Способ определения кофеина в биологическом материале

Изобретение относится к биологии и токсикологической химии и касается способа определения кофеина в биологическом материале. Способ заключается в том, что биологический материал обрабатывают ацетоном, жидкое извлечение отделяют фильтрованием, упаривают в токе воздуха при комнатной температуре, водный остаток разбавляют водой, насыщают сульфатом аммония, доводят pH среды до 4,2-4,5, однократно экстрагируют смесью органических растворителей этилацетата и хлороформа, взятых в объемном отношении 2:8, органический экстракт отделяют, хроматографируют и проводят определение физико-химическим методом, вычисляя количественное содержание анализируемого вещества, и отличается тем, что обработку биологического объекта ацетоном осуществляют неоднократно дважды по 30 минут, экстрагируют в условиях, когда объем водной фазы равен объему смеси органических растворителей, перед хроматографированием растворители испаряют из экстракта до получения сухого остатка, остаток растворяют в смеси растворителей пропанол-2 - хлороформ, взятых в соотношении 5:5 по объему, хроматографируют в макроколонке силикагеля L 40/100 мкм с использованием подвижной фазы пропанол-2 - хлороформ в соотношении 5:5 по объему, фракции элюата, содержащие анализируемое вещество, объединяют, элюент испаряют в токе воздуха при температуре 18-22°С, затем в токе азота до полного удаления растворителей, остаток растворяют в дихлорметане, в качестве физико-химического метода используют хромато-масс-спектрометрию, определение проводят в капиллярной колонке длиной 25 м и внутренним диаметром 0,2 мм с неподвижной фазой 5% фенил - метилполисилоксан, используя газ-носитель гелий, подаваемый со скоростью 0,7 мл/мин, и масс-селективный детектор, работающий в режиме электронного удара, начальная температура термостата колонки составляет 80°С, данная температура выдерживается в течение 1 минуты, в дальнейшем температура программируется вначале от 80°С до 200°С со скоростью 40°С в минуту, затем от 200°С до 300°С со скоростью 12,5°С в минуту, температура инжектора составляет 200°С, температура интерфейса детектора - 300°С, регистрируют интенсивность сигнала, обусловленного заряженными частицами, образующимися при бомбардировке анализируемого вещества, вышедшего из капиллярной колонки и попавшего в источник ионов, ионизирующим пучком электронов с энергией 70 эВ, регистрируют масс-спектр по полному ионному току, по результатам измерений на хромато-масс-спектрометре строят график зависимости площади пика от концентрации определяемого вещества, методом наименьших квадратов рассчитывают уравнение градуировочного графика, которое в данном случае имеет вид: S=5238700⋅С+43091, где S - площадь хроматографического пика, а С - концентрация определяемого вещества в хроматографируемой пробе, мкг, и вычисляют количество кофеина по площади хроматографического пика. Изобретение обеспечивает повышение чувствительности определения кофеина в биологическом материале. 4 табл., 3 пр.

 

Изобретение относится к биологии, токсикологической и аналитической химии, а именно к способам определения кофеина в биологическом материале, и может быть использовано в практике химико-токсикологических, экспертно-криминалистических и клинических лабораторий. Способ относится к числу массовых.

Известен способ определения кофеина в биологической жидкости (растворе альбумина), состоящий в том, что анализируемую пробу обрабатывают раствором пепсина в растворе хлороводородной кислоты, доводят реакцию среды полученной смеси до pH 4, инкубируют при температуре 37°С в течение 1 часа, экстрагируют трижды хлороформом при соотношении объемов водной и органической фаз 1:1, экстракты объединяют, остаток растворяют в фосфатном буфере с pH 7,4, полученный раствор фильтруют и определяют количество извлеченного производного пурина спектрофотометрическим методом по величине оптической плотности фильтрата, измеренной при длине волны 273 нм (Стрелова О.Ю., Чувина Н.А. Изолирование кофеина из крови с применением ферментативного гидролиза на примере модельного вещества // Судебно-медицинская экспертиза. - 2008. - Т. 51, №4. - С. 28-31).

Способ отличается недостаточно высокими чувствительностью и селективностью определения.

Известен способ определения кофеина в биологической жидкости (крови), заключающийся в том, что анализируемую пробу обрабатывают сульфатом аммония, выдерживают в течение 30 минут при перемешивании, раствор центрифугируют при 3000 оборотах в минуту, центрифугат отделяют, доводят его реакцию до pH 4,0-5,0, экстрагируют трижды хлороформом при соотношении водной и органической фаз на каждой стадии экстракции 1:1, экстракты объединяют, экстрагент испаряют, остаток растворяют в фосфатном буфере с pH 7,4, полученный раствор фильтруют и определяют количество извлеченного вещества по величине оптической плотности, измеренной при длине волны 273 нм (Стрелова О.Ю., Чувина Н.А. Оценка эффективности методов изолирования токсических веществ из крови // Судебно-медицинская экспертиза. - 2008. - Т. 51, №3. - С. 22-24).

Способ характеризуется недостаточно высокой чувствительностью.

Наиболее близким является способ определения кофеина в биологическом материале (плазме крови), заключающийся в том, что биологический материал однократно обрабатывают ацетоном, жидкое извлечение отделяют фильтрованием, упаривают в токе воздуха при комнатной температуре, водный остаток разбавляют водой, насыщают сульфатом аммония, доводят pH среды до 4,2-4,5, однократно экстрагируют смесью органических растворителей этилацетата и хлороформа, взятых в объемном отношении 2:8, в условиях, когда объем водной фазы в 5 раз превышает объем смеси органических растворителей, органический экстракт отделяют, хроматографируют в тонком слое гидроксилированного сорбента СТХ-1 на пластинах «Сорбфил», применяя подвижную фазу гексан - ацетон - 25%-ный раствор аммиака в соотношениях 30:30:1 по объему, хроматограмму проявляют в УФ-свете, анализируемое вещество элюируют из сорбента хлороформом и проводят определение физико-химическим методом, которым является спектрофотометрия, вычисляя количественное содержание кофеина по величине оптической плотности хлороформного элюата, измеряемой при длине волны 276 нм (Коренман Я.И., Шорманов В.К., Мокшина Н.Я., Кривошеева О.А., Голубицкий Г.Б. Выделение, экстракционное концентрирование и определение кофеина при исследовании плазмы крови // Судебно-медицинская экспертиза. - 2012. -Т. 55, №2. - С. 32-35).

Способ характеризуется недостаточно высокой чувствительностью определения.

Техническим результатом настоящего изобретения является повышение чувствительности определения.

Технический результат достигается тем, что биологический материал неоднократно дважды по 30 минут обрабатывают ацетоном, каждое жидкое извлечение отделяют фильтрованием, отдельные извлечения объединяют, упаривают в токе воздуха при комнатной температуре, водный остаток разбавляют водой, насыщают сульфатом аммония, доводят pH среды до 4,2-4,5, однократно экстрагируют смесью органических растворителей этилацетата и хлороформа, взятых в объемном отношении 2:8, в условиях, когда объем водной фазы равен объему смеси органических растворителей, органический экстракт отделяют, растворители испаряют из экстракта до получения сухого остатка, остаток растворяют в смеси растворителей пропанол-2 - хлороформ, взятых в соотношении 5:5 по объему, хроматографируют в макроколонке силикагеля L 40/100 мкм с использованием подвижной фазы пропанол-2 - хлороформ в соотношении 5:5 по объему, фракции элюата, содержащие анализируемое вещество, объединяют, элюент испаряют в токе воздуха при температуре 18-22°С, затем в токе азота до полного удаления растворителей, остаток растворяют в дихлорметане и проводят определение физико-химическим методом, которым является хромато-масс-спектрометрия, с применением капиллярной колонки длиной 25 м и внутренним диаметром 0,2 мм с неподвижной фазой 5% фенил - метилполисилоксан, используя газ-носитель гелий, подаваемый со скоростью 0,7 мл/мин, и масс-селективный детектор, работающий в режиме электронного удара, начальная температура термостата колонки составляет 80°С, данная температура выдерживается в течение 1 минуты, в дальнейшем температура программируется вначале от 80°С до 200°С со скоростью 40°С в минуту, затем от 200°С до 300°С со скоростью 12,5°С в минуту, температура инжектора составляет 200°С, температура интерфейса детектора - 300°С, регистрируют интенсивность сигнала, обусловленного заряженными частицами, образующимися при бомбардировке анализируемого вещества, вышедшего из капиллярной колонки и попавшего в источник ионов, ионизирующим пучком электронов с энергией 70 эВ, регистрируют масс-спектр по полному ионному току, по результатам измерений на хромато-масс-спектрометре строят график зависимости площади пика от концентрации определяемого вещества, методом наименьших квадратов рассчитывают уравнение градуировочного графика, которое в данном случае имеет вид: S=5238700⋅С+43091, где S - площадь хроматографического пика, а С - концентрация определяемого вещества в хроматографируемой пробе, мкг, и вычисляют количество кофеина по площади хроматографического пика.

Способ осуществляется следующим образом: биологический материал, содержащий кофеин, неоднократно дважды по 30 минут обрабатывают ацетоном, каждое жидкое извлечение отделяют фильтрованием, отдельные извлечения объединяют, упаривают в токе воздуха при комнатной температуре, водный остаток разбавляют водой, насыщают сульфатом аммония, доводят pH среды до 4,2-4,5, однократно экстрагируют смесью органических растворителей этилацетата и хлороформа, взятых в объемном отношении 2:8, в условиях, когда объем водной фазы равен объему смеси органических растворителей, органический экстракт отделяют, растворители испаряют из экстракта до получения сухого остатка, остаток растворяют в смеси растворителей пропанол-2 - хлороформ, взятых в соотношении 5:5 по объему, хроматографируют в макроколонке силикагеля L 40/100 мкм с использованием подвижной фазы пропанол-2 - хлороформ в соотношении 5:5 по объему, фракции элюата, содержащие анализируемое вещество, объединяют, элюент испаряют в токе воздуха при температуре 18-22°С, затем в токе азота до полного удаления растворителей, остаток растворяют в дихлорметане и проводят определение физико-химическим методом, которым является хромато-масс-спектрометрия, с применением капиллярной колонки длиной 25 м и внутренним диаметром 0,2 мм с неподвижной фазой 5% фенил - метилполисилоксан, используя газ-носитель гелий, подаваемый со скоростью 0,7 мл/мин, и масс-селективный детектор, работающий в режиме электронного удара, начальная температура термостата колонки составляет 80°С, данная температура выдерживается в течение 1 минуты, в дальнейшем температура программируется вначале от 80°С до 200°С со скоростью 40°С в минуту, затем от 200°С до 300°С со скоростью 12,5°С в минуту, температура инжектора составляет 200°С, температура интерфейса детектора - 300°С, регистрируют интенсивность сигнала, обусловленного заряженными частицами, образующимися при бомбардировке анализируемого вещества, вышедшего из капиллярной колонки и попавшего в источник ионов, ионизирующим пучком электронов с энергией 70 эВ, регистрируют масс-спектр по полному ионному току, по результатам измерений на хромато-масс-спектрометре строят график зависимости площади пика от концентрации определяемого вещества, методом наименьших квадратов рассчитывают уравнение градуировочного графика, которое в данном случае имеет вид: S=5238700⋅С+43091, где S - площадь хроматографического пика, а С - концентрация определяемого вещества в хроматографируемой пробе, мкг, и вычисляют количество кофеина по площади хроматографического пика.

Способ иллюстрируется следующими примерами.

Пример 1

Определение кофеина в плазме крови

К 10 г плазмы крови человека прибавляют 1,00 мг кофеина, тщательно перемешивают биологический материал с веществом и оставляют на 1,5 часа при температуре 18-22°С. По истечении указанного времени биологический материал дважды по 30 минут обрабатывают при перемешивании порциями ацетона по 20 г каждая. Каждое жидкое извлечение отделяют от твердых частиц биологического материала фильтрованием через бумажный фильтр, который затем дополнительно промывают 10 г ацетона. Обе порции фильтрата и промывную жидкость объединяют и упаривают в токе воздуха при комнатной (18-22°С) температуре, удаляя ацетон и часть воды, до объема 2-3 мл. Водный остаток разбавляют водой до 5 мл, прибавляют 4 мл буферного раствора с pH 4,5, насыщают полученный раствор сульфатам аммония, доводят pH среды раствора универсальным буфером до 4,2-4,5, однократно экстрагируют в течение 10 минут смесью органических растворителей этилацетата и хлороформа, взятых в объемном отношении 2:8, в условиях, когда объем водной фазы равен объему смеси органических растворителей. Органический экстракт отделяют, растворители испаряют из экстракта в токе воздуха при комнатной (18-22°С) температуре до получения сухого остатка, остаток растворяют в 2-3 мл смеси растворителей пропанол-2 - хлороформ, взятых в соотношении 5:5 по объему, полученный раствор вносят в хроматографическую макроколонку размерами 490×11 мм, заполненную 10 г силикагеля L 40/100 мкм. Хроматографируют, используя подвижную фазу пропанол-2 - хлороформ в соотношении 5:5 по объему. Элюат собирают отдельными фракциями по 2 мл каждая. Фракции элюата, с 8 по 10 включительно, содержащие анализируемое вещество, объединяют, элюент испаряют в токе воздуха при температуре 18-22°С, затем в токе азота до полного удаления растворителей, остаток растворяют в 5 мл дихлорметана и проводят определение физико-химическим методом, которым является хромато-масс-спектрометрия.

В процессе определения 4 мкл дихлорметанового раствора вводят в хромато-масс-спектрометр.

Определение проводят, используя газовый хроматограф фирмы Agilent Technologies (США) модели 6850 Network GC System с квадрупольным масс-селективным детектором модели 5973 Network этой же фирмы.

Хроматографирование осуществляют с применением капиллярной колонки длиной 25 м и внутренним диаметром 0,2 мм с неподвижной фазой 5% фенил - метилполисилоксан, используя газ-носитель гелий, подаваемый со скоростью 0,7 мл/мин, и масс-селективный детектор, работающий в режиме электронного удара, начальная температура термостата колонки составляет 80°С, данная температура выдерживается в течение 1 минуты, в дальнейшем температура программируется вначале от 80°С до 200°С со скоростью 40°С в минуту, затем от 200°С до 300°С со скоростью 12,5°С в минуту, конечная температура колонки выдерживается в течение 10 минут, температура инжектора составляет 200°С, температура интерфейса детектора - 300°С, регистрируют интенсивность сигнала, обусловленного заряженными частицами, образующимися при бомбардировке анализируемого вещества, вышедшего из капиллярной колонки и попавшего в источник ионов, ионизирующим пучком электронов с энергией 70 эВ, регистрируют масс-спектр по полному ионному току с задержкой 2,5 минуты. Диапазон сканирования составляет 40-500 m/z.

Пик на хроматограмме с временем удерживания 7,88 мин соответствует кофеину. В масс-спектре данного соединения, снятом по полному ионному току, обнаруживаются сигналы ряда характеристических заряженных частиц с массовыми числами 42, 55, 67, 82, 94, 109, 136, 149, 165, 194. Наиболее интенсивной является частица с массовым числом 194, интенсивность которой принимается за 100%.

Кофеин идентифицируют по сочетанию времени удерживания в неподвижной фазе колонки и специфического набора сигналов характеристических заряженных частиц в его масс-спектре.

По площади хроматографического пика, полученного при регистрации интенсивности по полному ионному току, определяют количественное содержание кофеина, используя уравнение градуировочного графика, и пересчитывают на навеску анализируемого вещества, внесенную в биологический материал.

Построение градуировочного графика

В ряд мерных колб вместимостью 25 мл вносят 0,025, 0,05, 0,1, 0,2, 0,5, 1,25, 2,5 и 5,0 мл 1,25% раствора кофеина в дихлорметане и доводят объем содержимого каждой колбы до метки дихлорметаном.

4 мкл каждого из полученных растворов вводят в хромато-масс-спектрометр.

Определение проводят, используя газовый хроматограф фирмы Agilent Technologies (США) модели 6850 Network GC System с квадрупольным масс-селективным детектором модели 5973 Network этой же фирмы.

Хроматографирование осуществляют с применением капиллярной колонки длиной 25 м и внутренним диаметром 0,2 мм с неподвижной фазой 5% фенил - метилполисилоксан, используя газ-носитель гелий, подаваемый со скоростью 0,7 мл/мин, и масс-селективный детектор, работающий в режиме электронного удара, начальная температура термостата колонки составляет 80°С, данная температура выдерживается в течение 1 минуты, в дальнейшем температура программируется вначале от 80°С до 200°С со скоростью 40°С в минуту, затем от 200°С до 300°С со скоростью 12,5°С в минуту, конечная температура колонки выдерживается в течение 10 минут, температура инжектора составляет 200°С, температура интерфейса детектора - 300°С, регистрируют интенсивность сигнала, обусловленного заряженными частицами, образующимися при бомбардировке анализируемого вещества, вышедшего из капиллярной колонки и попавшего в источник ионов, ионизирующим пучком электронов с энергией 70 эВ, регистрируют масс-спектр по полному ионному току с задержкой 2,5 минуты. Диапазон сканирования составляет 40-500 m/z.

Исходя из площади хроматографического пика, полученного при регистрации интенсивности по полному ионному току, вычисляют количество кофеина.

По результатам измерений на хромато-масс-спектрометре строят график зависимости площади пика от концентрации определяемого вещества. График линеен в интервале концентраций 5,0⋅10-8-1,0⋅10-5 г.

Методом наименьших квадратов рассчитывают уравнение градуировочного графика, которое в данном случае имеет вид:

S=5238700⋅C+43091,

где S - площадь хроматографического пика; С - концентрация определяемого вещества в хроматографируемой пробе, мкг.

Результаты количественного определения кофеина в плазме крови представлены в таблице 1.

Пример 2

Определение кофеина в крови

К 10 г крови человека прибавляют 1,00 мг кофеина, тщательно перемешивают биологический материал с веществом и оставляют на 1,5 часа при температуре 18-22°С. По истечении указанного времени биологический материал дважды по 30 минут обрабатывают при перемешивании порциями ацетона по 20 г каждая. Каждое жидкое извлечение отделяют от твердых частиц биологического материала фильтрованием через бумажный фильтр, который затем дополнительно промывают 10 г ацетона. Обе порции фильтрата и промывную жидкость объединяют и упаривают в токе воздуха при комнатной (18-22°С) температуре, удаляя ацетон и часть воды, до объема 2-3 мл. Водный остаток разбавляют водой до 5 мл, прибавляют 4 мл буферного раствора с pH 4,5, насыщают полученный раствор сульфатам аммония, доводят pH среды раствора универсальным буфером до 4,2-4,5, однократно экстрагируют в течение 10 минут смесью органических растворителей этилацетата и хлороформа, взятых в объемном отношении 2:8, в условиях, когда объем водной фазы равен объему смеси органических растворителей. Органический экстракт отделяют, растворители испаряют из экстракта в токе воздуха при комнатной (18-22°С) температуре до получения сухого остатка, остаток растворяют в 2-3 мл смеси растворителей пропанол-2 - хлороформ, взятых в соотношении 5:5 по объему, полученный раствор вносят в хроматографическую макроколонку размерами 490×11 мм, заполненную 10 г силикагеля L 40/100 мкм. Хроматографируют, используя подвижную фазу пропанол-2 - хлороформ в соотношении 5:5 по объему. Элюат собирают отдельными фракциями по 2 мл каждая. Фракции элюата, с 8 по 10 включительно, содержащие анализируемое вещество, объединяют, элюент испаряют в токе воздуха при температуре 18-22°С, затем в токе азота до полного удаления растворителей, остаток растворяют в 5 мл дихлорметана и проводят определение физико-химическим методом, которым является хромато-масс-спектрометрия.

В процессе определения 4 мкл дихлорметанового раствора вводят в хромато-масс-спектрометр.

Определение проводят, используя газовый хроматограф фирмы Agilent Technologies (США) модели 6850 Network GC System с квадрупольным масс-селективным детектором модели 5973 Network этой же фирмы.

Хроматографирование осуществляют с применением капиллярной колонки длиной 25 м и внутренним диаметром 0,2 мм с неподвижной фазой 5% фенил - метилполисилоксан, используя газ-носитель гелий, подаваемый со скоростью 0,7 мл/мин, и масс-селективный детектор, работающий в режиме электронного удара, начальная температура термостата колонки составляет 80°С, данная температура выдерживается в течение 1 минуты, в дальнейшем температура программируется вначале от 80°С до 200°С со скоростью 40°С в минуту, затем от 200°С до 300°С со скоростью 12,5°С в минуту, конечная температура колонки выдерживается в течение 10 минут, температура инжектора составляет 200°С, температура интерфейса детектора - 300°С, регистрируют интенсивность сигнала, обусловленного заряженными частицами, образующимися при бомбардировке анализируемого вещества, вышедшего из капиллярной колонки и попавшего в источник ионов, ионизирующим пучком электронов с энергией 70 эВ, регистрируют масс-спектр по полному ионному току с задержкой 2,5 минуты. Диапазон сканирования составляет 40-500 m/z.

Пик на хроматограмме с временем удерживания 7,88 мин соответствует кофеину. В масс-спектре данного соединения, снятом по полному ионному току, обнаруживаются сигналы ряда характеристических заряженных частиц с массовыми числами 42, 55, 67, 82, 94, 109, 136, 149, 165, 194. Наиболее интенсивной является частица с массовым числом 194, интенсивность которой принимается за 100%.

Кофеин идентифицируют по сочетанию времени удерживания в неподвижной фазе колонки и специфического набора сигналов характеристических заряженных частиц в его масс-спектре.

По площади хроматографического пика, полученного при регистрации интенсивности по полному ионному току, определяют количественное содержание кофеина, используя уравнение градуировочного графика, и пересчитывают на навеску анализируемого вещества, внесенную в биологический материал.

Построение градуировочного графика

Построение градуировочного графика и его уравнение приводятся в примере 1.

Результаты количественного определения кофеина в крови представлены в таблице 2.

Пример 3

Определение кофеина в ткани печени

К 10 г измельченной (до размеров частиц 0,2-0,5 мм) ткани печени прибавляют 1,00 мг кофеина, тщательно перемешивают биологический материал с веществом и оставляют на 1,5 часа при температуре 18-22°С. По истечении указанного времени биологический материал дважды по 30 минут обрабатывают при перемешивании порциями ацетона по 20 г каждая. Каждое жидкое извлечение отделяют от твердых частиц биологического материала фильтрованием через бумажный фильтр, который затем дополнительно промывают 10 г ацетона. Обе порции фильтрата и промывную жидкость объединяют и упаривают в токе воздуха при комнатной (18-22°С) температуре, удаляя ацетон и часть воды, до объема 2-3 мл. Водный остаток разбавляют водой до 5 мл, прибавляют 4 мл буферного раствора с pH 4,5, насыщают полученный раствор сульфатам аммония, доводят pH среды раствора универсальным буфером до 4,2-4,5, однократно экстрагируют в течение 10 минут смесью органических растворителей этилацетата и хлороформа, взятых в объемном отношении 2:8, в условиях, когда объем водной фазы равен объему смеси органических растворителей. Органический экстракт отделяют, растворители испаряют из экстракта в токе воздуха при комнатной (18-22°С) температуре до получения сухого остатка, остаток растворяют в 2-3 мл смеси растворителей пропанол-2 - хлороформ, взятых в соотношении 5:5 по объему, полученный раствор вносят в хроматографическую макроколонку размерами 490×11 мм, заполненную 10 г силикагеля L 40/100 мкм. Хроматографируют, используя подвижную фазу пропанол-2 - хлороформ в соотношении 5:5 по объему. Элюат собирают отдельными фракциями по 2 мл каждая. Фракции элюата, с 8 по 10 включительно, содержащие анализируемое вещество, объединяют, элюент испаряют в токе воздуха при температуре 18-22°С, затем в токе азота до полного удаления растворителей, остаток растворяют в 5 мл дихлорметана и проводят определение физико-химическим методом, которым является хромато-масс-спектрометрия.

В процессе определения 4 мкл дихлорметанового раствора вводят в хромато-масс-спектрометр.

Определение проводят, используя газовый хроматограф фирмы Agilent Technologies (США) модели 6850 Network GC System с квадрупольным масс-селективным детектором модели 5973 Network этой же фирмы.

Хроматографирование осуществляют с применением капиллярной колонки длиной 25 м и внутренним диаметром 0,2 мм с неподвижной фазой 5% фенил - метилполисилоксан, используя газ-носитель гелий, подаваемый со скоростью 0,7 мл/мин, и масс-селективный детектор, работающий в режиме электронного удара, начальная температура термостата колонки составляет 80°С, данная температура выдерживается в течение 1 минуты, в дальнейшем температура программируется вначале от 80°С до 200°С со скоростью 40°С в минуту, затем от 200°С до 300°С со скоростью 12,5°С в минуту, конечная температура колонки выдерживается в течение 10 минут, температура инжектора составляет 200°С, температура интерфейса детектора - 300°С, регистрируют интенсивность сигнала, обусловленного заряженными частицами, образующимися при бомбардировке анализируемого вещества, вышедшего из капиллярной колонки и попавшего в источник ионов, ионизирующим пучком электронов с энергией 70 эВ, регистрируют масс-спектр по полному ионному току с задержкой 2,5 минуты. Диапазон сканирования составляет 40-500 m/z.

Пик на хроматограмме с временем удерживания 7,88 мин соответствует кофеину. В масс-спектре данного соединения, снятом по полному ионному току, обнаруживаются сигналы ряда характеристических заряженных частиц с массовыми числами 42, 55, 67, 82, 94, 109, 136, 149, 165, 194. Наиболее интенсивной является частица с массовым числом 194, интенсивность которой принимается за 100%.

Кофеин идентифицируют по сочетанию времени удерживания в неподвижной фазе колонки и специфического набора сигналов характеристических заряженных частиц в его масс-спектре.

По площади хроматографического пика, полученного при регистрации интенсивности по полному ионному току, определяют количественное содержание кофеина, используя уравнение градуировочного графика, и пересчитывают на навеску анализируемого вещества, внесенную в биологический материал.

Построение градуировочного графика

Построение градуировочного графика и его уравнение приводятся в примере 1.

Результаты количественного определения кофеина в ткани печени представлены в таблице 3.

Предлагаемый способ по сравнению с прототипом в 200 раз повышает чувствительность определения в детектируемой пробе и в 2 раза - в биологическом материале.

Сравнительные характеристики предлагаемого и известного способов представлены в таблице 4.

Способ определения кофеина в биологическом материале, заключающийся в том, что биологический материал обрабатывают ацетоном, жидкое извлечение отделяют фильтрованием, упаривают в токе воздуха при комнатной температуре, водный остаток разбавляют водой, насыщают сульфатом аммония, доводят pH среды до 4,2-4,5, однократно экстрагируют смесью органических растворителей этилацетата и хлороформа, взятых в объемном отношении 2:8, органический экстракт отделяют, хроматографируют и проводят определение физико-химическим методом, вычисляя количественное содержание анализируемого вещества, отличающийся тем, что обработку биологического объекта ацетоном осуществляют неоднократно дважды по 30 минут, экстрагируют в условиях, когда объем водной фазы равен объему смеси органических растворителей, перед хроматографированием растворители испаряют из экстракта до получения сухого остатка, остаток растворяют в смеси растворителей пропанол-2 - хлороформ, взятых в соотношении 5:5 по объему, хроматографируют в макроколонке силикагеля L 40/100 мкм с использованием подвижной фазы пропанол-2 - хлороформ в соотношении 5:5 по объему, фракции элюата, содержащие анализируемое вещество, объединяют, элюент испаряют в токе воздуха при температуре 18-22°С, затем в токе азота до полного удаления растворителей, остаток растворяют в дихлорметане, в качестве физико-химического метода используют хромато-масс-спектрометрию, определение проводят в капиллярной колонке длиной 25 м и внутренним диаметром 0,2 мм с неподвижной фазой 5% фенил - метилполисилоксан, используя газ-носитель гелий, подаваемый со скоростью 0,7 мл/мин, и масс-селективный детектор, работающий в режиме электронного удара, начальная температура термостата колонки составляет 80°С, данная температура выдерживается в течение 1 минуты, в дальнейшем температура программируется вначале от 80°С до 200°С со скоростью 40°С в минуту, затем от 200°С до 300°С со скоростью 12,5°С в минуту, температура инжектора составляет 200°С, температура интерфейса детектора - 300°С, регистрируют интенсивность сигнала, обусловленного заряженными частицами, образующимися при бомбардировке анализируемого вещества, вышедшего из капиллярной колонки и попавшего в источник ионов, ионизирующим пучком электронов с энергией 70 эВ, регистрируют масс-спектр по полному ионному току, по результатам измерений на хромато-масс-спектрометре строят график зависимости площади пика от концентрации определяемого вещества, методом наименьших квадратов рассчитывают уравнение градуировочного графика, которое в данном случае имеет вид: S=5238700⋅С+43091, где S - площадь хроматографического пика, а С - концентрация определяемого вещества в хроматографируемой пробе, мкг, и вычисляют количество кофеина по площади хроматографического пика.



 

Похожие патенты:

Группа изобретений относится к области медицины, а именно стоматологии. Предлагаемый способ получения искусственного зачатка зуба in vitro включает этапы: a) получения выделенных мезенхимальных клеток пульпы зуба; b) культивирования мезенхимальных клеток пульпы зуба в монослое на поверхностях для адгезивных клеток; и c) культивирования мезенхимальных клеток пульпы зуба в неадгезивных условиях в культуральных сосудах с культуральной поверхностью, обладающей ультранизким прикреплением клеток, для формирования клеточного агрегата, представляющего собой искусственный зачаток зуба.

Изобретение относится к медицине и раскрывает способ оценки риска развития онкозаболеваний в поколениях жителей регионов радиационного загрязнения. Способ характеризуется тем, что отбирают периферическую кровь пациентов, выделяют РНК, в образцах которых проводят одновременное количественное определение уровня экспрессии генов ST13, IER3, BRCA1, LRDD, MRAS генной сети белка р53, далее сопоставляют выявленные маркеры у матерей и их потомства и при наличии по отношению к группе пациентов, не подвергавшихся воздействию радиационного фактора, понижения или повышения уровня экспрессии указанных генов у матерей с клиническими проявлениями злокачественных новообразований, и однонаправленном изменении у их потомства уровня экспрессии указанных генов оценивают у детей высокий риск развития онкозаболеваний.

Изобретение относится к экспериментальной медицине и касается диагностики гипоксии плода в модели общей пренатальной гипоксической гипоксии. Моделируют общую пренатальную гипоксическую гипоксию у беременных крольчих породы Шиншилла на сроке 27-28 суток.

Изобретение относится к области медицины, в частности к гинекологии, и предназначено для лечения вагинальной атрофии у женщин в постменопаузе с учетом состояние биоценоза влагалища.

Изобретение относится к области медицины, в частности к акушерству, и предназначено для определения доли плодовой ДНК в плазме крови беременной женщины с помощью методов высокопроизводительного секвенирования.

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для ех vivo определения чувствительности клеток пациента к лекарственным препаратам.

Группа изобретений относится к области косметологии и раскрывает систему получения индивидуализированной композиции для обработки волос, а также способ приготовления окрашивающей композиции с использованием вышеуказанной системы.

Изобретение относится к области медицины, в частности к репродуктивной медицине и вспомогательным репродуктивным технологиям, а также к области науки, в частности к молекулярной биологии и эмбриологии.

Изобретение относится к области медицины, а именно к офтальмологии и неврологии, и предназначено для прогнозирования развития рассеянного склероза (PC) у больных с оптическим невритом (ОН) подострого течения.

Изобретение относится к области иммунологии. Предложены варианты антител, связывающих опухолеассоциированный антигенный полипептид ТАТ425.

Изобретение относится к области медицины, в частности к пульмонологии и аллергологии, и предназначено для прогнозирования дыхательной недостаточности у больных бронхиальной астмой. Проводят генотипирование полиморфного локуса rs1837253 гена TSLP методом ПЦР. При выявлении генотипа СС прогнозируют риск развития дыхательной недостаточности у больных бронхиальной астмой. Изобретение обеспечивает получение критериев прогноза развития дыхательной недостаточности у больных бронхиальной астмой. 1 табл., 2 пр.

Изобретение относится к гигиене труда и медицине и раскрывает способ оценки профессионального риска здоровью, связанного с развитием артериальной гипертензии (АГ) у работников, занятых на выполнении подземных горных работ в условиях труда с производственным шумом при уровне выше допустимого. Способ характеризуется тем, что определяют в крови работников, занятых на выполнении подземных горных работ в условиях труда с производственным шумом при уровне выше допустимого, следующие лабораторные показатели: содержание липопротеинов высокой плотности, гомоцистеина, индекс атерогенности, уровень малонового диальдегида, уровень антиоксидантной активности, состояние эндотелия сосудов через установление степени снижения прироста диаметра плечевой артерии, в случае подтверждения для всех указанных лабораторных показателей их профессиональной обусловленности определяют вероятность pi1 отклонения от нормы состояния эндотелия сосудов у работников и вероятность pi2 развития артериальной гипертензии у работников с отклонениями от нормы состояния эндотелия сосудов. Рассчитывают профессиональный риск RiАГ здоровью работников. 2 табл., 1 пр.

Изобретение относится к медицине, а именно к патологической анатомии, и позволяет на субклеточном уровне определять этиологический фактор гидроцефалии у погибших новорожденных с экстремально низкой массой тела (ЭНМТ). Способ заключается в том, что у погибших новорожденных с ЭНМТ (от 500 до 1000 г) осуществляют иммуногистохимическое исследование вентрикулярной герминативной зоны, проекции цитоархитектонического поля N6 определяют индекс экспрессии (ИЭ) ММР-9 в глиобластах, дополнительно к этому рассчитывают индекс экспрессии рилина в нейронах Кахаля-Ретциуса. При нулевых значениях обоих показателей диагностируют наследственную гидроцефалию, при значении ИЭ ММР-9, равном 0,25 усл. ед. или более, в сочетании с ИЭ рилина менее 2 усл. ед. - поствоспалительную гидроцефалию, при значении ИЭ ММР-9, равном 0,17 усл. ед. или менее, в сочетании с ИЭ рилина, равным 2 усл. ед. или более - постгеморрагическую гидроцефалию. Предлагаемый способ высокоинформативен, выполняется при помощи иммуногистохимического метода и на субклеточном уровне позволяет дифференцировать наследственную (связанную с аномалиями развития Сильвиева водопровода), поствоспалительную и постгеморрагическую гидроцефалии у погибших новорожденных с ЭНМТ. Является морфологическим методом осуществления объективного контроля за качеством клинической диагностики, лечения гидроцефалии и оформления заключительного клинического диагноза. Позволяет оптимизировать морфологическую диагностику гидроцефалий в зависимости от этиологического фактора и существенно повышает качество оформления патологоанатомического диагноза и эпикриза. 3 пр.
Изобретение относится к области медицины, а именно к судебной медицине. Для установления непосредственных причин смерти. Для определения непосредственных причин терминального исхода при отравлениях этанолом на фоне алкогольной болезни печени (АБП) оценивают комплекс патоморфологических, судебно-химических и гистохимических эквивалентов и их компонентов в баллах. Полученные баллы суммируют, и при сумме баллов, равной 4-6, определяют мозговой тип умирания с развитием паралича сердечно-сосудистого и дыхательного центров; при сумме баллов, равной 7-9, - печеночный тип, обуславливающий острую печеночную недостаточность, отек головного мозга; при сумме баллов, равной 10-12, - сердечный, при котором причиной смерти является прогрессирование цирротической кардиомиопатии (ЦКМП) с нарастанием сердечной недостаточности по левожелудочковому типу; при сумме баллов, равной не менее 13, - сердечный, в основе которого лежит алкогольная кардиомиопатия (АКМП), влекущая за собой внезапную сердечную смерть или острую недостаточность кровообращения. Способ повышает точность определения истинной причины смерти и достоверность информации, отражаемой в статистических документах. 3 пр.

Изобретение относится к области медицины, в частности к стоматологии, и предназначено для оценки прогноза кариеса. Из венозной крови выделяют ДНК. Для определения точечных мутаций гена KLK4 используют метод ПЦР. В случае присутствия аллеля А в мутационных точках G2664153A и G2142A гена KLK4 прогнозируют развитие кариеса. Изобретение позволяет прогнозировать кариозный процесс при отсутствии клинических признаков заболевания. 3 табл., 2 пр.

Изобретение относится к области медицины и представляет собой способ диагностики выраженного фиброза печени у больных хроническим гепатитом C (ХГС) естественного течения с 1 генотипом, отличающийся тем, что в нейтрофилах и моноцитах периферической крови определяют активность цитохимических ферментов - лактатдегидрогеназы (ЛДГ), глюкозо-6-фосфатдегидрогеназы (Г-6-ФДГ) и никотинамидадениндинуклеотид-диафоразы (НАД-диафоразы) и при снижении их активности в нейтрофилах и моноцитах более чем в три раза по сравнению с нормой диагностируют выраженный фиброз печени. Способ позволяет выявлять фиброз печени при ХГС у пациентов, не получавших ранее лечение, с возможностью своевременного начала противовирусной терапии. 6 табл., 2 пр.

Изобретение относится к области медицины и представляет собой способ диагностики выраженного фиброза печени у больных хроническим гепатитом C (ХГС) естественного течения с 1 генотипом, отличающийся тем, что в нейтрофилах и моноцитах периферической крови определяют активность цитохимических ферментов - лактатдегидрогеназы (ЛДГ), глюкозо-6-фосфатдегидрогеназы (Г-6-ФДГ) и никотинамидадениндинуклеотид-диафоразы (НАД-диафоразы) и при снижении их активности в нейтрофилах и моноцитах более чем в три раза по сравнению с нормой диагностируют выраженный фиброз печени. Способ позволяет выявлять фиброз печени при ХГС у пациентов, не получавших ранее лечение, с возможностью своевременного начала противовирусной терапии. 6 табл., 2 пр.

Изобретения касаются пептида, синтезированного химическим способом или способом генной инженерии, композиции, включающей такой пептид, ДНК, кодирующей полипептид, вектора, включающего такую ДНК, клетки-хозяина для экспрессии представленного пептида, набора для скрининга пептида, способного подавлять инфекцию респираторного вируса, и способа скрининга пептида, способного подавлять инфекцию респираторного вируса. Представленный пептид содержит 5 или более основных аминокислот, из которых 2 или более основных аминокислот расположены в N-терминальной области или в С-терминальной области, причем N-терминальная область содержит последовательность не более 10 аминокислот, считая от N-терминальной аминокислоты пептида, а С-терминальная область содержит последовательность не более 10 аминокислот, считая от С-терминальной аминокислоты пептида, при этом пептид состоит из последовательности аминокислот, по меньшей мере, на 90% идентичной SEQ ID NO: 10. Изобретения могут применяться для блокирования в клетках-мишенях инфекций таких респираторных вирусов, как вирусы гриппа или коронавирусы, а также для профилактики и лечения указанных инфекций.10 н. и 13 з.п. ф-лы, 10 ил., 3 табл., 1 пр.

Изобретение относится к медицине, к области лабораторной диагностики и непосредственно к диагностике эндогенной интоксикации при реперфузионном синдроме после восстановления артериального кровообращения. Сущность способа: при проведении диагностики эндогенной интоксикации при реперфузионном синдроме до и после восстановления артериального кровообращения рассчитывают коэффициент КАСС/ОА, отражающий удельный вес азотсодержащих соединений (АСС) в составе остаточного азота (OA), по формуле ,где OA - остаточный азот, М - мочевина, Кр - креатинин, МК - мочевая кислота. При увеличении удельного веса азотсодержащих соединений по отношению к остаточному азоту после восстановления артериального кровотока по сравнению с показателями до восстановления диагностируют развитие эндогенной интоксикации. Способ позволяет провести диагностику эндогенной интоксикации при реперфузионном синдроме после восстановления артериального кровообращения. 1 табл.
Изобретение относится к области медицины и предназначено для оценки безопасности биомедицинского клеточного продукта (БМКП). Устанавливаются контрольные количественные величины, характеризующие уровень теломеразной активности в клетках с различным туморогенным потенциалом. Сопоставляются уровни теломеразной активности в контролях. Проводится оценка безопасности испытуемых клеток, используемых для получения БМКП или клеток в составе БМКП. Изобретение обеспечивает повышение точности за счет использования экспериментально установленных контрольных количественных параметров - уровня теломеразной активности в клетках с различным туморогенным потенциалом. 1 з.п. ф-лы, 3 пр.
Наверх