Способ эксплуатации литий-ионной аккумуляторной батареи в составе автономной системы электропитания искусственного спутника земли

Изобретение относится к электротехнической промышленности. Способ эксплуатации литий-ионной аккумуляторной батареи в составе автономной системы электропитания искусственного спутника Земли (ИСЗ) заключается в контроле напряжения аккумуляторов, проведении зарядов, разрядов, периодической балансировке аккумуляторов по напряжению, проведении подзаряда и хранении в подзаряженном состоянии. Периодически рассчитывается скорость разбалансировки аккумуляторов с максимальным и минимальным текущими напряжениями и максимальное время до проведения очередной балансировки аккумуляторов по напряжению, а балансировку проводят не позднее рассчитанного времени. Изобретение позволяет упростить способ эксплуатации литий-ионной аккумуляторной батареи в составе автономной системы электропитания ИСЗ. 1 з.п. ф-лы, 1 ил.

 

Заявляемое изобретение относится к электротехнической промышленности и может быть использовано при разработке и эксплуатации литий-ионных аккумуляторных батарей в автономных системах электропитания искусственных спутников Земли (ИСЗ).

Известен способ эксплуатации литий-ионной аккумуляторной батареи, заключающийся в контроле напряжения аккумуляторов, ограничении заряда по максимальной величине напряжения аккумуляторов и проведении в процессе эксплуатации балансировки аккумуляторов по напряжению путем подразряда аккумуляторов на резисторы до достижения их напряжением величины напряжения наиболее разряженного (наименее заряженного) аккумулятора («Батарея 6ЛИ-25, ЖЦПИ.563561.002 ПС», разработки и изготовления предприятия ОАО "Сатурн", г. Краснодар).

В известной литий-ионной аккумуляторной батарее 6ЛИ-25, согласно ЖЦПИ.563561.002 ПС, периодически контролируют напряжение аккумуляторов и, если разность поэлементных напряжений наиболее заряженного и наименее заряженного аккумуляторов превышает 25 мВ, проводят выравнивание аккумуляторов по емкости путем разряда более заряженных аккумуляторов на балансировочные резисторы до снижения отличия в напряжениях аккумуляторов не более 10 мВ.

Недостатком известного способа заряда литий-ионной аккумуляторной батареи является то, что проведение выравнивания аккумуляторов по емкости - процесс, связанный с достижением заранее установленной величины разбаланса по напряжению, усложняет эксплуатацию литий-ионной аккумуляторной батареи.

Наиболее близким техническим решением является «способ заряда литий-ионной аккумуляторной батареи в автономной системе электропитания (патент RU 2461101), заключающийся в проведении зарядов, хранении в заряженном состоянии, подзарядов, при необходимости, разрядов, контроле напряжения аккумуляторов и периодической балансировке аккумуляторов по напряжению путем выбора аккумулятора с наименьшим напряжением, подключения к оставшимся аккумуляторам индивидуальных разрядных резисторов, с последующим отключением соответствующих резисторов при достижении напряжения на соответствующих аккумуляторах уровня напряжения первоначально выбранного аккумулятора, отличающийся тем, что по завершении балансировки или в процессе ее проведения дополнительно проводят упреждающую разбалансировку аккумуляторов по напряжению относительно напряжения первоначально выбранного аккумулятора.

Этот способ принят за прототип заявляемому изобретению.

Недостатком известного способа эксплуатации литий-ионной аккумуляторной батареи является то, что процесс начала проведения балансировки аккумуляторов не определен во времени, что усложняет эксплуатацию литий-ионной аккумуляторной батареи в составе автономной системы электропитания ИСЗ. При работе аккумуляторной батареи в составе ИСЗ не всегда есть возможность проведения профилактических работ с ней, необходимо выбирать приемлемый для этого промежуток времени.

Задачей заявляемого изобретения является упрощение способа эксплуатации литий-ионной аккумуляторной батареи в составе автономной системы электропитания ИСЗ.

Поставленная задача решается тем, что при проведении зарядов, разрядов, периодической балансировке аккумуляторов по напряжению, проведении подзаряда и хранении в подзаряженном состоянии периодически рассчитывают скорость разбалансировки аккумуляторов с максимальным и минимальным текущими напряжениями и максимальное время до проведения очередной балансировки аккумуляторов по напряжению, а балансировку проводят не позднее рассчитанного времени. При этом скорость разбалансировки аккумуляторов с максимальным и минимальным текущими напряжениями рассчитывают по формуле:

где V - скорость разбалансировки аккумуляторов, В/час;

Umax - максимальное текущее напряжение на каком-либо аккумуляторе, В;

Umin - минимальное текущее напряжение на каком-либо аккумуляторе, В;

i - номер измерения;

τ - время между текущим и предшествующим измерением, а очередную балансировку аккумуляторов по напряжению проводят не позднее времени рассчитанного исходя из соотношения:

где Т - время до проведения очередной балансировки аккумуляторов по напряжению, час;

ΔUmax - максимально допустимый разбаланс аккумуляторов по напряжению, В.

Действительно, расчет текущей скорости разбалансировки аккумуляторов позволяет рассчитать с достаточно высокой точностью время до проведения очередной балансировки. Полученные данные позволят планировать проведение балансировки аккумуляторов в нужный период, не вводя ограничений на целевую работу ИСЗ.

На фиг. 1 приведена упрощенная функциональная схема автономной системы электропитания ИСЗ, поясняющая работу по предлагаемому способу.

Автономная система электропитания содержит солнечную батарею 1, подключенную к нагрузке 2 через преобразователь напряжения 3, аккумуляторную батарею 4, подключенную через зарядный преобразователь 5 к солнечной батарее 1, а через разрядный преобразователь 6 - к входу выходного фильтра преобразователя напряжения 3.

При этом нагрузка 2 в своем составе содержит бортовую ЭВМ, систему телеметрии и командно-измерительную радиолинию.

Параллельно аккумуляторной батарее 4 подключено устройство контроля аккумуляторов 7 (в частности, напряжения аккумуляторов) аккумуляторной батареи, связанное входом с аккумуляторной батареей 4, а выходом - с нагрузкой 2 (с бортовой ЭВМ).

В цепи заряда-разряда аккумуляторной батареи установлен измерительный шунт 8.

Аккумуляторная батарея состоит из последовательно соединенных аккумуляторов 4-1, параллельно которым подключены балансировочные резисторы 4-2 через замыкающиеся контакты 4-3 реле в блоке реле 4-4.

Зарядный преобразователь 5 состоит из регулирующего ключа 9, управляемого схемой управления 10, вольтодобавочного узла, выполненного на трансформаторе 15, транзисторах 16 и выпрямителя на диодах 17.

Разрядный преобразователь 6 состоит из регулирующего ключа 11, управляемого схемой управления 12.

Преобразователь напряжения 3 состоит из регулирующего ключа 13, управляемого схемой управления 14, входного фильтра-конденсатора 18 и выходного фильтра на диоде 19, дросселе 20 и конденсаторе 21.

Схемы управления: 10 - зарядного преобразователя 5, 12 - разрядного преобразователя 6, и 14 - преобразователя напряжения 3, выполнены в виде широтно-импульсных модуляторов, входом подключенных к шинам стабилизируемого напряжения. Схема управления 10 зарядного преобразователя 5 дополнительно связана с измерительным шунтом 8 и нагрузкой 2, в качестве обратных связей по величине зарядного тока и напряжения нагрузки соответственно.

Устройство работает следующим образом. В процессе эксплуатации аккумуляторная батарея 4 работает в основном в режиме хранения и периодических подзарядов от солнечной батареи 1 через зарядный преобразователь 5. Такой режим работы позволяет содержать ее в постоянной готовности для прохождения теневых участков орбиты или на случай потери ориентации солнечной батареи ИСЗ на Солнце.

Питание нагрузки 2 осуществляется при этом от солнечной батареи 1 через преобразователь напряжения 3.

При прохождении теневых участков орбиты либо при нарушении ориентации нагрузка 2 питается от аккумуляторной батареи 4 через разрядный преобразователь 6.

Устройство контроля аккумуляторов 7 контролирует напряжение аккумуляторов и передает информацию об их состоянии в нагрузку 2 (бортовую ЭВМ), в которой реализуются следующие технологические операции:

1. Обрабатываются данные по текущему значению напряжения аккумуляторов 4-1, оценивается разница в текущих напряжениях аккумуляторов относительно аккумулятора, имеющего наименьшее напряжение;

2. Максимальная разница текущих напряжений аккумуляторов используется для расчета текущей скорости разбаланса. Для расчета используются также данные предшествующего измерения текущих напряжений аккумуляторов и время между проведенными измерениями;

3. Исходя из допустимого максимального уровня разбаланса аккумуляторов по напряжению и текущей скорости разбаланса, рассчитывается время (максимальное) до необходимости проведения очередной балансировки аккумуляторов по напряжению.

Это позволяет планировать проведение процесса балансировки аккумуляторов в графике эксплуатации ИСЗ, без ущерба для целевой работы ИСЗ, что упрощает процесс эксплуатации аккумуляторной батареи и ИСЗ в целом.

Таким образом, предлагаемый способ позволяет упростить способ эксплуатации литий-ионной аккумуляторной батареи в составе автономной системы электропитания ИСЗ.

1. Способ эксплуатации литий-ионной аккумуляторной батареи в составе автономной системы электропитания искусственного спутника Земли, заключающийся в контроле напряжения аккумуляторов, проведении зарядов, разрядов, периодической балансировке аккумуляторов по напряжению, проведении подзаряда и хранении в подзаряженном состоянии, отличающийся тем, что периодически рассчитывают скорость разбалансировки аккумуляторов с максимальным и минимальным текущими напряжениями и максимальное время до проведения очередной балансировки аккумуляторов по напряжению, а балансировку проводят не позднее рассчитанного времени.

2. Способ эксплуатации литий-ионной аккумуляторной батареи в составе автономной системы электропитания искусственного спутника Земли по п. 1, отличающийся тем, что скорость разбалансировки аккумуляторов с максимальным и минимальным текущими напряжениями рассчитывают по формуле:

V=[(Umax(i-1)-Umin(i-1))-(Umaxi-Umini)]/τ, где

V - скорость разбалансировки аккумуляторов, В/час;

Umax - максимальное текущее напряжение на каком-либо аккумуляторе, В;

Umin - минимальное текущее напряжение на каком-либо аккумуляторе, В;

i - номер измерения;

τ - время между текущим и предшествующим измерением,

а очередную балансировку аккумуляторов по напряжению проводят не позднее времени, рассчитанного исходя из соотношения:

Т≤[ΔUmax-(Umaxi-Umini)]/V, где

Т - время до проведения очередной балансировки аккумуляторов по напряжению, час;

ΔUmax - максимально допустимый разбаланс аккумуляторов по напряжению, В.



 

Похожие патенты:

Использование: в области электротехники. Технический результат – более точное определение времени начала балансировки аккумуляторов.

Использование: в области электротехники. Технический результат – повышение эффективности зарядки.

Изобретение относится к электротехнической промышленности и может быть использовано при разработке и эксплуатации литий-ионных аккумуляторных батарей, в том числе в автономных системах электропитания искусственных спутников Земли (ИСЗ).

Изобретение относится к электротехнике, а именно к эксплуатации герметичных никель-кадмиевых аккумуляторных батарей, используемых для энергообеспечения потребителей на космических аппаратах.

Группа изобретений относится к электрическим схемам транспортных средств с питанием от собственных источников энергоснабжения. Устройство управления подачей электрической энергии для устройства подачи электрической энергии, включающего в себя множество аккумуляторных батарей и генератор электрической энергии, выполняющий зарядку множества аккумуляторных батарей, причем устройство управления подачей электрической энергии управляет параллельным соединением между множеством аккумуляторных батарей.

Изобретение относится к источникам питания и схеме его зарядки. Сущность: когда источник питания находится в состоянии зарядки, измеряют микросхемой управления источником питания напряжение на положительном электроде аккумуляторного элемента внутри источника питания через контрольный вывод источника питания, электрически соединенный с положительным электродом аккумуляторного элемента.

Представлен способ регулировки небезопасных термических условий в индуктивной беспроводной зарядной системе в транспортном средстве. Способ относится к процессу индуктивной зарядки заряжаемого устройства с использованием индуктивного зарядного устройства.

Группа изобретений относится к электрическим тяговым системам транспортных средств с питанием от собственных источников энергоснабжения. Транспортное средство включает в себя: электрическое аккумуляторное устройство, первый температурный датчик, сконфигурированный для определения температуры аккумулятора, второй температурный датчик, сконфигурированный для определения температуры окружающей среды, нагреватель, сконфигурированный для нагрева аккумулятора и контроллер, сконфигурированный для управления нагревателем.

Изобретение относится к области электротехники и может быть использовано для ускоренного заряда никель-кадмиевых батарей, формирования и восстановления их емкости при вводе в эксплуатацию, техническом обслуживании, регламентных работах.

Изобретение относится к способу эксплуатации никель-водородных аккумуляторных батарей (АБ) в автономных системах электропитания (СЭП) летательных аппаратов (ЛА), функционирующих на низкой околоземной орбите.

Изобретение относится к области электротехники, а именно к способу циклирования литий-серного элемента, причем указанный способ содержит разрядку литий-серного элемента, завершение разрядки, когда напряжение элемента достигает порогового напряжения разрядки, которое находится в диапазоне от 1,5 до 2,1 В, зарядку литий-серного элемента и завершение зарядки, когда напряжение элемента достигает порогового напряжения зарядки, которое находится в диапазоне от 2,3 до 2,4 В. В результате указанных режимов циклирования литий-серный элемент не полностью заряжен при пороговом напряжении зарядки, и при этом литий-серный элемент не полностью разряжен при пороговом напряжении разрядки, что позволяет проводить многократное циклирование элемента в течение продолжительного времени без увеличения внутреннего сопротивления элемента. Повышение срока службы и снижение скорости уменьшения емкости элемента является техническим результатом изобретения. 2 н. и 12 з.п. ф-лы, 9 ил.
Изобретение относится к области электротехники и направлено на повышение эффективности работы аккумулятора и увеличение ресурса его работы за счет применения в качестве нагревательного элемента управляющего электрода, при помощи которого поддерживаются заданные выходные параметры аккумулятора, а при низкой температуре нагревается непосредственно электролит, что приводит к сокращению времени подготовки аккумулятора к его использованию. Электрохимический аккумулятор содержит корпус, в котором размещены отрицательный и положительный электроды, взаимодействующие с электролитом, и между которыми расположен управляющий электрод из металлической сетки с калиброванными отверстиями, имеющий не менее двух выводов, связанный при помощи коммутатора с источником тока и напряжения для нагрева электролита и штатной работы.

Группа изобретений относится к аккумуляторам для транспортных средств с питанием от собственных источников. Способ регулирования работы металло-воздушной батареи заключается в том, что регулируют по меньшей мере один из следующих параметров: электрический ток, вырабатываемый батареей, температура батареи, температура электролита и напряжение, вырабатываемое батареей. Регулируют параметры таким образом, чтобы поддерживать предварительно заданную скорость коррозии металла, содержащегося в батарее. Система для регулирования работы металло-воздушной батареи содержит металло-воздушную батарею и контроллер. Электромобиль содержит метало-воздушную батарею, перезаряжаемое устройство и контроллер. Технический результат заключается в более оптимальном использовании энергии, аккумулированной в метало-воздушной батареи. 3 н. и 24 з.п. ф-лы, 7 ил.

Использование: в области электротехники. Техническим результатом является повышение эффективности использования литий-ионной аккумуляторной батареи при длительной ее эксплуатации. Согласно способу при проведении заряда литий-ионной аккумуляторной батареи из n последовательно соединенных аккумуляторов с подключенными к ним через коммутаторы балансировочными резисторами, с контролем напряжения аккумуляторов и ограничением заряда по достижении напряжения любого из аккумуляторов заданного максимального значения, при включении заряда выбирают аккумулятор с наименьшим текущим напряжением UMIN, исходя из него рассчитывают общее время включения заряда ТОБЩ до его максимальной величины U, а к остальным аккумуляторам в процессе заряда подключаются балансировочные резисторы на время, индивидуальное для каждого аккумулятора. 1 ил.
Наверх