Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин



Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин
Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин
Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин
Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин

Владельцы патента RU 2639451:

Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") (RU)

Изобретение относится к области стендовых испытаний деталей и корпусов турбомашин, в частности авиационного двигателестроения, а именно к конструкции стендовых силовых рам для статических и циклических испытаний. Универсальная модульная портальная силовая рама содержит силовые стойки, вспомогательные балки и прямоугольное основание. Вспомогательные балки выполнены с возможностью крепления на силовые стойки и между собой посредством разъемного соединения. На каждой большей стороне прямоугольного основания жестко и неразъемно закреплены как минимум по три силовые стойки, причем как минимум одна из силовых стоек расположена в области середины соответствующей большей стороны, а по одной в углах прямоугольного основания. Сверху на силовых стойках закреплены цельные балки посредством жесткого неразъемного соединения, сориентированные вдоль соответствующих больших сторон прямоугольного основания и образующие с последними и силовыми стойками четырехугольные порталы. На угловых силовых стойках посредством жесткого неразъемного соединения закреплено как минимум по одной проушине. Силовая рама снабжена как минимум одной П-образной балкой, установленной поперек силовых стоек и выполненной с возможностью перемещения вдоль последних и фиксацией на них в требуемом положении. Изобретение позволяет за счет наличия жесткой неразъемной конструкции, реализованной с учетом специфики стендовых испытаний деталей и корпусов турбомашин, возможности различных комбинаций установки силовых модулей, профиля и соединений элементов силовой рамы увеличить жесткость, прочность и универсальность последней. 19 з.п. ф-лы, 3 ил.

 

Изобретение относится к области стендовых испытаний деталей и корпусов турбомашин, в частности авиационного двигателестроения, а именно к конструкции стендовых силовых рам для статических и циклических испытаний.

В качестве наиболее близкого аналога выбрана универсальная модульная портальная силовая рама, содержащая силовые стойки, а также вспомогательные балки, выполненные с возможностью крепления на силовые стойки и между собой посредством разъемного соединения.

/информация с сайта ГК «Прогрессивные технологии», ссылка: www.p-techno.ru/ru/solutions/ispytaniya-i-trenazhery/staticheskie-ispytaniya/l - прототип

Недостатком известной рамы является то, что в данном решении все модули соединяются между собой при помощи разъемного болтового соединения, отверстия под которое выполнены в силовом профиле рамы и являются концентраторами напряжений, что снижает жесткость конструкции и увеличивает возможность трещинообразования (снижает прочность и, как следствие, снижает величину максимальной нагрузки испытания), при этом отверстия выполнены с определенным шагом, что позволяет размещать модули между собой только с этим шагом, снижая тем самым универсальность рамы.

Задачей заявленного изобретения является создание универсальной модульной портальной силовой рамы для стендовых статических и циклических испытаний деталей и корпусов турбомашин, лишенной недостатков прототипа.

Техническим результатом, достигаемым при использовании заявленного изобретения, является достижение большей жесткости, прочности и универсальности при использовании универсальной модульной портальной силовой рамы для испытаний деталей и корпусов турбомашин.

Указанный технический результат достигается тем, что универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин (далее силовая рама), содержащая силовые стойки, а также вспомогательные балки, выполненные с возможностью крепления на силовые стойки и между собой посредством разъемного соединения, согласно заявленному изобретению содержит прямоугольное основание, на больших сторонах которого жестко неразъемно закреплены как минимум по три силовые стойки на каждой, причем как минимум одна из силовых стоек расположена в области середины соответствующей большей стороны и по одной в углах прямоугольного основания, а сверху на силовых стойках закреплены цельные балки посредством жесткого неразъемного соединения, сориентированные вдоль соответствующих больших сторон прямоугольного основания, образующие с последними и силовыми стойками четырехугольные порталы, при этом на угловых силовых стойках посредством жесткого неразъемного соединения закреплено как минимум по одной проушине на каждой, кроме того, упомянутая силовая рама снабжена как минимум одной П-образной балкой, установленной поперек силовых стоек и выполненной с возможностью перемещения вдоль последних и фиксацией на них в требуемом положении.

Как минимум в одном из углов как минимум одного прямоугольного портала установлен подкос, жестко соединяющий смежные стороны упомянутого портала.

Профиль вспомогательных балок, прямоугольного основания, силовых стоек и цельных балок выполнен в виде двух параллельных труб прямоугольного сечения, установленных с зазором относительно друг друга и жестко соединенных между собой через соответствующие сквозные отверстия на последних как минимум одним соединительным элементом.

Упомянутая силовая рама снабжена как минимум одной тягой, соединяющей между собой силовые стойки и закрепленной на проушинах, при этом тяга выполнена с возможностью изменения своей длины.

Крепление тяги на проушинах выполнено посредством болтового соединения с одним болтом в каждом месте сопряжения.

Цельные балки соединены между собой как минимум одной вспомогательной балкой, установленной поперек них.

Крепление вспомогательной балки на цельных балках выполнено посредством болтового соединения, с одним болтом в каждом месте сопряжения.

Цельные балки соединены между собой как минимум одной вспомогательной балкой, установленной поперек и закрепленной на них посредством болтового соединения, с одним болтом в каждом месте сопряжения, при этом болт установлен в зазорах между труб профиля вспомогательной и цельных балок.

Крепление вспомогательных балок на силовых стойках и между собой выполнено посредством болтового соединения, с одним болтом в каждом месте сопряжения.

Крепление вспомогательных балок на силовых стойках и между собой выполнено посредством болтового соединения, с одним болтом в каждом месте сопряжения, при этом болт установлен в зазорах между труб профиля вспомогательных балок и силовых стоек.

Профиль П-образной балки выполнен в виде двух параллельных труб прямоугольного сечения, установленных с зазором относительно друг друга и жестко соединенных между собой через соответствующие сквозные отверстия на последних как минимум одним соединительным элементом для каждого прямого участка.

Фиксация П-образных балок на силовых стойках выполнена посредством болтового соединения, с одним болтом в каждом месте сопряжения.

Фиксация П-образных балок на силовых стойках выполнена посредством болтового соединения, с одним болтом в каждом месте сопряжения, при этом болт установлен в зазорах между труб профиля П-образных балок и силовых стоек.

Вспомогательные балки выполнены с возможностью установки на П-образные балки посредством болтового соединения, с одним болтом в каждом месте сопряжения.

Профиль П-образной балки выполнен в виде двух параллельных труб прямоугольного сечения, установленных с зазором относительно друг друга и жестко соединенных между собой через соответствующие сквозные отверстия на последних как минимум одним соединительным элементом для каждого прямого участка, с возможностью установки на П-образную балку вспомогательных балок посредством болтового соединения, с одним болтом в каждом месте сопряжения, при этом болт установлен в зазорах между труб профиля П-образной и вспомогательных балок.

Соединительные элементы выполнены в виде втулок.

Как минимум одна проушина установлена в местах соединения прямоугольного основания и силовых стоек и жестко неразъемно закреплена на последних.

Прямолинейные участки П-образной балки жестко неразъемно соединены между собой.

Прямоугольное основание закреплено на ответной части стенда посредством жесткого разъемного соединения.

Прямоугольное основание закреплено на ответной части стенда посредством болтового соединения, при этом болты установлены в зазорах между труб профиля прямоугольного основания.

Реализация силовой рамы для испытаний деталей и корпусов турбомашин описанным образом, а именно наличие жесткой неразъемной конструкции, состоящей из прямоугольного основания, силовых стоек и цельных балок, причем силовые стойки, расположенные в углах основания, являются опорами для цельных балок, а силовые стойки, расположенные в области середины больших сторон основания, связывают последнее с местом минимальной изгибной жесткости цельных балок (общеизвестно, что место максимального прогиба двухопертой балки по краям - это середина), что увеличивает жесткость и прочность силовой рамы.

Четырехугольные порталы, сориентированные вдоль длинных сторон основания, обеспечивают максимальную жесткость и прочность неразъемной конструкции силовой рамы в направлении максимальной нагрузки на детали и корпуса турбомашины при испытании (максимальная эксплуатационная нагрузка реализуется вдоль оси последней, в частности для авиадвигателестроения - это тяга).

Наличие проушин, неразъемно соединенных с силовыми стойками (разъемные соединения, как правило, реализуют меньшую жесткость), позволяет разместить на них элементы системы нагружения, объекта испытания или дополнительных силовых элементов, что делает силовую раму более жесткой и универсальной для испытаний деталей и корпусов турбомашин.

Снабжение неразъемной конструкции дополнительными силовыми модулями в виде вспомогательных балок и П-образных балок с фиксацией последних в требуемом месте на силовых стойках локально увеличивает жесткость и прочность неразъемной части силовой рамы, в частности в поперечном направлении, связывая прямоугольные порталы, и позволяет разместить на силовой раме элементы системы нагружения, объекта испытания или дополнительных силовых элементов, что делает силовую раму более жесткой, прочной и универсальной для испытаний деталей и корпусов турбомашин.

Дополнительная установка подкосов в четырехугольные порталы жестко связывает смежные стороны последних, что увеличивает жесткость и прочность силовой рамы в направлении максимальных нагрузок на детали и корпуса турбомашин при испытании.

Выполнение профиля вспомогательных балок, прямоугольного основания, силовых стоек, цельных балок, вспомогательных балок и П-образных балок в виде двух параллельных труб прямоугольного сечения (прямоугольное сечение труб обеспечивает прилегание сопрягаемых элементов силовой рамы в разъемном соединении в плоскости, что увеличивает изгибную жесткость последнего), установленных с зазором относительно друг друга и жестко неразъемно соединенных между собой через соответствующие сквозные отверстия на последних, как минимум, одним соединительным элементом (наличие соединительных элементов заставляет две параллельные трубы работать совместно под нагрузкой, что увеличивает жесткость и прочность профиля), позволяет фиксировать в требуемом месте дополнительные силовые модули на неразъемную конструкцию и друг на друга посредством разъемного соединения с одним болтом в каждом месте сопряжения, при этом болт установлен в зазорах между труб профиля соединяемых элементов силовой рамы (такое соединение не требует выполнения отверстий под крепеж непосредственно в силовых элементах профиля - в двух параллельных трубах), что делает силовую раму более жесткой, прочной и универсальной для испытаний деталей и корпусов турбомашин.

Установка на проушины тяг, выполненных с возможностью изменения ими своей длины, позволяет связывать соседние силовые стойки и, при необходимости, создавать натяг и/или распирание, что увеличивает жесткость и прочность силовой рамы для испытаний деталей и корпусов турбомашин.

Крепление тяги на проушинах посредством одного болта позволяет осуществлять взаимозаменяемость с элементами системы нагружения и объекта испытания, что повышает универсальность силовой рамы для испытаний деталей и корпусов турбомашин.

Соединение цельных балок или силовых стоек, установленных вдоль разных длинных сторон прямоугольного основания, при помощи вспомогательной балки увеличивает поперечную жесткость и прочность рамы для испытаний деталей и корпусов турбомашин.

Соединение силовых стоек, установленных на длинной стороне основания, при помощи вспомогательной балки увеличивает продольную жесткость и прочность рамы для испытаний деталей и корпусов турбомашин.

Соединение силовых стоек при помощи П-образной балки увеличивает продольную и поперечную жесткость и прочность рамы для испытаний деталей и корпусов турбомашин.

Соединение прямолинейных участков П-образной балки жестко неразъемно между собой увеличивает жесткость самой П-образной балки и соответственно силовой рамы для испытаний деталей и корпусов турбомашин в целом.

Реализация соединительных элементов в виде втулок позволяет меньше загромождать зазор между труб профиля, что повышает универсальность силовой рамы для испытаний деталей и корпусов турбомашин.

В частности, установка проушины в место соединения основания с силовой стойкой и жесткое неразъемное ее соединение с последними увеличивает жесткость и прочность силовой рамы для испытаний деталей и корпусов турбомашин, так как при этом проушина выполняет функцию подкоса.

Закрепление силовой рамы прямоугольным основанием на ответной части стенда исключает ее перемещения в процессе испытаний, что увеличивает жесткость последней.

Соединение прямоугольного основания с ответной частью стенда посредством болтового соединения с установкой болтов в пределах зазоров между труб профиля прямоугольного основания не требует выполнения отверстий под крепеж непосредственно в силовых элементах профиля, в двух параллельных трубах, что делает силовую раму более жесткой, прочной и универсальной для испытаний деталей и корпусов турбомашин.

Сущность заявленного изобретения поясняется фигурами 1, 2.

На фиг. 1 представлен частный случай реализации универсальной модульной портальной силовой рамы для испытаний деталей и корпусов турбомашин.

На фиг. 2 представлен общий вид разъемного соединения, например силовой стойки с вспомогательной балкой.

До начала испытаний силовая рама содержит жесткую неразъемную конструкцию, состоящую из прямоугольного основания 1, силовых стоек 2 с установленными на них цельными балками 3 и проушинами 4. При этом прямоугольное основание 1, силовые стойки 2 и цельные балки 3 образуют четырехугольные порталы. В частном случае реализации проушины 4 могут быть установлены в места соединения силовых стоек 2 и прямоугольного основания 1 и закреплены на последних, а четырехугольные порталы могут быть усилены подкосами 5. Перед испытаниями на жесткую неразъемную конструкцию устанавливают часть дополнительных силовых модулей в виде вспомогательных балок 6 и П-образных балок 7, необходимых для установки оснастки, при помощи которой закрепляют объект испытаний и элементы системы нагружения в пространстве между силовыми стойками 2 рамы (изначально устанавливается только часть дополнительных силовых модулей ввиду того, что установка всего комплекта сразу может препятствовать закреплению объекта испытаний внутри силовой рамы). После чего доустанавливают вспомогательные балки 6, П-образные балки 7, а также тяги 8, которые обеспечивают дополнительную жесткость требуемых локальных мест силовой рамы в нужном направлении. Большая жесткость силовой рамы требуется для обеспечения меньшей погрешности измерения параметров в процессе испытаний, например перемещений мест установки подшипников при испытаниях на определение податливости опор роторов турбомашины от реализованного нагружения.

Профиль элементов силовой рамы, жесткой неразъемной конструкции и дополнительных силовых модулей должен обеспечивать простоту сборки, требуемую жесткость разъемных соединений и силовой рамы в целом, а также возможность закрепления на себе оснастки, при помощи которой закрепляют объект испытаний и элементы системы нагружения, и обеспечивать фиксацию на стенде.

В частном случае реализации (фиг. 1) силовая рама содержит жесткую неразъемную часть, состоящую из прямоугольного основания 1, на каждой длинной стороне которого установлены по четыре силовые стойки 2, две в углах прямоугольного основания 1 и две в области середины. Сверху каждой четверки силовых стоек 2 установлено по цельной балке 3, что образует по три четырехугольных портала, сориентированных вдоль длинной стороны прямоугольного основания 1. В каждый угол четырехугольного портала, одной из сторон которого является угловая силовая стойка 2, установлено по подкосу 5. При этом на всех угловых силовых стойках 2 установлено по три проушины 4, по одной из которых дополнительно соединены с прямоугольным основанием 1. Все соединения жесткой неразъемной конструкции выполнены при помощи сварки.

Силовая рама также снабжена несколькими силовыми модулями: вспомогательными балками 6 (на фиг. 1 показаны четыре), двумя П-образными балками 7 и шестью тягами 8, выполненными с возможностью изменения своей длины. Соединение жесткой неразъемной конструкции с силовыми модулями реализовано посредством болтового соединения с одним болтом в каждом месте сопряжения. Тяги 8 устанавливаются на проушины 4. При необходимости вспомогательные балки 6 могут устанавливаться на прямоугольное основание 1, силовые стойки 2, цельные балки 3 и друг на друга. П-образные балки 7 устанавливаются поперек силовых стоек 2 на последние. Соединение прямолинейных участков П-образных балок 7 осуществляется посредством сварки.

Профиль прямоугольного основания 1, силовых стоек 2, цельных балок 3, вспомогательных балок 6 и П-образных балок 7 выполнен в виде двух параллельных труб 9 прямоугольного сечения (допускается наличие технологического радиуса скругления в углах), установленных с зазором относительно друг друга и жестко соединенных между собой через соответствующие сквозные отверстия на последних посредством втулок 10, в частном случае реализации выполненных цилиндрическими (фиг. 2). Втулки 10 приварены к трубам 9. Такой профиль позволяет фиксировать в требуемом месте дополнительные силовые модули на жесткую неразъемную конструкцию и друг на друга посредством разъемного соединения с одним болтом в каждом месте сопряжения. При этом болт установлен в зазорах между труб 9 профиля соединяемых элементов силовой рамы, что исключает возможность установки силовых модулей только в местах пересечения крепежных болтов с втулками 10. Аналогичным образом силовая рама фиксируется относительно силового пола 11 стенда, только большим числом болтов.

Настоящее изобретение позволяет за счет своего конструктивного исполнения, а именно наличия жесткой неразъемной конструкции, реализованной с учетом специфики стендовых испытаний деталей и корпусов турбомашин, возможности различных комбинаций установки силовых модулей, профиля и соединений элементов силовой рамы и др., увеличить жесткость, прочность и универсальность последней.

1. Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин, содержащая силовые стойки, а также вспомогательные балки, выполненные с возможностью крепления на силовые стойки и между собой посредством разъемного соединения, отличающаяся тем, что содержит прямоугольное основание, на больших сторонах которого жестко неразъемно закреплены как минимум по три силовые стойки на каждой, причем как минимум одна из силовых стоек расположена в области середины соответствующей большей стороны и по одной в углах прямоугольного основания, а сверху на силовых стойках закреплены цельные балки посредством жесткого неразъемного соединения, сориентированные вдоль соответствующих больших сторон прямоугольного основания, образующие с последними и силовыми стойками четырехугольные порталы, при этом на угловых силовых стойках посредством жесткого неразъемного соединения закреплено как минимум по одной проушине на каждой, кроме того, упомянутая силовая рама снабжена как минимум одной П-образной балкой, установленной поперек силовых стоек и выполненной с возможностью перемещения вдоль последних и фиксацией на них в требуемом положении.

2. Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин по п. 1, отличающаяся тем, что как минимум в одном из углов как минимум одного прямоугольного портала установлен подкос, жестко соединяющий смежные стороны упомянутого портала.

3. Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин по п. 1, отличающаяся тем, что профиль вспомогательных балок, прямоугольного основания, силовых стоек и цельных балок выполнен в виде двух параллельных труб прямоугольного сечения, установленных с зазором относительно друг друга и жестко соединенных между собой через соответствующие сквозные отверстия на последних как минимум одним соединительным элементом.

4. Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин по п. 1, отличающаяся тем, что снабжена как минимум одной тягой, соединяющей между собой силовые стойки и закрепленной на проушинах, при этом тяга выполнена с возможностью изменения своей длины.

5. Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин по п. 4, отличающаяся тем, что крепление тяги на проушинах выполнено посредством болтового соединения, с одним болтом в каждом месте сопряжения.

6. Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин по п. 1, отличающаяся тем, что цельные балки соединены между собой как минимум одной вспомогательной балкой, установленной поперек них.

7. Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин по п. 6, отличающаяся тем, что крепление вспомогательной балки на цельных балках выполнено посредством болтового соединения, с одним болтом в каждом месте сопряжения.

8. Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин по п. 3, отличающаяся тем, что цельные балки соединены между собой как минимум одной вспомогательной балкой, установленной поперек и закрепленной на них посредством болтового соединения, с одним болтом в каждом месте сопряжения, при этом болт установлен в зазорах между труб профиля вспомогательной и цельных балок.

9. Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин по п. 1, отличающаяся тем, что крепление вспомогательных балок на силовых стойках и между собой выполнено посредством болтового соединения, с одним болтом в каждом месте сопряжения.

10. Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин по п. 3, отличающаяся тем, что крепление вспомогательных балок на силовых стойках и между собой выполнено посредством болтового соединения, с одним болтом в каждом месте сопряжения, при этом болт установлен в зазорах между труб профиля вспомогательных балок и силовых стоек.

11. Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин по п. 1, отличающаяся тем, что профиль П-образной балки выполнен в виде двух параллельных труб прямоугольного сечения, установленных с зазором относительно друг друга и жестко соединенных между собой через соответствующие сквозные отверстия на последних как минимум одним соединительным элементом для каждого прямого участка.

12. Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин по п. 1, отличающаяся тем, что фиксация П-образных балок на силовых стойках выполнена посредством болтового соединения, с одним болтом в каждом месте сопряжения.

13. Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин по п. 11, отличающаяся тем, что фиксация П-образных балок на силовых стойках выполнена посредством болтового соединения, с одним болтом в каждом месте сопряжения, при этом болт установлен в зазорах между труб профиля П-образных балок и силовых стоек.

14. Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин по п. 1, отличающаяся тем, что вспомогательные балки выполнены с возможностью установки на П-образные балки посредством болтового соединения, с одним болтом в каждом месте сопряжения.

15. Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин по п. 3, отличающаяся тем, что профиль П-образной балки выполнен в виде двух параллельных труб прямоугольного сечения, установленных с зазором относительно друг друга и жестко соединенных между собой через соответствующие сквозные отверстия на последних как минимум одним соединительным элементом для каждого прямого участка, с возможностью установки на П-образную балку вспомогательных балок посредством болтового соединения, с одним болтом в каждом месте сопряжения, при этом болт установлен в зазорах между труб профиля П-образной и вспомогательных балок.

16. Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин по любому из пп. 3, 11, 15, отличающаяся тем, что соединительные элементы выполнены в виде втулок.

17. Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин по п. 1, отличающаяся тем, что как минимум одна проушина установлена в местах соединения прямоугольного основания и силовых стоек и жестко неразъемно закреплена на последних.

18. Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин по п. 1, отличающаяся тем, что прямолинейные участки П-образной балки жестко неразъемно соединены между собой.

19. Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин по п. 1, отличающаяся тем, что прямоугольное основание закреплено на ответной части стенда посредством жесткого разъемного соединения.

20. Универсальная модульная портальная силовая рама для статических и циклических стендовых испытаний деталей и корпусов турбомашин по п. 3, отличающаяся тем, что прямоугольное основание закреплено на ответной части стенда посредством болтового соединения, при этом болты установлены в зазорах между труб профиля прямоугольного основания.



 

Похожие патенты:

Изобретение относится к области управления работой двигателя внутреннего сгорания, в частности к диагностике неисправности датчиков влажности. Способ диагностики для емкостного датчика влажности, содержащего нагреватель и элемент считывания емкости, который по отдельности идентифицирует ухудшение характеристик нагревателя, элемента считывания температуры или элемента считывания емкости.

Предложены способы и системы диагностирования каждого из множества компонентов системы охлаждения двигателя, включающих в себя различные клапаны и заслонки решетки радиатора.

Способ испытания заключается в задании режима работы гидромеханической части (ГМЧ) САУ ВГТД, измерении расхода топлива, формировании по нему с помощью модели турбокомпрессора частоты вращения рессоры всережимного регулятора, формировании с помощью модели электронного регулятора выходного сигнала канала регулирования по частоте вращения, задании с помощью модели приводного компрессора нагрузки на электрогидравлическом исполнительном механизме и/или на имитаторе гидроцилиндра, формировании выходного сигнала канала регулирования электронного регулятора по направляющему аппарату, задании нагрузки на ГМЧ, воспроизведении ее с помощью загрузочного устройства, дополнительной корректировки выходных сигналов моделей канала регулирования электронного регулятора по регулируемому параметру и по углу поворота направляющего аппарата до достижения ими заданных значений.

Настоящее изобретение относится к системе обнаружения пропуска зажигания, используемой в двигателе внутреннего сгорания. Система обнаружения пропуска зажигания для двигателя включает в себя датчик угла поворота коленчатого вала, блок обнаружения пропуска зажигания, блок получения и блок коррекции.

Устройство диагностики технического состояния электродвигателя подвижного роботизированного комплекса относится к области диагностики технических систем и может быть использовано для диагностирования промышленного оборудования и технических систем, к которым могут быть отнесены подшипники электродвигателей, ленточные конвейеры, промышленные вентиляторы и т.п.

Изобретение относится к измерительной технике, а в частности для проведения оптико-акустических и газодинамических измерений в помещении, для создания свободного звукового поля в помещении, при продувке моделей элементов авиационных ГТД и позволяет повысить надежность и достоверность получаемой при измерении информации.

Изобретение предназначено для использования в энергомашиностроении и может найти широкое применение при создании систем определения динамических напряжений в лопатках рабочих колес осевых турбомашин в авиации и энергомашиностроении.

Изобретение относится к испытаниям лопаточных машин - компрессоров и турбин. В способе лопаточные машины изготовляют с помощью аддитивных технологий (или AF-технологий), а работоспособность лопаточных машин обеспечивают уменьшением характерной температуры рабочего процесса в соответствии с зависимостью: Ти/Тн≤(σи×ρн)/(σн×ρи); где Ти - характерная температура газодинамического процесса при испытаниях; Тн - соответствующая температура в натурных условиях работы; σи - определяющая прочностная характеристика материала модели; σн - соответствующая определяющая прочностная характеристика материала критичных натурных деталей лопаточной машины; ρи - плотность материала модели; ρн - плотность материала критичных натурных деталей лопаточной машины.

Тестер остаточного ресурса (ТОР) предназначен для безразборного технического диагностирования кривошипно-шатунного механизма (КШМ) автомобильного рядного, V-образного или оппозитного бензинового или дизельного ДВС с числом цилиндров 2…12, рабочим объемом 0,903…22,3 л, оснащенного системой непрерывной или прерывистой подачи масла к шатунным подшипникам коленчатого вала (КВ).

Изобретение относится к автоматизированному способу неразрушающего контроля тканой заготовки, предназначенной для производства части турбомашины и содержащей множество первых маркирующих нитей, пересекающихся со вторыми маркирующими нитями, первые и вторые нити имеют свойства отражения света, отличные от свойств нитей заготовки, и сотканы с нитями заготовки таким образом, чтобы образовывать поверхностную сетку на заданной зоне заготовки.

Изобретения относятся к оборудованию и способам для удаления песка из турбомашины, такой как авиационный турбореактивный двигатель, который содержит, по меньшей мере, одно устройство визуализации эндоскопией, содержащее средства визуализации и трубку, в которой закреплены световодные средства передачи изображения, всасывающее устройство, содержащее всасывающие средства, соединенные с всасывающей трубкой, закрепленной на вышеупомянутой трубке устройства визуализации, и устройство генерирования плазменной струи, содержащее плазменную горелку, соединенную со средствами подачи газа и средствами электроснабжения, способными питать указанную плазменную горелку, причем указанная плазменная горелка закреплена на трубке указанного устройства визуализации.

Изобретение относится к системе индикации и может быть использовано для диагностики состояния элементов внутри турбинных узлов и деталей проточных частей на закрытой турбине, как на валоповороте, так и на полном останове турбин.

Изобретение относится к области авиационного двигателестроения, а именно к конструкции упругих опор с изменяемой податливостью, применяемых в стендовых динамических испытаниях роторов турбомашин.

Изобретение относится к энергетике. Система управления потоком включает по меньшей мере один управляющий клапан, связанный по меньшей мере с одним соплом турбинного двигателя, при этом упомянутый управляющий клапан сконфигурирован для регулирования потока текучей среды в первом направлении или втором направлении.

Система очистки канала турбомашины содержит первый канал для воздушного потока, имеющий первое впускное отверстие, первое выпускное отверстие и первую промежуточную часть, содержащую первый фильтр грубой очистки.

Группа изобретений относится к статору компрессора низкого давления осевой турбомашины. Статор содержит кольцевой ряд лопаток статора 26, имеющих радиальные концы, проходящие через отверстия 36 внутреннего кожуха 28, и содержащие радиальные крепежные пазы 38.

Изобретение относится к энергетике. Эндоскопическая система 10 содержит эндоскоп 12 и устройство 16 обработки данных, в котором эндоскоп 12 содержит устройство 13 записи изображений, причем эндоскоп 12 выполнен с возможностью передачи записей изображений от устройства 13 записи изображений изнутри газовой турбины 11 к устройству 16 обработки данных, при этом эндоскопическая система 10 выполнена с возможностью позиционирования и юстировки определенным образом в газовой турбине 11 эндоскопа 12, содержащего устройство 13 записи изображений, которое введено в газовую турбину 11.

Уплотнительный узел переходного патрубка содержит первое уплотнение и второе уплотнение, присоединенное к первому уплотнению. Второе уплотнение расположено на расстоянии от первого уплотнения для формирования прохода для охлаждающей текучей среды.

Выпускной патрубок (11) паровой турбины содержит выпускную секцию (12, 13) и поворотную пластину (70), расположенную в этой секции (12, 13). Поворотная пластина (70) имеет поперечное сечение сложного криволинейного профиля, имеющее первую секцию (80), которая проходит между первой концевой частью (73) и средней частью (76), и вторую секцию (82), которая проходит между указанной средней частью (76) и второй концевой частью (75).

Предложен выравнивающий элемент (18, 118, 318) для сегмента (4) диафрагмы турбины. Выравнивающий элемент (18, 118, 318) выполнен с обеспечением прохождения в радиальном направлении через часть указанного сегмента (4) диафрагмы турбины.

Транспортабельный газотурбинный модуль содержит основание, на которое опираются мощная газовая турбина и нагрузка, а также конструкцию, окружающую турбину и нагрузку и соединенную с основанием.
Наверх