Способ дезактивации твердых радиоактивных отходов ледяными гранулами

Изобретение относится к области обращения с радиоактивными отходами. Способ дезактивации твердых радиоактивных отходов (ТРО) включает воздействие в рабочей камере на поверхность ТРО частиц льда с дальнейшим плавлением льда, сбором и фильтрацией плавленой воды с образованием замкнутого цикла воды. Обработку поверхности ТРО проводят ускоренными ледяными гранулами. Проводят входной и выходной радиационный контроль отходов. Сортировку ТРО в соответствии с результатами радиационного контроля с выводом части отходов из категории радиоактивных в категорию твердых промышленных отходов. Талая вода после дезактивации проходит полную очистку от радионуклидов. Дезактивация ТРО осуществляется путем воздействия на них потока сферических монодиспресных ледяных водяных гранул размером 100-500 мкм, скоростью до 100 м/с, полученных при температуре не выше минус 50оС. Изобретение позволяет повысить экономичность и эффективность очистки и снизить объем ТРО. 6 з.п. ф-лы, 1 ил.

 

Изобретение относится к области обращения с радиоактивными отходами и может быть использовано для дезактивации твердых радиоактивных отходов (ТРО) различного морфологического состава (металлические отходы, крупные фрагменты железобетона и др.).

Известна «Установка для очистки поверхности» RU 2309832 [2], включающая изготовление ледяных гранул из потока воды, ускорение ледяных гранул и обработку поверхности гранулами.

Недостатком является практическая неприменимость для очистки поверхностей от радиоактивных загрязнений.

Известен «Способ дробеструйной очистки поверхности бетонных и железобетонных конструкций перед ремонтом» RU 2457049 [3], включающий обработку поверхности бетона и железобетона дробью под давлением, обработку дробью ведут под давлением 7 атм, расход дроби составляет 9-11 кг/м2, производительность 20-40 м2/ч, продолжительность воздействия 2,0-2,5 мин/м2.

Недостатком известного способа сухой абразивной очистки при дезактивации радиоактивно загрязненных поверхностей является интенсивное радиоактивное пылеобразование (истирающийся абразив, сухие частицы загрязнений), как следствие – потребность во влажном пылеподавлении, дезактивации оборудования и рабочей зоны с большим количеством воды, образование значительных объемов вторичных ЖРО. Кроме того, дробеструйные камеры громоздки и не годятся для мобильного исполнения, металлическая дробь является расходным материалом, что также препятствует мобильности и автономности работы устройства. Расходный материал в процессе работы требует регулярной дезактивации, со временем превращается во вторичные ТРО, работа с которыми требует дополнительных операций, причем объем ТРО на захоронение дополнительно увеличивается.

Наиболее близким техническим решением является «Способ дезактивации конструкций и устройство для его осуществления» RU 93016037 [1], включающий насыщение кристаллической влагой бетонной поверхности путем подачи переохлажденного нейтрального газа (СО2) и последующее воздействие высокотемпературной струей.

Известное устройство [1] не использует расходные материалы и не производит дополнительных ТРО.

Недостатком указанного способа и устройства для его осуществления является образование в процессе дезактивации радиоактивного аэрозольного тумана углекислого газа, что опасно для персонала, радиоактивно загрязняет все помещение и влечет образование большого количества жидких радиоактивных отходов (ЖРО) со взвесями твердых радиоактивных частиц. Кроме того, температура заморозки «сухого льда» из СО2 значительно ниже замерзания водяного льда, что требует больших энергозатрат, а твердость ледяных гранул СО2 меньше, чем песка, металлической дроби и других абразивов, что снижает качество дезактивации поверхности.

Техническим результатом предлагаемого изобретения является снижение опасности для персонала, повышение экономичности и эффективности очистки, снижение объема ТРО, отправляемого на захоронение, снижение объемов образования вторичных радиоактивных отходов.

Технический результат достигается тем, что способ дезактивации твердых радиоактивных отходов (ТРО), включающий воздействие в рабочей камере на поверхность ТРО частиц льда с дальнейшим плавлением льда, сбором и фильтрацией плавленой воды с образованием замкнутого цикла воды характеризуется тем, что обработку поверхности ТРО проводят ускоренными ледяными гранулами, проводят входной и выходной радиационный контроль отходов, сортировку их в соответствии с результатами радиационного контроля с выводом части отходов из категории радиоактивных в категорию твердых промышленных отходов, причем талая вода после дезактивации проходит полную очистку от радионуклидов.

Дезактивация поверхностей ТРО может осуществляется путем воздействия на них потока сферических монодисперсных ледяных водяных гранул размером 100-500 мкм, скоростью до 100 м/с, полученных при температуре не выше минус 50°С. Указанные параметры потока ледяных гранул достаточно легко осуществимы и обладают достаточной эффективностью для удаления загрязнений, в том числе радиоактивных, сконцентрированных, как правило, в поверхностных слоях отходов (в ржавчине, окалине, лакокраске, карбонизированном «старом» поверхностном слое бетона и пр.).

Крупные предметы ТРО можно фрагментировать средствами фрагментации (например, стол для фрагментации с гидравлическими ножницами, аппарат плазменной резки или др.), что позволит сократить габариты рабочей камеры дезактивации.

Рабочая камера дезактивации может содержать средства пылеподавления, например распылитель воды в рабочей камере, что позволит дополнительно снизить содержание радиоактивной пыли и аэрозолей в воздухе рабочей зоны.

Система очистки талой воды после дезактивации может содержать узел микрофильтрации, например центробежный сепаратор и/или тканевый мешочный фильтр. Указанные устройства позволят эффективно удалять механические примеси, которые затем установленным порядком собираются и утилизируются как вторичные ТРО.

Система очистки воды может содержать узел селективной сорбции радионуклидов, например фильтр-контейнер с твердым сорбентом (ионообменным, ферроцианидным или иным) для различных радионуклидов. Отработанные сорбенты установленным порядком собираются и утилизируются как вторичные ТРО.

Система очистки воды может содержать узел мембранной очистки низконапорным обратным осмосом, что позволит осуществить более тщательную очистку воды. Концентрат после мембранной очистки установленным порядком собирается и утилизируется как вторичные жидкие радиоактивные отходы (ЖРО).

Устройство разгона ледяных гранул может содержать блок осушки воздуха, что позволит избежать конденсации воды на поверхности ледяных гранул и повысить эффективность и стабильность результатов дезактивации.

Принципиальная блок-схема дезактивации ТРО показана на фиг. 1, где:

1 – исходные ТРО;

2 – участок приема контейнеров с ТРО;

3 – извлечение ТРО из контейнера;

4 – сортировка ТРО по габариту;

5 – входной радиационный контроль;

6 – фрагментация ТРО;

7 – промежуточный радиационный контроль;

8 – склад (контейнер) безопасных твердых промышленных отходов;

9 – ТРО на дезактивацию;

10 – камера дезактивации;

11 – выходной радиационный контроль;

12 – твердые радиоактивные отходы;

13 – приготовление водных ледяных гранул;

14 – разгон водных ледяных гранул;

15 – микрофильтрация;

16 – узел селективной сорбции радионуклидов;

17 – очистка низконапорным обратным осмосом;

18 – пылеподавление распылением воды;

19 – емкость для сбора концентрата (ЖРО) после мембранной очистки;

20 – приточно-вытяжная вентиляция;

21 – воздух из атмосферы;

22 – сброс очищенного воздуха в атмосферу;

23 – фильтрованная вода;

24 – техническая вода;

25 – талая вода.

Способ реализуется следующим образом: исходные твердые радиоактивные отходы (ТРО), размещенные в сертифицированном контейнере, поступают на участок приема контейнеров 1. Далее ТРО извлекают из контейнера 3, сортируют по габариту 4 и проводят входной радиационный контроль 5. По результатам радиационного контроля и, при необходимости, фрагментации нерадиоактивные фрагменты исходных отходов отправляют в контейнер для сбора твердых промышленных отходов 8. Если фрагменты ТРО по габариту больше размера дезактивационной камеры, их фрагментируют на участке фрагментации ТРО 6, после которого проводят промежуточный радиационный контроль 7. Радиационно-безопасные фрагменты отправляют на склад безопасных твердых промышленных отходов 8. Радиоактивно загрязненные фрагменты подходящего размера отправляют в камеру дезактивации водными ледяными гранулами 10.

Для дезактивации изготавливают ледяные водяные монодисперсные гранулы 13, затем их разгоняют 14 и подают в камеру дезактивации 10. Образующуюся в результате дезактивации талую воду 25 при необходимости подогревают для плавления оставшихся ледяных гранул (на фиг.1 не показано), подвергают микрофильтрации центробежным насосом и/или тканевым фильтром 15, сорбции радионуклидов твердым сорбентом 16, далее фильтрованная вода 23 очищается низконапорным обратным осмосом 17 и снова подается на приготовление ледяных гранул 13. Концентрат от фильтра 17 собирается в емкости для сбора ЖРО 19, а твердые осадки из фильтров 15 и узла 16 собираются в сертифицированный контейнер для вторичных ТРО 12.

После дезактивации проводят выходной радиационный контроль отдезактивированных отходов 11, по результатам которого фрагменты чистых отходов отправляют в контейнер для сбора твердых промышленных отходов 8 для дальнейшего использования или утилизации как бытовой отход, а неотдезактивированные ТРО – в сертифицированный контейнер для вторичных ТРО 12 для дальнейшей переработки и захоронения.

Способ также использует активную приточно-вытяжную вентиляцию, при необходимости с подогревателем воздуха 20, которая забирает воздух из атмосферы 21 и после использования и очистки, сбрасывает в атмосферу 22. Отработанные фильтры вытяжной вентиляции собираются в сертифицированный контейнер для вторичных ТРО 12.

Технический результат – снижение опасности для персонала достигается существенным снижением образования радиоактивных аэрозолей при проведении процесса дезактивации.

Технический результат – повышение экономичности достигается исключением «сухого льда» и сухого абразива (металлической дроби, песка, купершлака и др.) из процесса.

Технический результат – повышение эффективности очистки и снижение объема ТРО достигается применением ускоренных ледяных водяных гранул, позволяющих механически удалять и одновременно смывать паром радиоактивные поверхностные загрязнения, переводя после дезактивации и сортировки значительную часть отходов из категории радиоактивных в категорию твердых промышленных отходов с последующей более дешевой утилизацией либо повторным использованием.

Технический результат – снижение объемов образования вторичных радиоактивных отходов достигается за счет использования в качестве абразива замороженной воды – материала, доступного и рециклирующего за счет системы водоочистки.

Промышленное применение. Изобретение может с успехом применяться для производства и эксплуатации устройств дезактивации ТРО.

1. Способ дезактивации твердых радиоактивных отходов (ТРО), включающий воздействие в рабочей камере на поверхность ТРО частиц льда с дальнейшим плавлением льда, сбором и фильтрацией плавленой воды с образованием замкнутого цикла воды, отличающийся тем, что обработку поверхности ТРО проводят ускоренными ледяными гранулами, проводят входной и выходной радиационный контроль отходов, сортировку их в соответствии с результатами радиационного контроля с выводом части отходов из категории радиоактивных в категорию твердых промышленных отходов, причем талая вода после дезактивации проходит полную очистку от радионуклидов, дезактивация поверхностей ТРО осуществляется путем воздействия на них потока сферических монодиспресных ледяных водяных гранул размером 100-500 мкм, скоростью до 100 м/с, полученных при температуре не выше минус 50оС.

2. Способ по п.1, отличающийся тем, что крупные предметы ТРО фрагментируют средствами фрагментации.

3. Способ по п.1, отличающийся тем, что рабочая камера содержит средства пылеподавления.

4. Способ по п.1, отличающийся тем, что система очистки воды содержит узел микрофильтрации.

5. Способ по п.1, отличающийся тем, что система очистки воды содержит узел селективной сорбции радионуклидов.

6. Способ по п.1, отличающийся тем, что система очистки воды содержит узел мембранной очистки низконапорным обратным осмосом.

7. Способ по п.1, отличающийся тем, что устройство разгона ледяных гранул содержит блок осушки воздуха.



 

Похожие патенты:

Изобретение относится к средствам защиты окружающей среды от последствий пожаров, осложненных радиационным фактором. Композиция для пылеподавления и локализации радиоактивных продуктов горения после тушения пожара с радиационным фактором в качестве поверхностно-активного вещества содержит смесь анионоактивного, неионогенного и амфотерного поверхностно-активных веществ при следующих соотношениях компонентов, мас.

Способ может быть использован для проведения глубокой дезактивации металлических изделий, на поверхности которых находятся трудноудаляемые радиоактивные загрязнения.

Изобретение относится к области радиохимической технологии и может быть использовано в технологии переработки отработавшего ядерного топлива (ОЯТ). Способ извлечения металлов платиновой группы из осадков после осветления продукта кислотного растворения волоксидированного отработавшего ядерного топлива включает окислительную трансформацию осадка, восстановительную обработку.
Изобретение относится к радиохимической технологии и может быть использовано при переработке отработанного ядерного топлива (ОЯТ) атомных электростанций (АЭС) на операциях растворения.

Изобретение относится к технологии вывода из эксплуатации уран-графитовых ядерных реакторов. Способ формирования барьеров безопасности при создании пункта захоронения особых радиоактивных отходов включает подачу барьерного материала через трубу под собственным весом и перемещение в горизонтальном направлении струей сжатого воздуха, проходящего через воздуховод.

Изобретение относится к технологии обращения с радиоактивными отходами, в частности с низко- и среднеактивными жидкими радиоактивными отходами (ЖРО) с получением продукта, пригодного для долгосрочного хранения.

Изобретение относится к области охраны окружающей среды и может быть использовано при снятии с эксплуатации реакторов с графитовым замедлителем. Облученный графит перед термообработкой подвергают воздействию реагентов, разрушающих его поверхностный слой, содержащий радиоактивные нуклиды, и удаляют полученный продукт с поверхности графита.

Изобретение относится к пригодному для обработки ядерных отходов способу обработки оболочки для проведения ядерных реакций, содержащей прокаленный материал, состоящий полностью или частично из прокаленного гидрида кальция.

Изобретение относится к переработке отходов, включающих органические компоненты и радиоактивные агенты. Способ переработки отходов включает газифицирование отходов, включающих органические компоненты и радиоактивные агенты, которые представляют собой радиоактивные агенты с низким и/или средним уровнем активности, в реакторе с псевдоожиженным слоем при температуре от 600 до 950°С с помощью воздуха, так что коэффициент избытка воздуха составляет ниже 1, с получением газообразного материала, охлаждение газообразного материала путем быстрого охлаждения водой так, что температура после охлаждения составляет от 300 до 500°С, и удаление твердой фракции, включающей радиоактивные агенты, из газообразного материала на стадии очистки газа с получением переработанного газообразного материала.
Изобретение относится к способу сверхкритической флюидной экстракции комплексов урана. Способ включает создание сверхкритического растворителя в реакторе и растворение комплексов урана с лигандами в присутствии воды, экстракцию растворенных комплексов урана с лигандами из реактора.

Изобретение относится к области ядерной техники, а именно к способам удаления металлических покрытий с поверхностей деталей из радиоактивных металлов и сплавов перед их утилизацией с использованием технологических операций переплавки. Способ удаления металлического покрытия с поверхности деталей из радиоактивных металлов и сплавов включает нагрев деталей до образования интерметаллидных соединений, обработку деталей, а при необходимости и дополнительную обработку. Нагрев выполняют в вакуумной камере импульсными токами высокой частоты при определенном количестве циклов до образования интерметаллидных соединений, обработку проводят сверхзвуковым потоком инертного газа с контролем полноты удаления покрытия, а дополнительную обработку проводят сверхзвуковым потоком инертного газа, содержащим порошок корунда. Изобретение позволяет создать универсальный “сухой” способ удаления металлических покрытий. 1 з.п. ф-лы, 2 ил.

Изобретение относится к экологии и охране окружающей среды, а более конкретно к способам переработки беспламенным горением углеродсодержащих отходов, в частности облученного реакторного графита, а также других углеродсодержащих радиоактивных отходов АЭС. В способе переработки радиоактивных углеродсодержащих отходов путем беспламенного горения в расплаве карбонатов щелочных металлов в присутствии окислителя, в качестве окислителя используют оксид меди двухвалентной в виде порошка формулы CuO, вводимый в расплав в количестве 5-50% от массы расплава, причем в качестве карбонатов щелочных металлов используют бинарную систему из карбонатов натрия и калия, а переработку осуществляют при температуре от 800 до 1000°C, при этом образующуюся при обработке отходов графита восстановленную нанодисперсную медь используют для получения оксида меди путем ее окисления кислородом воздуха для применения в процессе переработки графита. Изобретение позволяет упростить управление при проведении процесса беспламенного горения с исключением возможности выноса радиоактивных веществ. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области ядерной энергетики. Способ переработки отходов ядерного производства включает электрохимическое растворение твэлов в растворе азотной кислоты в электролизере при постоянном поддержании концентрации азотной кислоты в диапазоне 5,0÷6,0 М. Корпус электролизера является катодом. Анод выполнен в виде зажима с возможностью его периодического разжатия и сжатия при отклонении тока от номинального значения до 10%. При этом отношение площадей поверхности анодной части, погруженной в раствор, и растворяемых твэлов составляет (2÷7):1, а отношение плотностей тока на аноде и растворяемых твэлах составляет 1:(2÷7). После электрохимического растворения, сопровождающегося удалением оболочки и частичным растворением урана, осветленные растворы направляют на экстракционное извлечение урана, а нерастворенные остатки помещают в смесь азотной и плавиковой кислот с добавлением в раствор алюминия при молярном соотношении компонентов HF:HNO3:Al=1:(4÷8):(0,2÷0,4). Осветленные растворы подвергают экстракционному извлечению урана. Изобретение позволяет повысить извлечение урана при переработке твэлов в оболочке из нержавеющей стали с топливным сердечником, содержащим цирконий. 1 з.п. ф-лы, 1 табл.

Изобретение относится к области атомной энергетики. Приспособление погружное для электрохимической дезактивации фрагментов труб содержит зажим дезактивируемого фрагмента труб, анод и катод, выполненный в виде коаксиально расположенных и скрепленных между собой внешнего и внутреннего цилиндров. Приспособление снабжено основанием, являющимся анодом, жестко связанной с ним центральной стойкой, закрепленной сверху на центральной стойке и электрически изолированной от нее крышкой приспособления, имеющей токовод катода и отверстия, в каждом из которых установлены с возможностью перемещения цилиндры катода, при этом зажимы дезактивируемых фрагментов труб закреплены на основании соосно отверстиям в крышке приспособления. Количество зажимов дезактивируемого фрагмента труб равно количеству отверстий в крышке приспособления. Изобретение позволяет дезактивировать фрагменты обечаек и трубопроводов АЭС различных диаметров и любого сечения за один цикл с внутренней и наружной сторон. 7 з.п. ф-лы, 4 ил.

Изобретение относится к области обращения с радиоактивными отходами. Способ дезактивации твердых радиоактивных отходов включает воздействие в рабочей камере на поверхность ТРО частиц льда с дальнейшим плавлением льда, сбором и фильтрацией плавленой воды с образованием замкнутого цикла воды. Обработку поверхности ТРО проводят ускоренными ледяными гранулами. Проводят входной и выходной радиационный контроль отходов. Сортировку ТРО в соответствии с результатами радиационного контроля с выводом части отходов из категории радиоактивных в категорию твердых промышленных отходов. Талая вода после дезактивации проходит полную очистку от радионуклидов. Дезактивация ТРО осуществляется путем воздействия на них потока сферических монодиспресных ледяных водяных гранул размером 100-500 мкм, скоростью до 100 мс, полученных при температуре не выше минус 50оС. Изобретение позволяет повысить экономичность и эффективность очистки и снизить объем ТРО. 6 з.п. ф-лы, 1 ил.

Наверх