Устройство возбуждения волны е01 в круглом волноводе

Изобретение относится к радиотехнике, в частности к технике СВЧ и антенной технике. Устройство возбуждения волны Ε01 в круглом волноводе содержит делитель мощности с N выходами, N элементов связи с круглым волноводом, равномерно расположенных в поперечном сечении на цилиндрической поверхности волновода, которые соединены с N выходами делителя мощности, вход которого является входом устройства возбуждения. Делитель мощности выполнен в виде коаксиального резонатора, охватывающего круглый волновод, причем продольный размер резонатора кратен половине длины волны в свободном пространстве, вход делителя мощности выполнен в виде отрезка прямоугольного волновода, соединенного с резонатором через элемент связи, N элементов связи с круглым волноводом расположены непосредственно на внутренней цилиндрической стенке коаксиального резонатора. Технический результат - упрощение конструкции. 2 з.п. ф-лы, 7 ил.

 

Предлагаемое техническое решение относится к радиотехнике, в частности к технике СВЧ и антенной технике, и может быть использовано в качестве облучателя моноимпульсной антенны в радиолокации, связи и отраслях техники, где используются антенны с разностной диаграммой направленности (ДН).

Известно устройство возбуждения волны E01 штыревым вибратором, введенным через центральное отверстие в закорачивающей стенке круглого волновода и ориентированным вдоль оси волновода (Белоцерковский, Г.Б. Основы радиотехники и антенны. Часть 2. Антенны. - М.: Советское радио, 1969, с. 99, рис. 3.21). Недостаток этого устройства проявляется в том, что наличие закорачивающей стенки делает невозможным возбуждение через торец круглого волновода других мод (например, волны Н11 круговой поляризации).

Наиболее близким к заявляемому техническому решению является многомодовая антенна (РФ №2022427, H01Q 13/00 от 30.10.1994), в состав которой входит устройство возбуждения волны E01, содержащее отрезок круглого волновода, к которому перпендикулярно его оси присоединены четыре взаимно ортогональных отрезка прямоугольных волноводов (см. фиг. 2 патента РФ №2022427, H01Q13/00 от 30.10.1994). Для образования волны E01 прямоугольные волноводы должны возбуждаться синфазно и равноамплитудно с помощью делителя мощности. Структурная схема устройства возбуждения волны E01 представлена на фиг. 1б, где обозначены 1 - делитель мощности, 2 - элементы связи круглого волновода и выходов делителя мощности, 3 - круглый волновод, 4 - вход делителя мощности, являющийся входом устройства возбуждения волны E01. В волноводном варианте делитель мощности 2 состоит из двух первичных тройников, попарно объединяющих отрезки волноводов, и третьего тройника, объединяющего первичные тройники.

Недостатком данного технического решения является сложность конструкции, обусловленная необходимостью применения тройников, объединяющих входы разно ориентированных прямоугольных волноводов.

Задачей, на решение которой направлено заявляемое изобретение, является упрощение конструкции устройства возбуждения волны E01.

Данная задача решается за счет того, что устройство возбуждения волны E01 в круглом волноводе содержит делитель мощности с N выходами, N элементов связи с круглым волноводом, равномерно расположенных в поперечном сечении на цилиндрической поверхности волновода, которые соединены с N выходами делителя мощности, вход которого является входом устройства возбуждения, причем делитель мощности выполнен в виде коаксиального резонатора, охватывающего круглый волновод, продольный размер резонатора кратен половине длины волны в свободном пространстве, вход делителя мощности выполнен в виде отрезка прямоугольного волновода, соединенного с резонатором через элемент связи, N элементов связи с круглым волноводом выполнены непосредственно на внутренней цилиндрической стенке коаксиального резонатора.

В частном случае элементы связи с круглым волноводом выполнены в виде круглых отверстий, число N которых, диаметр и положение относительно поперечной стенки коаксиального резонатора выбирается из условия компромисса между рабочей полосой частот и осевой симметрией возбуждаемого поля.

В частном случае элементы связи с волноводом выполнены в виде поперечных щелей.

Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является простота и технологичность конструкции.

Сущность изобретения поясняется чертежами.

На фиг. 1 представлена структурная схема устройства возбуждения волны E01 в круглом волноводе, где 1 - делитель мощности, 2 - элементы связи круглого волновода и выходов делителя мощности, 3 - круглый волновод, 4 - вход делителя мощности.

На фиг. 2 представлена конструкция заявляемого устройства возбуждения волны Е01 в круглом волноводе (разрез по оси), где 1 - делитель мощности, выполненный в виде коаксиального резонатора, 2 - элементы связи резонатора с круглым волноводом, 3 - круглый волновод, в котором распространяется волна Е01, 4 - прямоугольный волновод, который возбуждает коаксиальный резонатор через прямоугольную щель 5.

На фиг. 3 изображена 3D модель облучателя для формирования разностной ДН на базе устройства возбуждения волны E01 в круглом волноводе.

На фиг. 4-6 представлены результаты моделирования в CST.

Устройство возбуждения волны Е01 в круглом волноводе содержит делитель мощности с N выходами, N элементов связи с круглым волноводом, равномерно расположенных в поперечном сечении на цилиндрической поверхности волновода, которые соединены с N выходами делителя мощности, вход которого является входом устройства возбуждения, причем делитель мощности выполнен в виде коаксиального резонатора, охватывающего круглый волновод, а продольный размер резонатора кратен половине длины волны в свободном пространстве, вход делителя мощности выполнен в виде отрезка прямоугольного волновода, соединенного с резонатором через элемент связи, N элементов связи с круглым волноводом расположены непосредственно на внутренней цилиндрической стенке коаксиального резонатора.

В частном случае элементы связи выполнены в виде круглых отверстий, число N которых, диаметр и положение относительно поперечной стенки коаксиального резонатора выбирается из условия компромисса между рабочей полосой частот и осевой симметрией возбуждаемого поля.

Работает устройство следующим образом: входной волновод 4 через щель 5 возбуждает резонатор 1. Поскольку продольный размер L кратен половине длины волны в свободном пространстве, то в коаксиальном резонаторе возбуждается волна типа Т, как в закороченной с двух сторон коаксиальной линии. Таким образом, поле в резонаторе 1 имеет осевую симметрию (не зависит от угловой координаты) и элементы связи 2, выполненные в виде равномерно расположенных по окружности волновода отверстий (или щелей), возбуждаются равномерно и синфазно, порождая волну Е01 в волноводе 3.

Число отверстий, их диаметр и положение в резонаторе относительно торца влияет на связь с волноводом и, соответственно, на добротность резонатора, которая должна быть достаточно высокой, чтобы отсечь иные моды колебаний резонатора и тем самым обеспечить осевую симметрию поля, возбуждаемого в круглом волноводе 3. В итоге получается компактная и технологичная конструкция, в которой роль делителя мощности, равномерно возбуждающего N элементов связи 2, выполняет резонатор.

Представляется целесообразным использовать резонатор длиной λ0 (n=2) и четыре или восемь щелей. При уменьшении зазора между внутренним и внешним радиусами резонатора возрастают потери и снижается его добротность. Окончательный выбор размеров резонатора и элементов связи осуществляется по результатам моделирования, поскольку вносимая элементами связи реактивность слегка расстраивает резонатор (смещает резонансную частоту от расчетного значения). Как обычно, в питающем волноводе 4 могут быть установлены настроечные штыри 7 для улучшения согласования и компенсации технологических разбросов.

Для создания однонаправленного возбуждения круглый волновод 3 может быть закорочен с одной стороны (см. фиг. 3) или стыковаться с круглым волноводом 6, в котором возбуждается волна H11, например, вращающейся поляризации (см. фиг. 7). При этом радиус волновода 6 выбирается из условия, чтобы для волны E01 он был запредельным волноводом. Подобная конструкция представляет интерес при создании многомодового облучателя для зеркальной антенны моноимпульсной РЛС.

На фиг. 3 изображена 3D модель облучателя для формирования разностной ДН на базе устройства возбуждения волны E01 в круглом волноводе, в состав которого дополнительно введены конический рупор 6, два настроечных штыря 7 и заглушка 8.

На фиг. 4-6 представлены результаты моделирования в CST: частотная зависимость КСВН, ДН в объеме и в плоскости соответственно. Эти результаты подтверждают работоспособность заявляемого устройства возбуждения волны Е01 в круглом волноводе: во-первых, на резонансной частоте устройство отлично согласовано (КСВН=1.2), во-вторых, осевая симметрия ДН и глубокий провал на уровне -30 дБ свидетельствуют о том, что возбуждается только волна E01.

Дополнительным достоинством устройства может служить его частотная избирательность. Кроме того, заявляемое устройство органично сочетается с устройством возбуждения волны Н11 (в том числе и вращающейся поляризации), что бывает необходимо для многомодовых облучателей. Подобная конструкция многомодового облучателя приведена на фиг. 7, где помимо вышеописанного устройства возбуждения волны E01 изображена составная часть многомодового облучателя, формирующая волну Н11 вращающейся поляризации. Она содержит прямоугольный волновод 9, повернутый на 45° относительно горизонтали. Это волновод возбуждает в круглом волноводе 10 волну Н11 линейной поляризации, к которому пристыкована фазосдвигающая секция 11. Фазосдвигающая секция 11 выполнена в виде двух параллельных металлических пластин, уменьшающих вертикальный размер волновода 10. Она обеспечивает сдвиг фаз 90° между ортогональными составляющими поля волны Н11. В круглом волноводе 6 распространяется волна Н11 вращающейся поляризации. Поперечные размеры круглого волновода 6 выбраны таким образом, что он является запредельным волноводом для волны E01 которая будет распространяться в направлении выхода облучателя (см. фиг. 2). Волна Е01 формирует разностную ДН, а волна Н11 вращающейся поляризации - суммарную ДН.

Устройство достаточно просто реализуется в виде составной или сварной конструкции. Его габариты и масса меньше, чем габариты и масса известных конструкций многомодовых облучателей на базе волноводных тройников или Т-мостов.

1. Устройство возбуждения волны Ε01 в круглом волноводе, содержащее делитель мощности с N выходами, N элементов связи с круглым волноводом, равномерно расположенных в поперечном сечении на цилиндрической поверхности волновода, которые соединены с N выходами делителя мощности, вход которого является входом устройства возбуждения, отличающееся тем, что делитель мощности выполнен в виде коаксиального резонатора, охватывающего круглый волновод, причем продольный размер резонатора кратен половине длины волны в свободном пространстве, вход делителя мощности выполнен в виде отрезка прямоугольного волновода, соединенного с резонатором через элемент связи, N элементов связи с круглым волноводом расположены непосредственно на внутренней цилиндрической стенке коаксиального резонатора.

2. Устройство по п. 1, отличающееся тем, что элементы связи с круглым волноводом выполнены в виде круглых отверстий, число N которых, диаметр и положение относительно поперечной стенки коаксиального резонатора выбирается из условия компромисса между рабочей полосой частот и осевой симметрией возбуждаемого поля.

3. Устройство по п. 1, отличающееся тем, что элементы связи с волноводом выполнены в виде поперечных щелей.



 

Похожие патенты:

Изобретение относится к технике СВЧ и может быть использовано в спутниковой связи с поляризационным уплотнением сигналов как на земных станциях спутниковой связи, так и на спутниках связи.

Изобретение относится к электронной технике СВЧ, в частности к фазовращателям. Секция дискретного фазовращателя с цифровым управлением содержит входной направленный ответвитель со слабой связью, вход которого является входом устройства, выходной направленный ответвитель со слабой связью, выход которого является выходом устройства, ослабитель с цифровым управлением, выход которого соединен со связанным входом вторичной линии выходного направленного ответвителя, первый и второй отрезки передающих линий, третью и четвертую замкнутые на конце четвертьволновые связанные передающие линии.

Изобретение относится к радиотехнике, к частотной селекции и фильтрации радиосигналов, может быть использовано в радиолокации и в системах связи. Устройство содержит параллельно включенные полосно-пропускающие фильтры, согласованные с длительностью этой последовательности, установочные фазовращатели и сумматор.

Изобретение относится к радиотехнике СВЧ и может быть использовано в радиопередающих устройствах спутниковых систем связи и спутниковых радионавигационных систем, а также в других устройствах СВЧ для выделения сигналов в двух поддиапазонах преимущественно дециметрового и сантиметрового диапазонов длин волн.

Изобретение относится к технике СВЧ, в частности к переключателям СВЧ мощности, и может быть использовано для переключения СВЧ сигналов между каналами приема (передачи) в СВЧ приемниках (передатчиках).

Изобретение относится к области радиотехники СВЧ, в частности к фазовращателям. Дискретный фазовращатель СВЧ содержит одинаковые первый и второй отрезки линии передачи, одни концы которых соединены с входом и выходом фазовращателя соответственно, а другие соединены между собой, вход и выход фазовращателя дополнительно соединены с одними концами одинаковых третьего и четвертого отрезков линии передачи, между другими концами которых включен первый коммутирующий диод, при этом волновое сопротивление третьего и четвертого отрезков линии в два раза выше сопротивления входа и выхода.

Изобретение относится к области радиотехники СВЧ, в частности к фазовращателям. Перестраиваемый фазовращатель СВЧ содержит первый отрезок линии передачи, концы которого соединены со входом и выходом перестраиваемого фазовращателя, к середине которого подключен через перемычку разомкнутый отрезок линии передачи, к которому могут быть подключены посредством перемычек дополнительные разомкнутые отрезки линии.

Изобретение относится к технике СВЧ и может быть использовано в антенно-фидерных устройствах в качестве эквивалента антенны и оконечной согласованной нагрузки в коаксиальных и полосковых СВЧ трактах с высоким уровнем мощностей.

Изобретение относится к электронной технике, а именно к аттенюаторам. Дискретный аттенюатор СВЧ содержит входной и выходной трехдецибельные направленные ответвители, две согласованные нагрузки, подключенные к балластным выходам входного и выходного направленных ответвителей, ослабитель с цифровым управлением и отрезок полосковой линии.

Изобретение относится к технике сверхвысоких частот (СВЧ) и может быть использовано для скачкообразного изменения фазы проходящего СВЧ-сигнала в фидерных трактах различного назначения, в частности при создании фазированных антенных решеток.

Изобретение относится к области СВЧ радиотехники, в частности к проходным дискретным полупроводниковым фазовращателям. Дискретный СВЧ фазовращатель проходного типа, согласованный с волновым сопротивлением ρ0 основной линии передачи, выполнен на основе соединения отрезков линий передачи и управляющих элементов, преимущественно диодов. Вход и выход фазосдвигающей цепи фазовращателя соединены через управляющий элемент. Фазосдвигающая цепь фазовращателя содержит фильтр нижних частот в виде последовательного соединения трех (в случае дискрета, большего 90°) или двух (в случае дискрета, меньшего или равного 90°) отрезков линии передачи, к местам (точкам) соединения которых подключены шлейфы (шлейф), причем их свободные концы (концы центральных проводников) соединены по СВЧ с корпусом (экраном) через управляющие элементы, геометрические параметры упомянутых отрезков и шлейфов (шлейфа) выбраны из условия обеспечения четвертьволновой электрической длины каждой линии передачи от входа (выхода) фазосдвигающей цепи до ближайшей точки соединения с корпусом (экраном), а волновые сопротивления этих отрезков превышают ρ0. Технический результат - снижение паразитных потерь пропускания. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области полупроводниковых изделий и может быть использовано при создании нового поколения СВЧ элементной базы и интегральных схем на основе гетероструктур широкозонных полупроводников. Технический результат: повышение надежности устройства и плотности носителей, эффективность подавления токового коллапса, повышение скорости переключения и уровня выходной мощности, ослабление процесса деградации в гетероструктуре. Технический результат достигается тем, что ограничитель мощности содержит электроды, емкостные элементы. Ограничитель мощности является псевдоморфным, изготовленным на базе гетероструктуры AlGaN/InGaN, а емкостной элемент представляет собой конденсатор. Кроме того, ограничитель мощности включает подложку из изолирующего карбида кремния, на которой последовательно размещены: буферный слой из GaN, сглаживающий буферный слой из GaN, слой из нелегированного GaN i-типа проводимости, сверхрешетка из AlXGa1-XN/GaN, буферный слой из GaN, сильнолегированный слой n-типа проводимости из AlXGa1-XN, спейсер из твердого раствора AlXGa1-XN, сглаживающий слой из GaN, канал из твердого раствора InXGa1-XN, и в интерфейсе InXGa1-XN/AlGaN гетероструктуры образован двумерный электронный газ (ДЭГ) высокой плотности, который служит нижней обкладкой конденсатора. Поверх твердого раствора InXGa1-XN размещен химически устойчивый сглаживающий слой из GaN, поверх которого нанесен слой диэлектрика из двуокиси гафния. Поверх диэлектрика размещены металлические электроды полосковой формы, которые образуют верхнюю обкладку конденсатора. При этом емкостной элемент устройства выполнен с минимальным количеством глубоких электронных ловушек (DX), а канал выполнен упруго-напряженным псевдоморфным с концентрацией InGa 15-25%. 4 з.п. ф-лы, 2 ил.

Изобретение относится к области изготовления полупроводниковых изделий. Коммутирующее устройство является псевдоморфным, изготовленным на базе гетероструктуры AlGaN/InGaN, а емкостный элемент представляет собой конденсатор. Кроме того, коммутирующее устройство включает подложку из сапфира, на которой последовательно размещены: буферный слой из AlN, буферный слой из GaN, слой из нелегированного GaN i-типа проводимости, сверхрешетка из AlXGa1-XN/GaN, буферный слой из GaN, сильнолегированный слой n-типа проводимости из AlXGa1-XN, спейсер из твердого раствора AlXGa1-XN, сглаживающий слой из GaN, канал из твердого раствора InXGa1-XN, и в интерфейсе InXGa1-XN/AlGaN гетероструктуры образован двумерный электронный газ (ДЭГ) высокой плотности, который служит нижней обкладкой конденсатора. Поверх твердого раствора InXGa1-XN размещен химически устойчивый сглаживающий слой из GaN, поверх которого нанесен слой диэлектрика из двуокиси гафния. Поверх диэлектрика размещены металлические электроды полосковой формы, которые образуют верхнюю обкладку конденсатора. При этом емкостный элемент устройства выполнен с минимальным количеством глубоких электронных ловушек (DX), а канал выполнен упруго-напряженным псевдоморфным с концентрацией InGa 15-25%. Изобретение обеспечивает повышение надежности устройства, эффективности подавления токового коллапса, повышение скорости переключения и уровня выходной мощности, а также ослабление процесса деградации в гетероструктуре. 3 з.п. ф-лы, 3 ил.

Изобретение относится к технике высоких и сверхвысоких частот и предназначено для создания частотно-селективных устройств. Полосковый резонатор содержит две диэлектрические подложки, подвешенные между экранами корпуса, на обе поверхности которых нанесены полосковые металлические проводники, электромагнитно связанные между собой. Между подложками расположена тонкая металлическая пленка, закороченная со всех сторон по периметру на корпус, толщина которой меньше скин-слоя в металле на рабочей частоте резонатора. Техническим результатом изобретения является разрежение спектра собственных частот полоскового резонатора и увеличение протяженности полосы заграждения фильтров на его основе. 3 ил.

Изобретение относится к радиоэлектронике и измерительной технике и может быть использовано для заданного ослабления СВЧ сигнала большой мощности в широкой полосе рабочих частот. СВЧ аттенюатор содержит N последовательно включенных друг за другом каскадов, выполненных на планарных пленочных резисторах, общая площадь которых обеспечивает рассеивание заданной мощности входного высокочастотного сигнала, а значения коэффициентов передачи каждого каскада обеспечивают равномерное распределение рассеиваемой мощности в них. Все каскады выполнены в виде Т-образной структуры и расположены на общей диэлектрической подложке, при этом во всех Т-образных структурах площадь каждого пленочного резистора пропорциональна рассеиваемой на нем мощности и ширина крайних пленочных резисторов больше ширины среднего пленочного резистора, а крайние пленочные резисторы смежных Т-образных структур объединены в один общий пленочный резистор, площадь и сопротивление которого равны сумме площадей и сумме сопротивлений соответственно объединенных пленочных резисторов. Технический результат в предлагаемом СВЧ аттенюаторе заключается в упрощении конструкции за счет того, что все пленочные резисторы расположены на одной диэлектрической подложке и не применяются согласующие элементы, а также сохранении высокого уровня мощности входного высокочастотного сигнала за счет выбора площади каждого пленочного резистора пропорционально рассеиваемой на нем мощности. 5 ил., 3 табл.

Использование: для создания схем дифференциальных аттенюаторов для работы в СВЧ диапазоне. Сущность изобретения заключается в том, что интегральный аттенюатор содержит генератор дифференциального сигнала, звенья, состоящие из параллельно включенных управляемых МОП транзисторов n- и p-типа, блок управления и нагрузку, кроме того, неинвертирующая пара звеньев, состоящих из МОП транзисторов n- и p-типа, соединена с генератором дифференциального сигнала и нагрузкой напрямую, а инвертирующая пара звеньев, состоящих из МОП транзисторов n- и p-типа соединена с генератором дифференциального сигнала и нагрузкой перекрестно; где регулировка сопротивлений МОП транзисторов, входящих в звенья, осуществляется блоком управления, при этом сопротивление одной пары звеньев МОП транзисторов возрастает, а другой падает. Технический результат: обеспечение возможности расширения функциональных возможностей аттенюаторов, выполненных по КМОП технологии, снижения потерь при прямом прохождении сигнала, увеличения динамического диапазона, расширения полосы рабочих частот, уменьшения фазовых искажений при переключении уровня аттенюации. 2 ил., 1 табл.

Изобретение относится к интегральной оптике. Способ пространственного разделения оптических мод ортогональных поляризаций в планарной волноводной структуре, заключающийся в том, что излучение лазера вводят в четырехслойную планарную направляющую структуру, состоящую из подложки, покровной среды, волноводного высокопреломляющего магнитооптического слоя, намагниченного до насыщения в плоскости границы раздела, в направлении, поперечном распространению света, волноводного нанокомпозитного слоя с расположенным на его поверхности решеточным элементом связи для ввода излучения. Настройка на заданную длину волны, заданные углы ввода и разделение волноводных мод ортогональных поляризаций осуществляется путём подбора отношений толщин диэлектрических нанослоёв двух типов в нанокомпозитном слое. Технический результат заключается в повышении эффективности поляризационного разделения света в планарных направляющих структурах интегральной оптики. 3 з.п. ф-лы, 3 ил.

Изобретение относится к СВЧ-радиотехнике, в частности к фильтрам. Микрополосковый широкополосный фильтр содержит диэлектрическую подложку, на одну сторону которой нанесено заземляемое основание, а на вторую - полосковые проводники, электромагнитно связанные между собой. Узкие и широкие прямоугольные полосковые проводники соединены друг с другом в форме нерегулярного меандра, его крайние узкие проводники со стороны свободных концов заземлены на основание, причем входной и выходной порты фильтра подключены кондуктивно к крайним широким проводникам меандра через отрезки микрополосковых линий со скачком волнового сопротивления. Технические результаты – расширение полосы заграждения, повышение крутизны низкочастотного склона частотной характеристики, расширение рабочей полосы пропускания. 2 ил.

Изобретение относится к радиотехнике. СВЧ-мультиплексор содержит устройство общего вывода СВЧ-сигнала, суммирующий резонатор, параллельно расположенные полосно-пропускающие фильтры. Суммирующий резонатор представляет собой закороченный на концах отрезок передающей линии, а каждый из полосно-пропускающих фильтров выполнен в виде цепочки связанных резонаторов. Резонаторы каждой цепочки полосно-пропускающего фильтра расположены с образованием двух ярусов. Устройства раздельного ввода СВЧ-сигналов и устройство вывода СВЧ-сигнала выполнены в виде волноводов, отделенных от соответствующих входных резонаторов цепочек полосно-пропускающих фильтров и суммирующего резонатора, поперечной диафрагмой с щелями связи. Волновод каждого из устройств раздельного ввода СВЧ-сигналов снабжен резонансным элементом в виде стержня из диэлектрического материала, размещенным на поперечной диафрагме волновода, и регулировочными элементами перестройки частоты и связи, размещенными в стенке волновода. Резонансный элемент ориентирован вдоль направления распространения СВЧ-сигнала и выполнен с возможностью настройки на граничные частоты полосы пропускания мультиплексора. Технические результаты - уменьшение массы и габаритов, повышение уровня мощности выходного СВЧ-сигнала. 13 з. п. ф-лы, 12 ил.

Изобретение относится к области антенной техники, в частности к селекторам радиоволн. Частотно-поляризационный селектор содержит первый ортомодовый преобразователь, представляющий собой крестовой разветвитель, в плечах которого установлены емкостные фильтры нижних частот. На выходе первого ортомодового преобразователя установлен поляризатор Q-диапазона, реализованный на круглом волноводе с пазом с двумя ортогональными выходами. Фильтры соединяются со вторым ортомодовым преобразователем посредством четырех п-образных волноводных секций равной длины, один выход второго ортомодового преобразователя короткозамкнут, ко второму выходу через трансформатор с круглого на квадратное сечение присоединен септум-поляризатор с двумя ортогональными выходами. В первом ортомодовом преобразователе, в узле четырехкратного разветвления, внесены множественные изменения сечения круглого волновода, а также резонансная диафрагма, введенная в область перехода на волновод меньшего диаметра. В плечах ортомодового преобразователя устанавливаются широкополосные емкостные фильтры нижних частот с переменной толщиной диафрагм. В Q-диапазоне частот поляризатор реализован на круглом волноводе с регулируемым пазом. Технический результат - возможность реализации широкополосного частотно-поляризационного селектора в высоких диапазонах частот и разнесенных между собой Ka- и Q-диапазонов частот более чем на октаву. 1 з.п. ф-лы, 6 ил.
Наверх