Система включает в себя дренажный слой для сбора фильтрата, первый непроницаемый слой, являющийся геомембраной из ПВД, глинистый слой и дренажный слой сбора подземных вод, которые последовательно укладываются сверху вниз. Глинистый слой содержит нижний глинистый слой, средний глинистый слой и верхний глинистый слой, которые располагаются последовательно. Средний глинистый слой заполнен мелкозернистым песком с размерами частиц от 0,1 до 0,5 мм и содержанием воды не более 3%, так что коэффициент фильтрации слоя из песка варьируется в пределах от 1×10-5 до 1×10-3 см/с. За счет указанных признаков может быть значительно увеличено время разрушения фильтратом стенок полигона, за счет повышения стойкости непроницаемого слоя. При этом мелкозернистый песок легкодоступен, имеет низкую себестоимость и широко распространен в Китае. Предлагаемая система позволяет продлить срок службы полигона, имеет простое устройство и может эффективно предотвратить грунтовые воды от загрязнения за счет наличия слоя из мелкозернистого песка, поддерживая этот слой все время в ненасыщенном состоянии. 2 н. и 6 з.п. ф-лы, 1 ил.

Изобретение относится к области защиты окружающей среды. Согласно способу рекуперации щелочи и алюминия во время обработки получаемого в процессе Байера красного шлама с применением технологии известкования и карбонизации после смешивания получаемого в процессе Байера красного шлама с алюминатом кальция или известью и алюминатом кальция проводят преобразование с известкованием и обесщелачиванием в высококонцентрированном растворе щелочи. Полученный в процессе обесщелачивания известкованный остаток подвергают карбонизации. Затем осуществляют этапы низкотемпературного растворения алюминия и осаждения алюминия с получением продукта в виде алюмината кальция, который возвращают в процесс преобразования с известкованием и обесщелачиванием красного шлама для повторного использования. Часть жидкой фазы после преобразования с известкованием и обесщелачиванием, содержащей щелочь и алюминий, повторно используют для восполнения щелочи. Способ позволяет осуществлять обезвреживающую обработку получаемого в процессе Байера красного шлама. 5 з.п. ф-лы, 5 пр.

Изобретение может быть использовано в сельском хозяйстве для подготовки продуктов гидросмыва свиноводческих комплексов и ферм для последующего применения. Для осуществления способа продукты гидросмыва свиноводческих комплексов и ферм обрабатывают обожженным дефекатом с дозой 50-200 мг/дм3, при этом значение pH колеблется в диапазоне 7,5-8,5. После обработки полученную смесь отстаивают и выделенный осадок используют в качестве органоминерального удобрения. Способ обеспечивает утилизацию продуктов гидросмыва для орошения и удобрения сельскохозяйственных угодий, снижение стоимости реагентной обработки, ускорение процесса отстаивания смеси жидких отходов и реагента, повышение удобрительной ценности получаемого осадка в результате фракционирования и обеззараживания продуктов гидросмыва и исключение сброса избыточных сточных вод в водоемы. 2 табл., 1 пр.

Изобретение может быть использовано в производстве строительных материалов на известковой или цементной основе, асфальта. Способ восстановления шестивалентного хрома в оксидных твердых материалах включает смешивание оксидного твердого материала, содержащего Cr(VI), с углеродсодержащим соединением. Затем проводят обработку полученной смеси в атмосфере защитного газа в реакторе с косвенным обогревом при температуре от 700 до 1100°С и охлаждение продукта реакции в атмосфере защитного газа до по крайней мере 300°С. В качестве углеродсодержащего соединения используют соединение, жидкое в температурном интервале от 20 до 100°С. Изобретение позволяет утилизировать остатки хромитовой руды путем преобразования содержащегося в них труднодоступного и нерастворимого в воде шестивалентного хрома в трехвалентный хром. 4 н. и 28 з.п. ф-лы, 2 табл., 6 пр.
Изобретение относится к способу переработки твердых отходов производства соды и может найти применение в химической промышленности при решении экологических, технологических и экономических проблем. Способ переработки твердых отходов производства кальцинированной соды аммиачным методом осуществляется для отходов, полученных фильтрацией дистиллерной жидкости с использованием промышленных фильтр-прессов. Твердые отходы, полученные после фильтрации дистиллерной жидкости, имеющие состав, мас. %: карбонат кальция 38,4-40,0, гидрат оксида кальция 29-31, сульфат кальция 6,5-7,0, неактивные и нерастворимые в воде оксиды металлов, а также оксиды тяжелых металлов и двойные, тройные оксиды кальция, магния, алюминия и кремния 22,0-22,5, хлористый кальций 0,10-2,77, хлористый натрий 0,20-1,2, подают в печь обжига. При этом процесс ведут при температуре 900-950°C. Технический результат изобретения заключается в разработке способа переработки твердых отходов содового производства, обеспечивающего получение вторичного сырья для производства соды. 2 з.п. ф-лы, 3 пр.

Изобретение относится к области утилизации органических отходов, в частности осадков городских сточных вод, с получением продуктового газа и дальнейшего его сжигания для получения тепла, а также с получением гранулированного шлака и его использования в качестве строительного материала. Технический результат заявленной системы заключается в увеличении выхода целевых продуктов с пониженной эмиссией загрязнителей в окружающую среду. Способ термической переработки кека иловых осадков в шлаковом расплаве включает подачу в систему сушильных установок с нагревом кека и получением испаренной влаги и осушенного кека, после чего осуществляют подачу кека в бункер-накопитель с последующим направлением кека в печь-газификатор, которая оснащена горелкой и блоком молибденовых электродов и блоком слива жидкого шлака. Через блок жидкий шлак подают в гранулятор. В печи–газификаторе органическую составляющую кека преобразуют в продуктовый газ, который через контактный теплообменник подают в водяной теплообменник, после чего продуктовый газ охлаждают и направляют в камеру полного сжигания с тангенциальным входом. Камера полного сжигания выполнена суженной в области между входом и выходом для газа. После камеры полного сжигания продукты сгорания подают в котел-утилизатор тепла, из которого отходящий газ подают через систему газоочистки в дымовую трубу. 4 з.п. ф-лы, 3 ил.

Наверх