Многоэховая последовательность на основе принципа смещения эхо в ходе наблюдений (presto)

Изобретение относится к медицинской технике, а именно к средствам для магнитно-резонансной визуализации. Система включает в себя устройство магнитно-резонансной визуализации и устройство отображения, отображающее одно или более реконструированных изображений. В состав устройства магнитно-резонансной визуализации входят: магнит, генерирующий магнитное поле В0, градиентные катушки, применяющие градиентные поля к полю В0, одна или более радиочастотных катушек, генерирующих радиочастотный возбуждающий импульс для возбуждения магнитного резонанса и измеряющих сгенерированные градиентные эхо, один или более процессоров, выполненных с возможностью приводить в действие одну или более радиочастотных катушек для генерирования последовательности радиочастотных импульсов, разделенных временами повторения, и вызывания магнитного резонанса, управлять градиентными катушками для применения после каждого РЧ импульса, принимать и демодулировать градиентные эхо для построения линий данных k-пространства, реконструировать множество изображений из линий данных. При том после каждого РЧ импульса применяют считывающие импульсы градиентного поля, перефокусирующие резонанс в множество градиентных эхо, смещающие и перефокусирующие импульсы градиентного поля, которые смещают и перефокусируют по меньшей мере одно эхо к последующему времени повторения, при этом перефокусирующие импульсы градиентного поля включают в себя один или более первых импульсов градиентного поля и второй импульс градиентного поля противоположной полярности имеет область A(n+1)/(n)+m, где A представляет собой область одного или более первых импульсов градиентного поля, m представляет собой половину общей области импульсов, вызывающих градиентное эхо, и n представляет собой число времен повторения, при которых часть смещенного и перефокусированного резонанса должна быть смещена. Способ магнитно-резонансной визуализации осуществляется посредством системы. Система магнитно-резонансной визуализации содержит устройство магнитно-резонансной визуализации, один или более процессоров, выполненных с возможностью приводить в действие одну или более радиочастотных катушек, генерирующих радиочастотный импульс в начале каждого из множества времен повторения, приводить в действие градиентные катушки для вызывания по меньшей мере двух градиентных эхо через каждое время повторения, приводить в действие градиентные катушки для применения одного или более первых градиентных полей, смещающих по меньшей мере одно вызванное градиентное эхо от текущего времени повторения и применять одно или более вторых градиентных полей, перефокусирующих по меньшей мере одно смещенное градиентное эхо через последующее время повторения, реконструировать изображения из вызванных градиентных эхо, измеренных посредством одной тли более радиочастотных катушек, причем реконструкция включает в себя по меньшей мере одно из: Т2* карты для визуализации в зависимости в зависимости от уровня кислорода в теле (BOLD), B0 или фазовой карты, диффузионно-взвешенного изображения (DWI), использующего выбранные градиентные смещения эхо как градиенты диффузионного взвешивания, диффузионно-тензорной визуализации (DTI), перфузионного/диффузионного разделения, Q-пространства или многократного k-пространства, изображения, взвешенного по чувствительности (SWI), включающего в себя фазовую коррекцию карты B0, изображения с кодирующим коэффициентом скорости (VENC) и вычитания ультракороткого времени эхо (UTE) из более длительных времен эхо. Использование группы изобретений позволяет сократить время построения изображения. 3 н. и 13 з.п. ф-лы, 8 ил.

 

Изобретение относится в основном к способу магнитного резонанса. Оно находит конкретное применение в сочетании с последовательностями магнитно-резонансной визуализации и описано с конкретной ссылкой на него. Однако понятно, что оно также находит применение в других сценариях использования и необязательно ограничено указанным выше применением.

Магнитный резонанс вызывает резонанс в объекте, используя радиочастотный импульс. Резонанс может быть перефокусирован с использованием радиочастоты и/или импульсов градиентного поля в конкретном объеме, таком как срез, слой или трехмерный объем. Радиочастотный импульс применяют однократно через каждое время повторения (TR). TR обычно происходит с интервалами, которые обеспечивают спад резонанса, достаточный для применения нового импульса. Градиентные поля представляют собой магнитные поля, приложенные посредством одной или более градиентных катушек, которые могут перефокусировать или пространственно кодировать магнитный резонанс в конкретном объеме. Поскольку магнитный резонанс естественным образом спадает между импульсами, вызванные магнитным резонансом эхо, получены посредством радиочастотных катушек. Эхо измеряют или считывают в конкретные моменты времени и для конкретных объемов. Момент времени, в который происходит эхо, называют временем эхо (TE). Обычно времена эхо происходят в пределах каждого TR. Измеренные эхо кодируют в линии k-пространства данных, которые используют для воспроизведения изображений. Времена эхо, измеренные для конкретных конфигураций магнитного резонанса, используют для воспроизведения изображений с определенными характеристиками. Например, на T1-взвешенных изображениях вода контрастирует темнее, и жировая ткань ярче, и используют короткие периоды TR и TE, а на T2-взвешенных изображениях жировая ткань контрастирует темнее, и вода светлее, и используют более длинные периоды TR и TE. В другом примере на T2*-взвешенных изображениях используют длинные периоды TR и TE, и контрастирует диффузия.

При построении изображений, на которых показана диффузия, часто включают длинные TE. При построении изображений по принципам смещения эхо в ходе наблюдений (PRESTO) используют время эхо длиннее, чем время повторения, например, TE>TR. Однако при построении изображений по PRESTO генерируют один эхо через каждое TR.

При указанном многоэховом построении изображений выполняют множество последовательностей построения изображений в одной последовательности, но ограничивают во временах эхо, меньших, чем время повторения. Многоэховое построение изображений может заменить множество последовательностей единичных эхо построения изображений, в которых каждую последовательность выполняют раздельно и последовательно. При многоэховом построении изображений измеряют каждый из множества сигналов эхо через каждое TR и разрешают воспроизведение изображения, соответствующего каждому эхо.

Для того чтобы выполнить построение диффузионно-взвешенных изображений и построение иначе взвешенных изображений применительно к пациенту, множество последовательностей построения изображений выполняют последовательно. Выполнение множества отдельных последовательностей увеличивает общее время, магнитно-резонансный сканер используют для каждого пациента, и уменьшает пропускную способность пациентов.

Ниже приводится описание нового и усовершенствованного магнитно-резонансного многоэхового способа со смещением последовательностей, который решает упомянутые выше и другие проблемы.

По одному из аспектов система магнитно-резонансного построения изображения включает в себя устройство магнитно-резонансной визуализации, один или более процессоров и устройство отображения. Устройство магнитно-резонансной визуализации содержит магнит, градиентные катушки, одну или более радиочастотных катушек. Магнит генерирует поле B0. Градиентные катушки применяют градиентные поля к полю B0. Одна или более радиочастотных катушек генерируют радиочастотный импульс для возбуждения магнитного резонанса и измеряют сгенерированные градиентные эхо. Один или более процессоров выполнены с возможностью для приведения в действие одной или более радиочастотных катушек для генерации последовательности радиочастотных импульсов, разделенных с интервалами времен повторения, и для индуцирования магнитного резонанса. Один или более процессоров настроены для управления градиентными катушками для применения считывающих импульсов градиентного поля, которые перефокусируют резонанс во множество градиентных эхо, после каждого РЧ импульса, смещают и перефокусируют импульсы градиентного поля, которые смещают и перефокусируют, по меньшей мере, один из эхо в последующее время повторения, и получают и демодулируют градиентные эхо для построения линий k-пространства данных. Один или более процессоров настроены для реконструкции одного или более изображений из измеренных одного или более градиентных эхо. Устройство отображения отображает одно или более воспроизведенных изображений.

По другому аспекту способ магнитно-резонансной визуализации содержит применение последовательности радиочастотных импульсов, разделенных посредством времен повторения, причем каждый радиочастотный импульс вызывает магнитный резонанс. Считывающие импульсы градиентного поля применяют для возбуждения множества магнитно-резонансных эхо, а смещающие и перефокусирующие импульсы градиента магнитного поля - для смещения и перефокусирования, по меньшей мере, одного из вызванных градиентных эхо в последующее время повторения. Градиентные эхо измеряют для генерации линий данных. Множество изображений реконструируют из линий данных.

По другому аспекту система магнитно-резонансного построения изображения содержит устройство магнитно-резонансной визуализации и один или более процессоров, выполненных с возможностью приведения в действие одной или более радиочастотных катушек, которые генерируют радиочастотный импульс в начале каждого из множества времен повторения. Один или более процессоров выполнены с возможностью приведения в действие градиентных катушек, чтобы вызвать, по меньшей мере, два градиентных эхо в каждом промежутке времени повторения. Один или более процессоров выполнены с возможностью приведения в действие градиентных катушек для применения одного или более градиентных полей, которые смещают, по меньшей мере, один вызванный градиентный эхо от текущего времени повторения и применяют одно или более вторичных градиентных полей, которые перефокусируют, по меньшей мере, одно смещенное градиентное эхо в последующее время повторения. Один или более процессоров выполнены с возможностью реконструирования изображений из вызванных градиентных эхо, измеренных посредством одной или более радиочастотных катушек.

Одним из преимуществ представляет собой время эхо, и диффузионное взвешивание каждого эхо не зависит от времени повторения.

Другое преимущество заключается в объединении множества последовательностей в одну последовательность.

Другое преимущество заключается в снижении мертвого времени в последовательности при объединении множества последовательностей.

Другое преимущество представляет собой сокращение времени построения изображений для выполнения широкого спектра неврологических и онкологических последовательностей построения изображений.

Тем не менее, специалистам в данной области следует принять во внимание дополнительные преимущества после прочтения и понимания настоящего подробного описания.

Изобретение может принимать форму различных компонентов и расположения компонентов и различных этапов и расположения этапов. Чертежи представлены с целью иллюстрации предпочтительных вариантов осуществления и не должны быть истолкованы как ограничивающие изобретение.

На Фиг. 1 схематически проиллюстрирована последовательность многоэхового построения изображений уровня техники.

На Фиг. 2 схематически проиллюстрирована последовательность построения изображений по PRESTO уровня техники.

На Фиг. 3 схематически проиллюстрирован вариант осуществления многоэхового построения изображений по PRESTO со множеством смещенных эхо.

На Фиг. 4 схематически проиллюстрирован вариант осуществления многоэхового построения изображений по PRESTO с эхо, смещенными на различные TR.

На Фиг. 5 схематически проиллюстрирован вариант осуществления последовательности многоэхового построения изображения по PRESTO, такой как комбинированные реконструкция Dixon и DWI.

На Фиг. 6 схематически проиллюстрирован вариант осуществления воспроизведения диффузионно-взвешенного изображения всего тела (DWIBS) на основе комбинированной последовательности DWI PRESTO.

На Фиг. 7 схематически представлен вариант осуществления MR системы.

На Фиг. 8 схематически представлен один из способов использования варианта осуществления многоэхового построения изображений по PRESTO.

Со ссылкой на Фиг. 1 проиллюстрированная последовательность многоэхового построения изображений содержит три эхо E1 2, E2 4 и E3 6, каждый из которых сгенерирован посредством радиочастотного импульса (РЧ) 8 и перефокусирован и считан с градиентами Gm 12 в пределах текущего времени повторения (TR) 10. Фазово-кодирующий градиент Gp 14 кодирует все три эхо с фазовым кодированием PE 18, соответствующим общей линии k-пространства j-2, j-1, … Выбирающий срез градиент Gs 16 ограничивает выполненный резонанс, таким образом, считанные данные относят к единственному выбранному срезу. Времена эхо для первого эхо представляют собой TE1 2, второе время эхо представляет собой TE2 4, и третье время эхо представляет собой TE3 4, и все времена являются меньшими, чем TR. В каждом последующем времени TR последовательность повторяется, но с кодирующей фазой, увеличенной на одну линию k-пространства, до заполнения k-пространства для выбранного среза. Из этой последовательности могут быть построены три отдельных изображения на основе каждого TE1, TE2 и TE3. Например, в такой многоэховой последовательности могут быть сгенерированы пространственно соответствующие T1-взвешенные, T2-взвешенные и T2*-взвешенные изображения.

Со ссылкой на Фиг. 2 графически проиллюстрирована PRESTO последовательность для построения изображения со смещением эхо. В отличие от эхо на примере Фиг. 1, на которой эхо происходит через первое TR 10 после возбужденного импульса, эхо смещается к последующему TR 24. Первое эхо 22, сгенерированное с использованием первого РЧ импульса 8, происходит через второе время повторения TR 24. Первое эхо происходит с временем эхо (TE), которое длиннее, чем TR. Смещение происходит из-за первого или применения смещающего импульса 26 градиентного поля, который смещает эхо, и второго или применения перефокусирующего импульса 28 градиента поля, который перефокусирует эхо через следующее TR. Через каждое TR, процесс повторяется для смещения эхо к следующему TR. При длинном времени эхо, которое больше, чем время повторения, например TE>TR, диффузия может быть измерена с помощью измеренного градиента 12. Диффузионно-взвешенное изображение может быть реконструировано посредством реконструкции набора линий данных k-пространства, считанных из градиентных эхо, сгенерированных с помощью последовательности, представленной на Фиг. 2.

На Фиг. 3 схематически проиллюстрирован вариант осуществления, в котором множество эхо смещаются к последующему TR. РЧ импульс 8 с градиентами Gm генерирует 3 эхо 30, 32, 34 которые смещаются к следующему TR 24 и измеряются или считываются через следующее TR. Посредством смещения к следующему TR, времена эхо трех эхо 30, 32, 34 продлеваются до TE1, TE2 и TE3, которые представляют время от первого РЧ импульса 8 до времени, где измеряют эхо. Множество эхо смещаются с помощью первого или смещающего импульса 36 градиента поля, примененного непосредственно перед считывающими импульсами 39 градиентного эхо, и второго или перефокусирующего импульса градиента поля противоположной полярности 38 к смещающему импульсу, примененного после считывающих импульсов градиента эхо и предшествующего следующему РЧ импульсу или TR периоду. Связь между областями (продолжительность x амплитуда) первого и второго импульсов градиента для смещения мульти-эхо задается посредством:

где A - область первых импульсов градиента поля, С - область вторых импульсов градиента поля, n - число интервалов для смещения и больше чем 1 и 2m - общая область измерительных или считывающих градиентных импульсов 39. А - свободно выбираемая величина, и C зависит от выбора А. Пример этой последовательности содержит отображение B0 и Dixon реконструкцию за более длинные времена эхо. Картирование B0 может быть использовано для изображения пассивированного шиммирования и коррекции изображения. Другой пример включает в себя фазовое картирование, которое включает в себя температурное картирование.

Со ссылкой на Фиг. 4 схематически проиллюстрирован вариант осуществления многоэховой PRESTO последовательности построения изображения со смещенными эхо к различным TR. Первый РЧ импульс 8 и градиентные импульсы выполнены с возможностью генерировать три эхо 42, 44, 46. Первое эхо 42 возбуждают и считывают внутри текущего TR 10 посредством считывающих импульсов 43. Второе эхо 44 возбуждается посредством считывающего градиента 45 и смещается и перефокусируется к следующему TR 24 посредством смещающего градиентного импульса 48 и перефокусирующих градиентных импульсов 52. Третье эхо 46 возбуждается посредством градиента 47 считывания и смещается и перефокусируется к третьему TR 40 посредством градиентов 50, 52 смещения и перефокусировки. TE каждого эхо представляет собой время от первого РЧ импульса 8 до времени измеренного эхо. Что касается второго эхо, оно содержит дополнительное TR. Что касается третьего эхо, оно содержит два дополнительных TR. Каждое эхо смещается с набором импульсов градиентного поля, приложенных непосредственно перед считывающими импульсами. Второе эхо смещается с импульсом 48 градиентного поля участка A, и третье эхо смещается с комбинацией смещающего импульса 48 и смещающего импульса градиента поля 50 участка B. Каждое смещение не зависит от другого. Третий или импульс 52 перефокусировки градиентного поля применяется для перефокусировки обоих второго и третьего эхо через собственное TR. Используя уравнение(1), смещение от одного TR ко второму эхо: (С-В)=2A+m, и смещение от 2-х TR к третьему эхо: C=3/2 (A+B)+m. Это можно переписать в виде:

Решая набор системы уравнений и указав области A=B, тогда область С выбирается для удовлетворения условию:

В примере этой последовательности, каждое эхо представляет различное b-значение или диффузионную взвешенность. Благодаря одной экспоненциальной кривой, соответствующей для перфузии, и другой, соответствующей для диффузии, перфузия и диффузия могут быть разделены и рассчитаны внешние коэффициенты диффузии (ADC).

На Фиг. 5 схематически проиллюстрирован вариант осуществления многоэховой PRESTO последовательности для построения изображений, такой как соединенные Dixon и DWI реконструкции. РЧ и градиентный импульсы выполнены с возможностью генерировать три эхо. TE1 и TE2 являются Т1 взвешенными и могут представлять времена эхо, например, в Dixon последовательности. TE3 является T2 взвешенным и может, например, представлять время эхо для диффузионно-взвешенной реконструкции. В этом варианте осуществления, 2 времени эхо, TE1 54 и TE2 56, измеряют за текущее TR 10 и одно время эхо, TE3 58, смещают двумя TR. Однако, как показано, в фазовом кодировании 18, все три эхо измеряют в той же фазе и представляют общую линию данных k-пространства. Набор перефазирующих градиентов E, F и G кодирует фазу в том же направлении с той же силой и противоположном знаке через третье TR. Эхо смещения и диффузионного взвешивания могут быть применены с различными градиентными полями во всех трех направлениях и таким образом контролировать направленную чувствительность диффузионного взвешивания. С той же фазой кодирования, три эхо распространяются на ту же линию данных k-пространства, даже когда третье эхо измеряют через другое TR. Область градиентов смещения эхо для фазы удовлетворяют условию:

В E и F содержится первый набор примененных импульсов градиентного поля, который смещает в фазе, Gp эхо, и G перефокусирующий примененный импульс градиента поля, который перефокусирует эхо через выбранное TR. В выборе направления 16 среза импульсы градиента поля для выбора среза содержат рабочую область s, и область импульсов срезового перефокусирующего градиента поля отвечает следующим условиям:

Области U и V содержаться в первом наборе примененных импульсов градиента поля, которые смещают эхо в направлении выбора среза. Область W перефокусирует резонанс к выбранному срезу через третье TR. (A+B), (E+F) и (U+V) свободно выбранные и для построения изображений, таких как диффузионно-взвешенные изображения (DWI) и диффузионно-тензорные изображения (DTI), генерируют разные диффузионное взвешивание и направления. Вариант осуществления может быть расширен к дополнительным эхо с короткими временами эхо и/или более длинными временами эхо. DWI снабжают характеристикой ткани, например, при инсульте и для онкологических пациентов и обеспечивают биомаркером при контроле лечения злокачественных опухолей.

На Фиг. 6 схематически проиллюстрирован вариант осуществления диффузионно-взвешенной реконструкции изображения всего тела (DWIBS), основанной на совмещенной DWI PRESTO последовательности для построения изображений. На Фиг. 5 показана последовательность для построения изображений, используя три времени эхо, таких как TE1 60, TE2 62 и TE3, с диффузионным взвешиванием 64. Из линий данных, сгенерированных от многократно генерированных первых двух эхо, E1 и E2, изображение 66 в фазе (ИФ), дефазированное изображение 68 (OP), изображение 70 только воды (W) и изображение 72 только жира (F) могут быть реконструированы. Dixon реконструкция содержит только изображение 70 воды и только изображение 72 жира. Дополнительная информация также может быть получена, а именно карта B0 и карта T2*. Используя первое время 60 эхо с b-значением =0 и третье время эхо 64, как диффузионно-взвешенное, карта 74 внешнего коэффициента диффузии (ADC) может быть реконструирована. Синтетическое диффузионно-взвешенное изображение всего тела с подавлением фона (DWIBS) построено из изображения 70 только воды и из изображений 72 только жира и карты 74 ADC. Поражения могут быть легче обнаружены при наложении 78 карты 74 ADC на DWIBS 76.

Регулировка времен эхо обеспечивает гибкость в диффузионном взвешивании и/или независимости фазового контраста от TR. Многоэховая PRESTO обеспечивает высокую эффективность сканирования по сравнению с конвенционными подходами. Конвенционные подходы требуют отдельных последовательностей и регистрации между изображениями, в то время как многоэховая PRESTO заведомо зарегистрирована и может быть выполнена за меньшее время. Дополнительные примеры многоэховой PRESTO содержат T2* карты для построения изображения в зависимости от уровня кислорода в теле (BOLD), Q-пространство или обратное k-пространство, изображение, взвешенное по чувствительности (SWI), включающее в себя коррекцию фазы карты B0, изображение с кодирующим коэффициентом скорости (VENC), вычитание ультракороткого времени эхо (UTE) из более длительных времен эхо. Разные эхо увеличивают динамический диапазон и точность VENC сканов с фазовым контрастом.

На Фиг. 7 схематически проиллюстрирован вариант осуществления системы 78 магнитно-резонансной визуализации. Система 78 содержит сканнер 80 для построения магнитно-резонансного (MR) изображения, который показан в поперечном сечении. Сканнер 80 для построения магнитно-резонансного изображения содержит основной магнит 83, который генерирует магнитное поле B0 в аксиальном направлении. В центре MR сканнера находится отверстие 84 или апертура, которая содержит формирователь изображений. Пациента поддерживают на подставке 86 для пациента, которая движется в отверстие 84 MR сканера 80. Одна или более градиентных катушек 88 управляются посредством устройства 90 управления градиентом для генерирования измерительных или считывающих градиентных импульсов, Gm, фазо-кодирующих градиентных импульсов, Gp, и выбирающих срез градиентных импульсов. Устройство 90 для создания градиентов выбирает, настраивает и приводит в действие градиентные катушки 88, основанные на выбранной последовательности изображений. Градиентные поля фокусируют возбужденный резонанс в объеме среза и кодируют резонанс. Градиентные поля также смещают перефокусируют эхо. MR сканнер 80 содержит одну или более градиентных катушек 92, которые управляются с помощью РЧ устройства 94 управления для генерирования РЧ импульса каждое TR. РЧ катушки 92 могут быть встроены в сканнер 80 для MR визуализации и/или быть локальными (не показано), такими как катушка для головы, катушка для ноги и т.д. РЧ катушки 92, которые получают градиентные эхо могут быть такими же, как катушки, которые генерируют РЧ импульс, например передавать и получать, или могут быть независимыми, например катушка только для приема данных. MR устройство 96 управления управляет устройством для создания градиента 90 и РЧ устройством 94 управления и координирует передачу РЧ импульсов, которые возбуждают магнитный резонанс и измеряют градиентные эхо с помощью РЧ катушек - приемников. РЧ приемник 97 принимает и демодулирует считывающие импульсы для построения линий k-пространства. MR устройство 96 управления подключается к сети 98. Сеть 98 содержит одну или более интернет сеть, локальную сеть, глобальную вычислительную сеть, беспроводную сеть, проводную сеть, сеть сотовой связи, шину данных, такую как USB и I2C и т.п.

Рабочая станция 100 подключается к сети 98, и медицинский работник выбирает последовательность изображений, используя, по меньшей мере, одно устройство 102 ввода. Рабочая станция 100 содержит электронный процессор или электронное устройство 104 обработки, монитор 106, который отображает различные изображения, меню, панели, пользовательские элементы управления и по меньшей мере одно устройство ввода 102, которое вводит выбор медицинского работника. Рабочая станция 100 может быть настольным компьютером, ноутбуком, планшетом, мобильным вычислительным устройством, смартфоном и т.п. Устройство 102 ввода может быть клавиатурой, мышью, микрофоном, сенсорным экраном, с одной или более кнопками, с одним или более переключателями, с одним или более тумблерами и т.п. Устройство 106 отображения содержит один или более из ЖК-дисплея, светодиодного дисплея, плазменного дисплея, проекционного дисплея, сенсорного дисплея и т.п.

База данных 108, подключенная к сети 98, сохраняет в памяти различные параметры для различия возможных последовательностей изображений. Параметры содержат выбор и параметры выполнения градиентных катушек 88 и различные конфигурации для достижения эхо последовательности для выбранной последовательности изображений. База данных 108 может содержать файлы, таблицы, поля, объекты, комбинации и т.п., сохраненные в памяти. Память содержит один или более непереходных машиночитаемых информационных носителей, магнитный диск или другую магнитную запоминающую среду, оптический диск или другую оптическую запоминающую среду, оперативное запоминающее устройство (ОЗУ), постоянное запоминающее устройство (ПЗУ), или другое устройство электронной памяти или микросхему или набор функционально взаимосвязанных микросхем; интернет-сервер, с которого сохраненные инструкции могут быть получены через интернет или локальную сеть; или т.д. Кроме того, как применяют в настоящем документе, устройство управления содержит один или более микропроцессоров, микроконтроллер, графический процессор (GPU), специализированную интегральную схему (ASIC), программируемую логическую интегральную схему (FPGA) и т.п.

Многоэховый PRESTO модуль 110 воплощен соответствующим образом с помощью электронного устройства обработки данных, такого как электронный процессор или электронное устройство обработки 104 рабочей станции 100, или посредством сетевого серверного компьютера функционально соединенного с рабочей станцией 110 с помощью сети 98 или т.п. Модуль 110, в одном из вариантов осуществления реконструирует линии данных в изображения и обрабатывает изображения, как описано в соответствии с Фиг. 6. Кроме того, раскрытые последовательности для построения изображений и методы реконструкции, соответственно реализованные как команды энергонезависимого носителя хранения (например, программное обеспечение),читаемые электронным устройством обработки данных и исполняемые электронным устройством обработки данных для выполнения раскрытой последовательности изображений и методов реконструкции. Многоэховый PRESTO модуль 110 получает последовательности для построения изображений для осуществления, основываясь на вводе медицинского работника и /или дополнительных источников, таких как история болезни, больничная информационная система (HIS) и т.п. На основе последовательности для построения изображений, которая содержит несколько градиентных эхо, генерируется с помощью РЧ импульса и градиентных импульсов через каждое TR, по меньшей мере, один градиент эхо, смещенный к другому TR. Модуль обеспечивает конфигурацию MR устройства управления и запускает MR устройство управления для выполнения последовательности. Конфигурации содержат конфигурацию градиентных импульсов, примененных к градиентным катушкам таким образом, что первый набор градиентных полей применяется к каждому эхо, чтобы быть смещенным до измерения эхо через текущее TR, и второй набор градиентных полей примененных после всех эхо через текущее TR для перефокусировки каждого из смещенных эхо через текущее TR.

Фиг. 8 графически представляет один способ использования варианта осуществления многоэховой PRESTO построения изображения. На этапе 112 последовательность построения изображений выбирается посредством многоэхового PRESTO модуля. Этап содержит ввод от медицинского работника, используя рабочую станцию, и/или другие источники, такие как история болезни пациента, HIS и т.д. Последовательность изображений идентифицирует каждое эхо в многократной эхо-последовательности, и какое эхо или несколько эхо смещается и как много TR каждого эхо смещается. Этап может содержать доступ к параметрам базы данных и/или конфигурации и представление медицинскому работнику для просмотра. Многоэховый PRESTO модуль на этапе 114 предоставляет информацию о конфигурации MR устройству управления для выполнения последовательности для построения изображений. MR устройство управления настраивает устройство управления градиентом и РЧ устройство управления.

На этапе 116 РЧ устройство управления, управляющееся с помощью MR устройства управления, приводит в действие РЧ катушки для обеспечения РЧ импульса в начале каждого TR и устройство управления градиентом, чтобы вызвать возбуждение градиентными катушками по меньшей мере 2-х эхо. Градиентные катушки на этапе 118 применяют первый и второй импульсы градиентного поля для смещения одного или более эхо от текущего TR к выбранному последующему TR. Первые импульсы градиентного поля, примененные для смещения каждого эхо, применяются до считывающего градиентного импульса считывания эхо за текущее TR. Первый импульс градиентного поля, примененный для смещения каждого эхо, может быть примененным различно для каждого смещенного эхо, такого как разное TR. Второй импульс градиентного поля, примененный после считывающих импульсов и до следующего РЧ импульса, перефокусирует одно или более эхо через выбранное последующее TR. Градиентные эхо измеряют через каждое TR на этапе 120 посредством РЧ катушек. Процесс повторяется на решающем этапе 122 для каждого TR, которое начинается посредством активации РЧ катушек для генерации РЧ импульса.

На этапе 124 набор линий данных, формирующихся посредством считывающих эхо, реконструируется в изображения. Реконструкция может содержать частичную реконструкцию и/или вывод другой информации, такой как отображение, количественную информацию и т.п. Реконструкция повторяется на этапе 126 для набора линий данных от эхо-сигналов с каждыми временами задержки. Реконструкции могут содержать различные очередности реконструкций и содержать результаты одной реконструкции в другой, как например, реконструкцией Dixon изображения только воды и только изображения жира, DWIBS с Dixon и картой ADC и т.д.

На этапе 128 одно или более изображений могут быть отображены или сохранены. Изображения могут быть сохранены в системе управления хранением, такими как система хранения и передачи изображений (PACS), рентгенологическая информационная система (RIS) и т.п.

Следует отметить, что в связи с конкретными иллюстративными вариантами осуществления, представленными в данном описании, определенные структурные и/или функциональные особенности описаны, как включенные в определенные элементы и/или компоненты. Однако предполагается что эти функции могут, с теми же или подобными преимуществами, также быть включены в другие элементы и/или компоненты при необходимости. Следует также иметь ввиду, что различные аспекты примерных вариантов осуществления могут быть избирательно использованы при необходимости для достижения других альтернативных вариантов осуществления, подходящих для требуемых приложений, других альтернативных вариантов осуществления, тем самым реализуя соответствующие преимущества аспектов, включенных в них.

Нужно также оценить, что отдельные элементы или компоненты, описанные здесь, могут осуществить свою функциональность приемлемо реализовавшись через аппаратные средства, программное обеспечение, программно-аппаратные средства или сочетание этого. Кроме того, следует иметь в виду, что некоторые элементы, как описано здесь, как объединенные вместе могут при подходящих условиях быть автономными элементами или иным образом разделены. Аналогично, множество конкретных функций описанных как осуществляемые одним конкретным элементом, может быть осуществлено с помощью множества различных элементов, действующих независимо друг от друга, чтобы осуществить индивидуальные функции, или определенные индивидуальные функции могут быть разделены и осуществляться посредством множества различных элементов, действующих совместно. С другой стороны, некоторые элементы или компоненты, далее описанные и/или показанные здесь как отличающиеся друг от друга, могут быть физически или функционально объединены в случае необходимости.

Вкратце говоря, настоящее описание изложено со ссылкой на предпочтительный вариант осуществления. Очевидно, что модификации и изменения встречаются после прочтения и понимания настоящего описания. Следует понимать, что изобретение может быть истолковано как содержащее все такие модификации и изменения, поскольку они входят в объем прилагаемой формулы изобретения или ее эквивалентов. Другими словами, следует понимать, что любые из раскрытых выше и других признаков и функций или их вариантов могут быть по желанию объединены во много других различных систем или приложений, и также то, что в настоящее время различные непредвиденные или неожиданные альтернативы, модификации, вариации или усовершенствования в нем могут быть сделаны впоследствии специалистами в данной области, которые аналогичным образом охватываются следующей формулой изобретения.

1. Система (78) магнитно-резонансной визуализации, содержащая:

устройство (80) магнитно-резонансной визуализации, которое включает в себя:

магнит (82), который генерирует поле В0;

градиентные катушки (88), которые применяют градиентные поля к полю В0;

одну или более радиочастотных катушек (92), которые генерируют радиочастотный возбуждающий импульс для возбуждения магнитного резонанса и измеряют сгенерированные градиентные эхо; и

один или более процессоров (104), выполненных с возможностью:

приводить в действие (116) одну или более радиочастотных катушек (92) для генерирования последовательности радиочастотных импульсов, разделенных временами повторения, и вызывания магнитного резонанса;

управлять (118) градиентными катушками для применения после каждого РЧ импульса:

считывающих импульсов градиентного поля, которые перефокусируют резонанс в множество градиентных эхо;

смещающих и перефокусирующих импульсов градиентного поля, которые смещают и перефокусируют по меньшей мере одно из эхо к последующему времени повторения, при этом смещающие и перефокусирующие импульсы градиентного поля включают в себя один или более первых импульсов градиентного поля и второй импульс градиентного поля противоположной полярности, который имеет область A(n+1)/(n)+m, где А представляет собой область одного или более первых импульсов градиентного поля, m представляет собой половину общей области импульсов, вызывающих градиентное эхо, и n представляет собой число времен повторения, при которых часть смещенного и перефокусированного резонанса должна быть смещена;

принимать и демодулировать градиентные эхо для построения линий данных k-пространства; и

реконструировать (124) множество изображений из линий данных; и

устройство (106) отображения, которое отображает одно или более реконструированных изображений.

2. Система (78) магнитно-резонансной визуализации по п. 1, в которой один из смещающих и перефокусирующих импульсов градиентного поля применяют по меньшей мере до одного из импульсов, вызывающих градиентное эхо.

3. Система (78) магнитно-резонансной визуализации по п. 1, в которой один из смещающих и перефокусирующих импульсов градиентного поля применяют после импульсов градиентного поля, вызывающих градиентное эхо, и до следующего радиочастотного возбуждающего импульса.

4. Система (78) магнитно-резонансной визуализации по п. 1, в которой по меньшей мере один из импульсов считывающего градиента, вызывающего градиентное эхо, применяется до смещающих и перефокусирующих импульсов градиентного поля и по меньшей мере один из импульсов, вызывающих градиентное эхо, расположен между парой смещающих и перефокусирующих импульсов градиентного поля.

5. Система (78) магнитно-резонансной визуализации по п. 1, в которой градиентные эхо, вызванные резонансом, возбужденным посредством одного из РЧ импульсов, вызываются через множество времен повторения.

6. Система (78) магнитно-резонансной визуализации по п. 1, в которой множество вызванных градиентных эхо включает в себя первое и второе эхо за текущее время повторения и третье эхо, смещенное к последующему времени повторения.

7. Система (78) магнитно-резонансной визуализации по п. 6, в которой один или более процессоров выполнены с дополнительной возможностью реконструировать эхо за текущее время повторения в изображение с внутривоксельным разделением сигналов, основанным на фазе (DIXON), и эхо, смещенные к последующему времени повторения, реконструируют в диффузионно-взвешенное изображение.

8. Система (78) магнитно-резонансной визуализации по п. 1, в которой один или более процессоров выполнены с дополнительной возможностью реконструировать карту внешнего коэффициента диффузии (ADC).

9. Система (78) магнитно-резонансной визуализации по п. 1, в которой один или более процессоров выполнены с дополнительной возможностью:

строить диффузионно-взвешенное изображение всего тела (DWIBS) с подавлением сигнала фона тела из по меньшей мере одного реконструированного изображения с внутривоксельным разделением сигналов, основанным на фазе (DIXON), и реконструированной карты ADC.

10. Система (78) магнитно-резонансной визуализации по п. 9, в которой реконструкция включает в себя по меньшей мере одно из:

Т2* карты для визуализации в зависимости от уровня кислорода в теле (BOLD);

В0 или фазовой карты;

диффузионно-взвешенного изображения (DWI), использующего выбранные градиенты смещения эхо как градиенты диффузионного взвешивания;

диффузионно-тензорной визуализации (DTI);

перфузионного/диффузионного разделения;

Q-пространства или многократного k-пространства;

изображения, взвешенного по чувствительности (SWI), включающего в себя фазовую коррекцию карты В0;

изображения с кодирующим коэффициентом скорости (VENC); и

вычитания ультракороткого времени эхо (UTE) из более длительных времен эхо.

11. Способ магнитно-резонансной визуализации, содержащий:

применение (116) последовательности радиочастотных импульсов, разделенных временами повторения, причем каждый радиочастотный импульс вызывает магнитный резонанс;

применение (118) считывающих импульсов градиентного поля для вызывания множества эхо магнитного резонанса и смещения и перефокусировки импульсов градиента магнитного поля, чтобы смещать и перефокусировать по меньшей мере одно из вызванных градиентных эхо через последующее время повторения, при этом смещающие и перефокусирующие импульсы градиентного поля включают в себя один или более первых импульсов градиентного поля и второй импульс градиентного поля противоположной полярности, который имеет область A(n+1)/(n)+m, где А представляет собой область одного или более первых импульсов градиентного поля, m представляет собой половину общей области импульсов, вызывающих градиентное эхо, и n представляет собой число времен повторения, при которых часть смещенного и перефокусированного резонанса должна быть смещена;

измерение (120) градиентных эхо для генерирования линий данных; и

реконструирование (124) множества изображений из линий данных.

12. Способ магнитно-резонансной визуализации по п. 11, в котором один из смещающих и перефокусирующих импульсов градиентного поля применяют по меньшей мере до одного из импульсов, вызывающих градиентное эхо.

13. Способ магнитно-резонансной визуализации по п. 11, в котором один из смещающих и перефокусирующих импульсов градиентного поля применяют после импульсов градиентного поля, вызывающих градиентное эхо, и до следующего радиочастотного возбуждающего импульса.

14. Способ магнитно-резонансной визуализации по п. 11, в котором множество вызванных градиентных эхо включает в себя первое и второе эхо за текущее время повторения и третье эхо, смещенное к последующему времени повторения.

15. Способ магнитно-резонансной визуализации по п. 11, в котором каждое смещенное эхо включает в себя разное диффузионное взвешивание.

16. Система (78) магнитно-резонансной визуализации, содержащая:

устройство магнитно-резонансной визуализации; и

один или более процессоров (104), выполненных с возможностью:

приводить в действие (116) одну или более радиочастотных катушек, которые генерируют радиочастотный импульс в начале каждого из множества времен повторения;

приводить в действие градиентные катушки для того, чтобы вызывать по меньшей мере два градиентных эхо через каждое время повторения;

приводить в действие градиентные катушки для применения (118) одного или более первых градиентных полей, которые смещают по меньшей мере одно вызванное градиентное эхо от текущего времени повторения, и применять одно или более вторых градиентных полей, которые перефокусируют по меньшей мере одно смещенное градиентное эхо через последующее время повторения; и

реконструировать (124) изображения из вызванных градиентных эхо, измеренных посредством одной или более радиочастотных катушек, причем реконструкция включает в себя по меньше мере одно из:

Т2* карты для визуализации в зависимости от уровня кислорода в теле (BOLD);

В0 или фазовой карты;

диффузионно-взвешенного изображения (DWI), использующего выбранные градиенты смещения эхо как градиенты диффузионного взвешивания;

диффузионно-тензорной визуализации (DTI);

перфузионного/диффузионного разделения;

Q-пространства или многократного k-пространства;

изображения, взвешенного по чувствительности (SWI), включающего в себя фазовую коррекцию карты В0;

изображения с кодирующим коэффициентом скорости (VENC); и

вычитания ультракороткого времени эхо (UTE) из более длительных времен эхо.



 

Похожие патенты:

Группа изобретений относится к медицинской технике, а именно к средствам определения объема и формы отклонений в конкретных областях головного мозга. Способ количественной оценки сегментации изображения содержит прием медицинского изображения физической структуры пациента, прием адаптированной сеточной модели физической структуры для медицинского изображения, определение количественного параметра изображения на основе значений интенсивности медицинского изображения в каждой из множества вершин адаптированной сеточной модели и объединение множества количественных параметров изображений для определения метрики качества адаптации.

Использование: для визуализации тканей посредством магнитно-резонансной реологии. Сущность изобретения заключается в том, что медицинский инструмент содержит систему магнитно-резонансной визуализации, преобразователь для осуществления механических вибраций по меньшей мере части субъекта в пределах зоны визуализации.

Использование: для магнитно-резонансной визуализации. Сущность изобретения заключается в том, что система магнитно-резонансной визуализации включает в себя блок шумоподавления и блок реконструкции.

В изобретении, принадлежащем к технической области обработки изображений, предложены способ и устройство для идентификации областей. Способ включает в себя: получение расположения области лица на плоскости идентификационного изображения; определение по меньшей мере одной информационной области на основе расположения области лица на плоскости; и сегментирование информационной области для получения по меньшей мере одной области символов.

Группа изобретений относится к обработке медицинских изображений, в частности к способам, устройствам и системам для реконструкции магнитно-резонансных (МР) изображений целевых объектов из недосемплированных данных.

Использование: для магнитно-резонансного формирования изображения. Сущность изобретения заключается в том, что система формирования изображений включает в себя множество катушечных канальных приемников и один или более процессоров или модулей.

Использование: для передающей или приемной антенны летательного аппарата в дециметровом диапазоне длин волн. Сущность изобретения заключается в том, что магнитно-резонансный сканер включает в себя главный магнит, градиентные катушки и контроллер градиентных катушек, одну или более РЧ катушек, РЧ передатчик, РЧ приемник и один или более процессоров.

Использование: для визуализации тела посредством магнитного резонанса (МР). Сущность изобретения заключается в том, что выполняют следующие этапы: a) генерирования, по меньшей мере, двух градиентных эхо-сигналов в два различных момента времени появления эха путем подвергания участка тела (10) воздействию визуализирующей последовательности РЧ-импульсов и переключаемых градиентов магнитного поля, при этом 0-й момент считываемого градиента магнитного поля по существу исчезает во время появления первого градиентного эха, 1-й момент считываемого градиента отличен от нуля во время появления первого градиентного эха, при этом и 0-й, и 1-й моменты считываемого градиента магнитного поля по существу исчезают во время появления второго градиентного эха; b) сбора градиентных эхо-сигналов; c) повторения этапов a) и b) для множества этапов фазового кодирования; d) реконструкции первого МР-изображения из градиентных эхо-сигналов первого градиентного эха, а также второго МР-изображения из градиентных эхо-сигналов второго градиентного эха; и e) идентификации артефактов, связанных с двоением изображения, на первом и/или втором МР-изображении путем сравнения первого и второго МР-изображений.

Использование: для МР-томографии по меньшей мере части тела. Сущность изобретения заключается в том, что выполняют следующие этапы: подвергание части тела (10) воздействию визуализирующей последовательности, содержащей один или несколько РЧ-импульсов и переключаемых градиентов магнитного поля, для получения сигналов визуализации; подвергание части тела (10) воздействию навигационной последовательности, прикладываемой по меньшей мере единожды до, во время или после визуализирующей последовательности, причем навигационная последовательность содержит один или несколько РЧ-импульсов и переключаемых градиентов магнитного поля, управляемых таким образом, что сигналы навигатора получают посредством одноточечного или многоточечного метода Диксона; извлечение данных о перемещении, и/или вращении, и/или сдвиге из сигналов навигатора, причем данные о перемещении, и/или вращении, и/или сдвиге отражают движение, происходящее внутри тела (10) во время получения сигналов визуализации; реконструирование МР-изображения из сигналов визуализации, причем данные о перемещении, и/или вращении, и/или сдвиге используются для адаптирования визуализирующей последовательности и/или для коррекции движения во время реконструкции МР-изображения.

Изобретение относится к области магниторезонансной (МР) визуализации. Способ MP визуализации по меньшей мере части тела, помещенного в основное магнитное поле В0 в пределах исследуемого объема устройства MP, содержит этапы, на которых подвергают часть тела радиочастотному импульсу насыщения при смещении частоты насыщения; подвергают часть тела последовательности визуализации, содержащей по меньшей мере один радиочастотный импульс возбуждения/перефокусировки и переключаемые градиенты магнитного поля, посредством чего от части тела получаются MP сигналы как сигналы спинового эха; повторяют предыдущие этапы два или более раз, причем смещение частоты насыщения и/или сдвиг времени эха в последовательности визуализации различаются таким образом, что в двух или более повторениях применяются различные комбинации смещения частоты насыщения и сдвига времени эха; восстанавливают MP изображение из полученных MP сигналов.

Изобретение относится к медицине, акушерству и гинекологии, лучевой диагностике и может быть использовано для диагностики эктопической беременности (ЭБ). Выполняют магнитно-резонансную томографию (МРТ) органов малого таза с использованием Т2 взвешенных изображений (ВИ).

Изобретение относится к медицине, акушерству и гинекологии, лучевой диагностике и может быть использовано для дифференциальной диагностики трубной беременности и гематосальпинкса иной этиологии с помощью магнитно-резонансной томографии (МРТ) с использованием Т1 и Т2 - взвешенных изображений.

Группа изобретений относится к медицинской технике, а именно к средствам формирования изображений в медицине. Магниторезонансная система содержит магниторезонансный сканнер, сконфигурированный для термографического измерения, один или более процессоров, который принимает данные теплового изображения от магниторезонансного сканнера и реконструирует по меньшей мере одно тепловое изображение, на котором каждый воксел представляющей интерес области включает в себя меру изменения температуры, и идентифицирует вокселы с тепловой аномалией на тепловом изображении посредством сравнения измеренного изменения температуры с ожидаемым изменением температуры, и устройство отображения.

Изобретение относится к медицине, а именно к урологии, и может быть использовано для прогнозирования вероятности хронической болезни почек после дистанционной ударно-волновой литотрипсии.

Изобретение относится к медицинской технике, а именно к средствам контроля качества устройств магнитно-резонансной визуализации. Устройство включает в себя фантом, имеющий вес менее 18,2 кг.
Изобретение относится к медицине, неонатологии и патологической анатомии. Проводят посмертную магнитно-резонасную томографию (МРТ) органов грудной полости умершего новорожденного в Т2 режиме.

Настоящее изобретение относится к установке для подготовки и размещения пациентов для медицинского лечения и/или обслуживания. Установка для подготовки и размещения пациентов содержит, по меньшей мере, два устройства для подготовки и размещения пациента в зоне подготовки и по меньшей мере одно устройство для медицинского лечения и/или обслуживания пациента в лечебной зоне, причем зона подготовки и лечебная зона отличны друг от друга и пространственно отделены и для предотвращения возможности взаимного наблюдения другими пациентами отделены друга от друга подвижными или стационарными стенками, причем по меньшей мере одно устройство для подготовки и размещения содержит опору стабильной формы для приема, подготовки и размещения пациента в зоне подготовки и поддерживающий опору стабильной формы линейно направляемый телескопический механизм, и причем опора стабильной формы с пациентом, подготовленным и размещенным на опоре стабильной формы в соответствующей зоне подготовки, посредством линейно направляемого телескопического механизма выполнена с возможностью перемещения плавно без перемещения по полу из соответствующей зоны подготовки по меньшей мере к одному устройству для лечения и/или обслуживания в лечебной зоне, и наоборот.

Группа изобретений относится к медицинской технике, а именно к медицинским диагностическим магнитно-резонансным системам. Медицинский инструмент содержит систему магнитно-резонансной визуализации для получения данных магнитно-резонансной термометрии от субъекта, систему сфокусированного ультразвука высокой интенсивности, содержащую преобразователь ультразвука с электронно-управляемым фокусом, которая содержит механическую систему позиционирования преобразователя ультразвука, при этом электронно-управляемый фокус реализован с возможностью настройки фокуса в пределах зоны фокусировки, а местоположение зоны фокусировки зависит от положения преобразователя ультразвука, память для хранения исполнимых машиной инструкций, процессор для управления медицинским инструментом, побуждающий выполнять получение целевой зоны, описывающей объем в пределах субъекта, при этом целевая зона больше зоны фокусировки, разделение целевой зоны на множество подзон, при этом каждая из множества подзон имеет положение преобразователя, при этом, когда преобразователь находится в положении преобразователя, зона фокусировки содержит подзону, определение последовательности для перемещения положения преобразователя в каждую из множества подзон, определение выбранной подзоны, выбираемой из множества подзон с использованием последовательности, при этом каждая из подзон делится на области, причем выполнение инструкций побуждает процессор поддерживать в целевой зоне целевую температуру в течение предварительно заданного периода времени посредством многократного управления механической системой позиционирования с целью перемещения преобразователя в положение преобразователя выбранной подзоны; получения данных магнитно-резонансной термометрии, при этом данные магнитно-резонансной термометрии описывают температуру вокселов в подзоне, определения карты температурных свойств, описывающей температуру в каждом из вокселов с использованием данных магнитно-резонансной термометрии, нагревания области подзоны независимо до целевой температуры посредством управления электронно-управляемым фокусом с помощью алгоритма температурной обратной связи, который использует карту температурных свойств, изменения выбранной подзоны с использованием последовательности.

Изобретение относится к медицине, педиатрии, неврологии, неонатологии, методам определения выраженности ишемического и ишемически-геморрагического поражения головного мозга у недоношенных новорожденных (срок гестации 29-36 недель), прогнозирования дальнейшего неврологического развития.

Изобретение относится к медицинской технике, а именно к достоинствам магнитно-резонансного управления системой нагрева. Система магнитно-резонансного управления содержит систему магнитно-резонансной визуализации, включающую магнит с зоной визуализации для сбора магнитно-резонансных данных из пациента изнутри зоны визуализации, систему нагрева, выполненную с возможностью нагревания целевой зоны внутри зоны визуализации, память для хранения выполняемых компьютером команд, процессор для управления медицинским устройством, выполнение команд предписывает процессору принимать план терапии, многократно управлять системой нагрева в соответствии с планом терапии для нагревания целевой зоны в течение чередующихся периодов нагревания и периодов охлаждения, собирать магнитно-резонансные данные посредством управления системой магнитно-резонансной визуализации в соответствии с первой импульсной последовательностью, а команды предписывают процессору собирать магнитно-резонансные данные в течение периода охлаждения, выбранного из по меньшей мере одного из периодов охлаждения, и модифицировать план терапии в соответствии с магнитно-резонансными данными.

Изобретение относится к медицине, в частности к урологии, и может быть использовано для определения сроков проведения повторного сеанса дистанционной ударно-волновой литотрипсии (ДУВЛ). На 2-3 сутки после проведения первого сеанса ДУВЛ определяют индекс резистентности по данным ультразвуковой допплерографии почек. Измеряют площадь повреждения паренхимы почки и изменение коэффициента диффузии по данным диффузионно-взвешенной магнитно-резонансной томографии почек. Определяют срок проведения повторного сеанса дистанционной ударно-волновой литотрипсии по формуле y=4,6+10,1x1-0,9х2/100%+0,14х3+0,12x4, где y - число, определяющее срок проведения повторного сеанса дистанционной ударно-волновой литотрипсии в днях; x1 - индекс резистивности Ri в усл. ед; x2 - изменение коэффициента диффузии в процентах; х3 - площадь повреждения S в мм2; x4 - возраст больного в годах. Способ позволяет ограничить чрезмерное волновое воздействие на паренхиму почек за счет определения сроков нормализации β2-микроглобулина в послеоперационном периоде. 6 табл., 1 пр., 3 ил.
Наверх