Высокопрочная низколегированная азотосодержащая мартенситная сталь

Изобретение относится к области металлургии, а именно к высокопрочной низколегированной азотосодержащей мартенситной стали, используемой для изготовления высоконагруженных деталей и конструкций в машиностроении и железнодорожном транспорте. Сталь содержит, мас.%: углерод 0,05-0,10, кремний 0,2-0,4, марганец 0,5-1,0, хром от 2,5 до менее 3,0, азот от 0,15 до менее 0,2, железо и примеси остальное. Достигается повышение показателей прочности вследствие наличия азота в α-твердом растворе и дополнительного упрочнения частицами карбонитридов хрома, выделяющимися в процессе отпуска, и удовлетворительные показатели пластичности и ударной вязкости вследствие наличия в структуре небольшого количества остаточного аустенита, расположенного между кристаллами мартенсита. 2 табл.

 

Изобретение относится к области металлургии, в частности к области низколегированных высокопрочных конструкционных сталей, используемых для высоконагруженных деталей и конструкций в машиностроении.

Известна сталь низколегированная углеродсодержащая сталь 18Х2Н4ВА [Международный транслятор современных сталей и сплавов под редакцией B.C. Кершенбаума. М., 1992, т. 1, 1103 С.], содержащая следующие компоненты, мас.%:

углерод 0,14-0,20
хром 1,35-1,65
никель 4,0-4,4
марганец 0,25-0,55
кремний 0,17-0,37
вольфрам 0,8-1,2

железо остальное

Основным недостатком этой стали является пониженная для высоконагруженных деталей прочность (σB = 1050 МПа, σ0,2 = 800 МПа) после термической обработки, включающей закалку от 950°С, масло и отпуск 550°С, а также содержание в ней дорогостоящих элементов никеля и вольфрама.

Наиболее близкой по химическому составу к предлагаемому техническому решению является низколегированная углеродсодержащая сталь 30Х3МФ [Международный транслятор современных сталей и сплавов под редакцией B.C. Кершенбаума. М., 1992, т. 1, 1103 С.], содержащая следующие компоненты, мас.%:

углерод 0,27-0,34
хром 2,3-2,7
марганец 0,3-0,6
кремний 0,17-0,37
молибден 0,2-0,3
ванадий 0,06-0,12
железо остальное

Основным недостатком этой стали является пониженная прочность (σB = 980 МПа, σ0,2 = 835 МПа).

Задача, на решение которой направлено настоящее изобретение, заключается в создании способа легирования, позволяющего получать высокопрочную низколегированную конструкционную сталь, обладающую по сравнению со сталями 18Х2Н4ВА и 30Х3МФ более высоким пределом текучести и пределом прочности при сохранении повышенной пластичности и ударной вязкости.

Техническим результатом изобретения является повышение прочности низколегированной конструкционной стали.

Технический результат достигается тем, что в углеродсодержащую низколегированную сталь, содержащую углерод, кремний, марганец, хром, железо и примеси, дополнительно введен азот, при следующем соотношении компонентов мас.%:

углерод 0,05-0,10
кремний 0,2-0,4
марганец 0,5-1,0
хром от 2,5 до менее 3,0
азот от 0,15 до менее 0,2
железо и примеси остальное

Дополнительное введение азота в состав стали в количестве 0,15-0,20% приводит к повышению прочности. Увеличение показателей прочности обусловлено твердорастворным упрочнением и упрочнением дисперсными частицами карбонитридной фазы, выделяющимися в процессе нагрева при температурах 200-400°С. Высокие показатели прочности, пластичности и ударной вязкости связаны с формированием структуры азотистого мартенсита с тонкими прослойками остаточного аустенита, а также дисперсными частицами карбонитридной фазы. При концентрации азота более 0,20% трудно получить качественный металл без пористости из-за ограниченной растворимости азота в расплаве.

При содержании углерода более 0,1% по границам зерен выделяются крупные частицы карбидов типа Me3C, приводящие к снижению пластичности и ударной вязкости.

Добавки хрома и марганца, повышающие растворимость азота в расплаве железа, в количествах 2,5-3,0% и 0,5-1,0% соответственно достаточны для кристаллизации жидкого метала без образования пор. При содержании хрома менее 2,5% не обеспечивается необходимая растворимость азота в расплаве, а также снижается степень упрочнения стали. Увеличение содержания хрома более 3,0% не приводит к дополнительному упрочнению стали, а также увеличивает стоимость стали. Увеличение содержания марганца более 1,0% приводит к разупрочнению стали вследствие образования аустенита.

Добавки 0,2-0,4% кремния достаточны для раскисления стали. Сталь выплавляли на установке для литья под давлением 30-40 атм азота. Химический состав стали приведен в таблице 1.

Термическую обработку проводили по режимам, состоящим из закалки от 950°С с охлаждением в воде и последующего старения при 200-400°С в течение 2 часов. После указанной обработки наблюдали мелкозернистую (<10 мкм) структуру с реечным мартенситом и очень дисперсными выделениями карбонитридной фазы. Результаты механических испытаний металла приведены в таблице 2.

Таким образом, по результатам испытаний видно (табл. 2), что предлагаемая сталь в отличие от прототипа обладает более высоким пределом текучести и пределом прочности при сохранении повышенной пластичности и ударной вязкости, что приводит к увеличению долговечности и надежности высоконагруженных изделий и конструкций из этой стали.

*- сталь дополнительно содержит 0,25% молибдена и 0,08% ванадия.

Высокопрочная низколегированная азотосодержащая мартенситная сталь, содержащая углерод, кремний, марганец, хром, железо и примеси, отличающаяся тем, что она дополнительно содержит азот при следующем соотношении компонентов, мас.%:

углерод 0,05-0,10
кремний 0,2-0,4
марганец 0,5-1,0
хром от 2,5 до менее 3,0
азот от 0,15 до менее 0,2
железо и примеси остальное



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к производству обсадных и насосно-компрессорных труб из коррозионно-стойкой стали, эксплуатируемых на месторождениях для добычи нефти и газа с высокой концентрацией диоксида углерода в составе перекачиваемой среды, расположенных в холодных макроклиматических районах.

Изобретение относится к области металлургии, а именно к стальным трубам, получаемым электрической контактной сваркой. Труба имеет химическую композицию, содержащую, в мас.%, С: от 0,03 до 0,59, Si: от 0,10 до 0,50, Mn: от 0,60 до 2,10, Al: от 0,01 до 0,35, Са: от 0,0001 до 0,0040, Cr: от 0,01 до 1,09, при этом содержание Si и содержание Mn удовлетворяют массовому отношению Mn/Si, находящемуся в диапазоне от 6,0 до 9,0, и остальное составляет Fe и неизбежные примеси.

Изобретение относится к области металлургии и может быть использовано при выплавке в открытых индукционных печах высокохромистых жаропрочных сталей с низким содержанием азота.

Изобретение относится к области металлургии, а именно к высокопрочной многофазной стали с минимальным пределом прочности на растяжение 580 МПа, преимущественно с двухфазной структурой, для изготовления холодно- или горячекатаной стальной полосы толщиной 0,50-4,00 мм с улучшенными формовочными свойствами, применяемой, в частности, для автомобилестроения с применением легковесных конструкций.

Изобретение относится к области металлургии, а именно к нержавеющему сплаву на основе железа и хрома, используемому для изготовления ювелирных изделий и деталей часов.

Изобретение относится к области металлургии, в частности к составам сплавов, используемых для легирования стали. Сплав содержит, мас.%: ванадий 30,0-35,0; углерод 0,5-1,0; хром 8,0-10,0; ниобий 8,0-12,0; селен 0,5-1,0; железо - остальное.

Изобретение относится к области металлургии, в частности к производству горячекатаной стали, предназначенной для применения в сооружениях и конструкциях различного назначения в Арктике и Антарктике.

Изобретение относится к металлургии, а именно к способу изготовления высокопрочной конструкционной стали. Способ изготовления высокопрочной конструкционной стали включает этап изготовления сляба для изготовления стального сляба, этап (1) нагревания стального сляба до температуры в диапазоне от 950 до 1300°С, этап (2) выравнивания для выравнивания температуры стального сляба, этап горячей прокатки стального сляба, содержащий стадию (5) горячей прокатки I типа в диапазоне температур, в котором не происходит рекристаллизация, ниже температуры окончания рекристаллизации (RST), но выше температуры А3 образования феррита, и для обеспечения температуры чистовой прокатки (FRT), этап (6) закалки горячекатаной стали со скоростью охлаждения по меньшей мере 20°С/с до температуры окончания закалки (QT), причем указанная температура окончания закалки (QT) находится между температурами Ms и Mf, этап (7, 9) перераспределяющей обработки для перераспределения углерода в микроструктуре горячекатаной стали от мартенсита к аустениту, и этап (8) охлаждения горячекатаной стали до комнатной температуры посредством принудительного или естественного охлаждения.

Изобретение относится к области металлургии и может быть использовано при получении быстрорежущей стали из кусковых отходов изношенного режущего инструмента и штамповой оснастки методом электрошлакового переплава.

Изобретение относится к области металлургии, а именно к производству труб нефтяного сортамента. Для повышения коррозионной стойкости металла труб в средах, содержащих сероводород (при парциальном давлении H2S до 1,5 МПа) и углекислый газ (при парциальном давлении СО2 до 0,1 МПа) как одновременно, так и в отдельности, и обеспечения предела прочности не менее 655 МПа, предела текучести от 552 до 758 МПа и сопротивления ударным нагрузкам при минус 60°С не менее 70 Дж/см2 трубы получают из стали, содержащей, мас.%: углерод 0,15-0,25, кремний 0,15-0,35, марганец 0,40-0,70, хром 0,70-1,50, молибден 0,10-0,30, ванадий 0,03-0,08, алюминий 0,015-0,050, сера не более 0,010, фосфор не более 0,015, азот не более 0,012, медь 0,15-0,35, никель не более 0,30 (или 0,30-0,70), железо и неизбежные примеси остальное.

Изобретение относится к области металлургии, к способам получения листовых плакированных сталей и может быть использовано при изготовлении сварных конструкций и оборудования для химической, нефтехимической, нефтеперерабатывающей, коксохимической и других отраслей промышленности. Заявлен способ получения высокопрочной коррозионностойкой листовой плакированной стали. Способ включает горячую прокатку при температуре не выше 1250°С с ее окончанием при температуре выше 880°С, проведение смотки полосы в рулон при температуре 570-660°С. Основной слой выполняют из низкоуглеродистой стали, микролегированной молибденом и титаном, способствующих образованию межфазных наноразмерных карбидных и карбонитридных выделений, а плакирующий слой выполняют из коррозионностойкой аустенитной стали, состав которой удовлетворяет условию Crэкв/Niэкв≤1,6, причем хромовый эквивалент составляет Crэкв=%Cr+1,37%Мо+1,5%Si+2%Nb+3%Ti, а никелевый эквивалент - Niэкв=%Ni+0,31%Mn+22%C+14,2%N+%Cu. Обеспечиваются стабильно высокие значения прочности, пластичности, хладостойкости, коррозионной стойкости, сплошности соединения слоев и свариваемости. 1 з.п. ф-лы, 2 табл., 2 пр.
Наверх