Способ сопровождения цели и способ излучения и приема сигнала

Изобретение относится к области радиолокации и может быть использованы для обнаружения и завязывания трассы цели. Достигаемый технический результат по первому варианту способа сопровождения цели - сокращение временных затрат на завязывание трасс целей и увеличение надежности сопровождения за счет уменьшения размеров стробов, а также возможность обнаружения в первом обзоре особо опасных высокоскоростных целей. Указанные технические результаты достигаются тем, что в способе сопровождения цели, основанном на установке строба первичного захвата по измеренной при ее обнаружении дальности с использованием зондирующего сигнала с однозначной дальностью с последующей выработкой строба сопровождения, зондируют области стробов сигналами, обеспечивающими измерение допплеровской скорости цели. Достигаемым техническим результатом по второму варианту способа излучения и приема сигнала является использование той же структуры сигнала для измерения (разрешения) допплеровской скорости, что и для измерения дальности. Указанный технический результат достигается тем, что в способе излучения и приема сигнала при измерении (разрешении) допплеровской скорости, основанном на формировании сигнала с внутриимпульсной модуляцией, сигнал излучают отдельными частями, а при приеме их отражений сжимают их в допплеровских каналах. 2 н. и 5 з.п. ф-лы.

 

Заявляемые технические решения относятся к области радиолокации и могут быть использованы для обнаружения и завязывания трассы цели.

Задача радиолокационной станции (РЛС) состоит в обнаружении цели - факта наличия в осматриваемом направлении и определении ее местоположения (угловые координаты, дальность и тип цели); кроме того, в большинстве случаев важно определить ее скорость для завязки трассы цели и ведения ее сопровождения.

Наиболее близким к заявляемому способу сопровождения цели является способ, основанный на установке строба первичного захвата по измеренной при ее обнаружении дальности с использованием зондирующего сигнала с однозначной дальностью с последующей выработкой строба сопровождения. [С.З. Кузьмин. - Основы проектирования систем цифровой обработки радиолокационной информации. М., «Радио и связь», 1986 г., с. 109, 110, рис 3.1]. По двум отметкам дальности, полученным в двух обзорах, вычисляют скорость и направление движения цели (скорость в одном обзоре при данном способе сопровождения не вычисляется), а затем рассчитывают возможное положение отметки на следующий (третий) обзор. После чего завязывают трассу цели и осуществляют ее сопровождение. Осуществление сопровождения трассы цели обеспечивает прогнозирование положения цели, разрешение целей, сохранение информации о типе цели и степени ее опасности, полученной в режиме ее обнаружения. При недостаточной надежности выполнения процесса сопровождения возможен сброс трассы цели, ее потеря, перепутывание трасс целей. В результате необходимо вновь переходить в режим поиска цели, распознавания, завязки трассы и ее сопровождения. Сброс трассы цели возможен при пропуске отметок в стробе нескольких периодов обзора (в зависимости от установленного критерия). Это возможно, если размер строба установлен без достаточного учета возможных ошибок экстраполяции и измерения координат цели (дальность и скорость). Для повышения вероятности попадания отметки от цели в строб при следующем обзоре необходимо было бы увеличить размер строба по сравнению с расчетным. Но увеличение размера строба приводит к повышению вероятности попадания в строб ложных отметок или отметок, принадлежащих другим траекториям, следовательно, к ухудшению селектирующей и разрешающей способности операции стробирования [там же, с. 114, строки 13-9 снизу] и, как следствие, к возможному сбросу сопровождения. Минимизация размера строба при обеспечении заданной вероятности попадания отметки при следующем обзоре возможна, например, при увеличении точности измерения дальности и доплеровской скорости цели на текущем обзоре.

Недостаток известного способа сопровождения цели состоит в том, что обнаружение траектории при первичном захвате и завязывании трассы устанавливают строб первичного захвата за два обзора и увеличенного размера [С.З. Кузьмин. - Основы проектирования систем цифровой обработки радиолокационной информации. М., «Радио и связь», 1986 г., с. 109, рис 3.1], что приводит к увеличению времени на установление сопровождения. Это является следствием того, что при определении скорости, необходимой для прогнозирования положения строба на следующий обзор, используют один тип зондирующего сигнала в процессе многократного обзора для определения величины изменения расстояния до цели между обзорами; а для сокращения времени желательно было бы в одном обзоре измерить и дальность до цели, и ее доплеровскую скорость. Но это невозможно при использовании одного типа сигнала, так как в радиолокации действует принцип неопределенности, состоящий том, что повышение точности определения дальности уменьшает точность определения скорости [Д.Е. Вакман. - Сложные сигналы и принцип неопределенности в радиолокации. М., «Сов. радио», 1965 г., с. 65, второй абзац снизу]. При организации сопровождения в прототипе используют один тип сигнала - широкополосный для измерения дальности, а скорость цели определяют по изменению расстояния за время между обзорами.

Решаемой первой задачей (техническим результатом) заявляемого способа сопровождения цели является сокращение временных затрат на завязывание трасс целей и увеличение надежности сопровождения за счет уменьшения размеров стробов, а также возможность обнаружения в первом обзоре особо опасных высокоскоростных целей.

Решение первой задачи достигается измерением дальности и доплеровской скорости в одном обзоре за счет сочетания различных способов излучения и приема сигнала.

Для реализации первой задачи необходимо найти способ излучения и приема сигналов, обеспечивающий измерение (разрешение) доплеровской скорости цели в стробе.

Наиболее близким к заявляемому способу излучения и приема сигнала, при котором измеряют (разрешают) доплеровскую скорость, является способ, основанный на формировании сигнала с внутриимпульсной модуляцией [Я.Д. Ширман, В.Н. Голиков - Основы теории обнаружения радиолокационных сигналов и измерение их параметров. М., «Сов. Радио», 1963 г., с. 200], [Справочник. Радиоэлектронные системы. Основы построения и теория. Под ред. д.т.н. Я.Д. Ширман. М., «Радиотехника», 2007 г., с. 271, 1 колонка (Однозначность и неоднозначность …)], согласно которому при измерении дальности используют широкополосные сигналы с внутриимпульсной модуляцией или короткие сигналы, а при измерении доплеровской скорости используют сигналы, протяженные во времени или импульсные последовательности.

Недостаток известного способа излучения и приема сигнала заключается в том, что он основан на использовании сигналов с различной структурой.

Решаемой задачей (техническим результатом) предлагаемого способа излучения и приема является использование той же структуры сигнала для измерения (разрешения) доплеровской скорости, что и для измерения дальности.

Поставленная в первом способе задача (технический результат) решается тем, что в способе сопровождения цели, основанном на установке строба первичного захвата по измеренной при ее обнаружении дальности с использованием зондирующего сигнала с однозначной дальностью с последующей выработкой строба сопровождения, согласно изобретению зондируют области стробов сигналами, обеспечивающими измерение доплеровской скорости цели.

Поставленная задача (технический результат) решается также тем, что измеренную скорость используют в качестве признака сопровождаемой цели.

Поставленная задача (технический результат) решается также тем, что при пересечении трасс целей или других причинах неоднозначности выбора цели в стробе для продолжения сопровождаемой трассы выбирают цель с учетом измеренной скорости.

Поставленная во втором способе задача (технический результат) решается тем, что в способе излучения и приема сигнала при измерении (разрешении) доплеровской скорости, основанном на формировании сигнала с внутриимпульсной модуляцией, согласно изобретению сигнал излучают отдельными частями, а при приеме их отражений сжимают их в доплеровских каналах.

Поставленная задача (технический результат) решается также тем, что временное положение частей устанавливают апериодичными.

Поставленная задача (технический результат) решается также тем, что временное положение частей модулируют колебанием с изменяемой частотой.

Поставленная задача (технический результат) решается также тем, что временное положение частей устанавливают случайным.

Суть первого предлагаемого способа сопровождения цели заключается в том, что с помощью сигнала с внутриимпульсной модуляцией определяют местоположение цели и устанавливают в этом месте строб. Далее область строба зондируют сигналами с неоднозначностью по дальности. Но благодаря установленному стробу исключается влияние неоднозначности второго типа сигнала.

Суть предлагаемого второго способа излучения и приема сигнала, основанного на формировании сигнала с внутриимпульсной модуляцией, заключается в том, что сигнал, используемый для измерения дальности (с внутриимпульсной модуляцией), растягивают во времени путем излучения отдельными частями, а при приеме их отражений сжимают их в допплеровских каналах.

Благодаря использованию разделенного на части сигнала с внутриимпульсной модуляцией (неоднозначного по дальности) и сжатия отраженных частей сигнала в доплеровских каналах, удается определить доплеровскую скорость [В.А. Федоров. - Методы и устройства обработки сигналов в импульсно-доплеровских радиолокационных станциях. Рязанская государственная радиотехническая академия, 2006 г., с 2]. При этом решается задача реализации первого способа, а это обеспечивает завязывание трасс целей за один обзор, так как при первом зондировании определяют дальность, а при втором определяют скорость, и это происходит за один период обзора. Кроме того повышается надежность сопровождения за счет уменьшения размеров стробов (известна доплеровская скорость), а также возможность обнаружения в первом обзоре особо опасных высокоскоростных целей за счет измерения их доплеровской скорости.

Измеренная скорость конкретной цели становится ее признаком, позволяющим идентифицировать ее на последующих обзорах, и обеспечивает, в том числе, надежность сопровождения трассы.

В предлагаемом способе излучения и приема сигнала во втором периоде зондирования используют тот же сигнал, что и в первом, но его разделяют на несколько частей и излучают каждую часть с задержкой во времени. Благодаря разносу частей сигнала во времени каждая отраженная от цели часть сигнала получает набег фазы относительно предыдущих частей, пропорциональный временному интервалу и доплеровской скорости цели. При приеме сигнал сжимают в доплеровском канале соответствующей доплеровской скорости.

Благодаря тому, что временное положение частей устанавливают апериодичным, или временное положение частей модулируют колебанием с изменяемой частотой, или временное положение частей устанавливают случайным (хаотичным), уменьшается уровень боковых лепестков неоднозначного по скорости сигнала после его сжатия, например, для шумоподобной модуляции последовательности тело функции неопределенности становится игольчатым [Я.Д. Ширман, В.Н. Голиков. - Основы теории обнаружения радиолокационных сигналов и измерение их параметров. М., «Сов. Радио», 1963 г., с. 224, рис 7.10].

Следует отметить, что заявленный в п. 4 способ излучения и приема может быть использован не только для реализации способа п. 1, но и в способах обзора пространства, когда требуется измерять и дальность до цели, и ее доплеровскую скорость.

Таким образом решается поставленная задача и достигается технический результат.

1. Способ сопровождения цели, основанный на установке строба первичного захвата по измеренной при ее обнаружении дальности с использованием зондирующего сигнала с однозначной дальностью с последующей выработкой строба сопровождения, отличающийся тем, что зондируют области стробов сигналами, обеспечивающими измерение доплеровской скорости цели, которую используют для минимизации размера строба.

2. Способ по п. 1, отличающийся тем, что измеренную скорость используют в качестве признака сопровождаемой цели.

3. Способ по п. 1, отличающийся тем, что при пересечении трасс целей, влияющем на неоднозначность выбора цели в стробе, для продолжения сопровождаемой трассы выбирают цель с учетом ее измеренной доплеровской скорости.

4. Способ излучения и приема сигнала, основанный на измерении дальности и доплеровской скорости, формировании излучаемого сигнала с внутриимпульсной модуляцией, отличающийся тем, что сигнал, используемый для измерения дальности, растягивают во времени путем излучения отдельными частями, а при приеме их отражений сжимают в доплеровских каналах.

5. Способ по п. 4, отличающийся тем, что временное положение частей устанавливают апериодичным.

6. Способ по п. 4, отличающийся тем, что временное положение частей модулируют колебанием с изменяемой частотой.

7. Способ по п. 4, отличающийся тем, что временное положение частей устанавливают случайным.



 

Похожие патенты:

Изобретение относится к области радиолокации и может быть использовано в радиолокационных системах с зондирующими сигналами, кодированными по фазе (фазокодоманипулированными сигналами), для измерения поляризационной матрицы рассеяния объекта.

Изобретение относится к способу детектирования вращающегося колеса транспортного средства. Предложен способ детектирования вращающегося колеса (1) транспортного средства (2), характеризующийся тем, что детектируют колесо (1) путем оценки допплеровского сдвига частоты отраженного колесом (1) и возвращенного с допплеровским сдвигом измерительного луча (6), испускаемого детекторным блоком (5), мимо которого проходит указанное транспортное средство (2).

Изобретение относится к локационной технике и предназначено для использования в системах сопровождения подвижных объектов и системах наведения ракет. Достигаемый технический результат - повышение точности оценки параметров траектории сопровождаемого объекта в условиях неопределенности динамики его движения.

Изобретение относится к области радиолокации и может быть использовано для повышения вероятности обнаружения целей. Достигаемый технический результат - снижение уровня боковых лепестков корреляционной функции для любых зондирующих сигналов при априорно неизвестных характеристиках приемо-передающего тракта.

Изобретение относится к способу и устройству детектирования (обнаружения) вращающегося колеса транспортного средства, которое движется по проезжей части в направлении движения, и колеса которого, по меньшей мере, частично открыты сбоку.

Изобретение относится к способу и устройству обнаружения вращающегося колеса транспортного средства, которое движется по проезжей части в направлении движения и колеса которого, по меньшей мере, частично открыты сбоку.

Изобретение относится к радиолокации, может быть использовано для обеспечения высокой разрешающей способности по дальности на выходе приемного тракта радиолокационной станции.

Изобретение относится к радиоэлектронике и касается принципов построения системы обработки гидроакустической или радиолокационной информации в части автоматического сопровождения подвижной цели.

Изобретение относится к гидроакустике и радиолокации и может быть использовано в системе обработки информации для автоматического сопровождения подвижных целей.

Изобретение относится к системам формирования изображения и может быть использовано для обнаружения скрытых предметов. Электрические свойства скрытых объектов, например диэлектрическая проницаемость, могут быть получены из информации о падающих, отраженных и пропущенных электромагнитных волнах в системе формирования изображения.

Изобретение относится к технике навигации и может использоваться в системах GPS и GLONASS. Технический результат состоит в повышении надежности определения местоположения.

Изобретения относятся к области радиолокации и могут быть использованы в обзорных радиолокационных станциях при сопровождении траекторий маневрирующих радиолокационных целей.

Изобретение относится к области авиационно-космического приборостроения устройств и систем фильтрации параметров движения беспилотных летательных аппаратов (БПЛА), определяющих местоположение в пространстве с использованием корреляции данных от нескольких навигационных приборов и может быть использовано для фильтрации параметров движения БПЛА, поступающих с бортовой навигационной системы (БНС) для повышения точности определения параметров движения БПЛА.

Изобретение относится к радиоэлектронным системам сопровождения интенсивно маневрирующих целей, в частности к следящим дальномерам и угломерам бортовых РЛС. Достигаемый технический результат - обеспечение бессрывного сопровождения интенсивно маневрирующих целей с высокоточным оцениванием производных третьего и четвертого порядка при малом числе используемых измерителей.

Изобретение относится к локационной технике и предназначено для использования в системах сопровождения подвижных объектов и системах наведения ракет. Достигаемый технический результат - повышение точности оценки параметров траектории сопровождаемого объекта в условиях неопределенности динамики его движения.

Изобретение относится к области радиолокационных измерений. Особенностью заявленного способа адаптивного измерения угловых координат объекта наблюдения является то, что от системы встроенного контроля на вычислительное устройство поступают также данные о коэффициентах передачи малошумящих усилителей приемных каналов приемо-передающих модулей, многоступенчатых управляемых аттенюаторов приемо-передающих модулей, суммарного и разностного приемных каналов углового дискриминатора и о вносимых суммарным и разностным приемными каналами углового дискриминатора фазовых сдвигах, о допустимых значениях изменений коэффициентов передачи малошумящих усилителей приемных каналов приемо-передающих модулей, многоступенчатых управляемых аттенюаторов приемо-передающих модулей, суммарного и разностного приемных каналов углового дискриминатора и данные о допустимых значениях изменений, вносимых суммарным и разностным приемными каналами углового дискриминатора фазовых сдвигов, а также о допустимых значениях угловых смещений полотна активной фазированной антенной решетки, которые хранятся в блоке памяти системы встроенного контроля, а поступающие от блока навигации данные об угловых смещениях полотна активной фазированной антенной решетки во входящем в состав системы встроенного контроля преобразователе оцифровываются и поступают в вычислительное устройство.

Способ наведения на удаленный объект электромагнитного излучения, основанный на формировании в материальной среде излучения с заданной в направлении объекта диаграммой направленности с длиной волны λ0 длительностью импульса τ0 и одновременным пропусканием в пределах сформированной диаграммы направленности в направлении объекта когерентного излучения с длиной волны λ1 и длительностью τ1<τ0.

Изобретение относится к радиоэлектронным системам сопровождения, в частности к следящим системам по направлению (измерителям углов и угловых скоростей линии визирования), в которых используется инерционный привод антенны, и может быть использовано для эффективного управления инерционными следящими системами по направлению в режиме сопровождения различных воздушных объектов, включая интенсивно маневрирующие.

Изобретение относится к области радиолокации и может быть использовано для обнаружения траекторий скоростных и интенсивно маневрирующих целей с помощью мобильных радиолокационных станций (РЛС) кругового обзора.

Изобретение относится к радиолокации, а именно к радиолокационным станциям (РЛС) наблюдения за воздушной обстановкой, работающим в режиме узкополосной доплеровской фильтрации.

Изобретение относится к области радиолокации. Достигаемым техническим результатом изобретения является упрощение схемы обнаружителя маневра (ОМ) баллистической ракеты (БР) при повышении вероятности обнаружения маневра.
Наверх