Способ изготовления керамических стеновых изделий и плитки


C04B35/62645 - Формованные керамические изделия, характеризуемые их составом (пористые изделия C04B 38/00; изделия, характеризуемые особой формой, см. в соответствующих классах, например облицовка для разливочных и плавильных ковшей, чаш и т.п. B22D 41/02); керамические составы (содержащие свободный металл, связанный с карбидами, алмазом, оксидами, боридами, нитридами, силицидами, например керметы или другие соединения металлов, например оксинитриды или сульфиды, кроме макроскопических армирующих агентов C22C); обработка порошков неорганических соединений перед производством керамических изделий (химические способы производства порошков неорганических соединений C01)

Владельцы патента RU 2640437:

Федеральное государственное бюджетное учреждение науки Институт проблем комплексного освоения недр им. Академика Н.В. Мельникова Российской академии наук (ИПКОН РАН) (RU)
Федеральное государственное бюджетное учреждение науки Институт проблем промышленной экологии Севера Кольского научного центра РАН (ИППЭС КНЦ РАН) (RU)

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении керамических стеновых изделий и плитки. Техническим результатом изобретения является повышение прочности при сжатии и изгибе получаемых керамических строительных материалов, повышение эффективности извлечения сапонитового продукта и обесшламливания оборотных вод алмазодобывающих предприятий, расширение сырьевой базы и улучшении экологической обстановки за счет использования техногенных отходов. Исходный сапонитовый продукт подвергают электрохимической сепарации с получением концентрата - сгущенного сапонитового продукта и обесшламленных техногенных вод. Получаемый концентрат электрохимической сепарации - сгущенный сапонитовый продукт содержит 580-620 г/дм3 твердой фазы. Влажность сгущенного сапонитового продукта доводят до 7-9% путем сушки при 100-110°С в течение 7-8 ч. Полусухое прессование ведут при давлении 16-24 МПа. Обжиг изделий ведут при температуре 800-900°С в течение 1,0-1,2 ч. 1 табл., 8 пр.

 

Изобретение относится к строительным материалам и, в частности, к изготовлению керамических стеновых изделий и плитки.

Известен способ изготовления облицовочной плитки из керамической массы, содержащей каолин, монтмориллонит, волластонит, пирофиллит, кварц, дополнительно включающий костяную золу и пегматит, при этом компоненты находятся в соотношении, мас. %: каолин 34,0-40,0; монтмориллонит 4,0-6,0; волластонит 26,0-28,0; пирофиллит 8,0-10,0; костяная зола 10,0-12,0; пегматит 10,0-12,0. Сформованную облицовочную плитку обжигают при температуре 1130-1150°С [Патент РФ №2510384, М. Кл. С04В 33/16, 15.01.2013].

Недостатком данного способа являются недостаточно высокая прочность при сжатии - 40 МПа, а также повышенная температура обжига - 1130-1150°С и узкий интервал спекания - 20°С.

Известна сырьевая смесь для изготовления керамических изделий, включающая глину монтмориллонитового типа и трепел при следующем соотношении компонентов, мас. %: глина монтмориллонитового типа 30-50; трепел 50-70. При этом используют глину монтмориллонитового типа следующего состава, мас. %: монтмориллонит 44-46, гидрослюда 5-7, каолинит 5-7, кварц 43-45, кальцит 0,5-1,5, а в химический состав трепела входят оксиды SiO2 70,05-71,85%; Al2O3 8,68-9,73%; Fe2O3 3,62-3,91%; СаО 3,79-4,21%; MgO 1,28-1,29%; Na2O 0,15-0,16%; K2O 2,01-2,06% следующего минералогического состава, мас. %: цеолит 30-32; опал-кристобалит 29-31; гидрослюда 18-19; монтмориллонит 10-12; кальцит 1-2; кварц 7-8; кальцит 1-2. Удельное прессование образцов составляло 20-25 МПа, температура обжига - 1050-1150°С [Патент РФ №2515107, М. Кл. С04В 33/16, 23.05.2012].

Недостатками данного способа изготовления смеси для керамических изделий являются невысокая прочность при сжатии - 23,7-49,2 МПа и изгибе - 5,3-9,3 МПа, а также высокая температура обжига - 1050-1150°С.

Наиболее близким по технической сущности и достигаемому результату является способ получения керамических строительных материалов из сапонитсодержащих хвостов обогащения, включающий сушку при температуре 150°С в течение 1-2 ч, дегидратацию при температуре 600°С в течение 1-2 ч, обжиг при температурах 800, 900 и 1000°С в течение 1 ч и остывание в печи в течение 2 ч [Облицов А.Ю. Утилизация отходов обогащения алмазоносной руды месторождения имени М.В. Ломоносова. Автореферат диссертации на соискание ученой степени кандидата технических наук. Санкт-Петербург, 2012. 20 с. (прототип)].

Недостатком данного способа является низкая прочность при сжатии - 11,54-14,91 МПа.

Технической задачей изобретения является повышение прочности при сжатии и изгибе получаемых керамических строительных материалов, повышение эффективности извлечения сапонитсодержащего продукта и обесшламливания оборотных вод алмазодобывающих предприятий, расширение сырьевой базы и улучшение экологической обстановки за счет использования техногенных отходов.

Исходный сапонитовый продукт - глинистая суспензия (отходы, образующиеся в процессе переработки алмазоносных руд месторождения им. М.В. Ломоносова и складируемые в хвостохранилищах), не оседающая и не уплотняющаяся под действием естественных гравитационных сил.

Исходный сапонитовый продукт (хвосты обогащения алмазоносных руд месторождения им. М.В. Ломоносова, далее суспензия) характеризуется крупностью частиц 50-55% класса менее 10 мкм (средний геометрический диаметр частиц от 7,0 до 8 мкм), содержанием твердой фазы от 100 до 200 г на 1 дм3 суспензии (сапонитовый продукт и техническая вода хвостохранилища с минерализацией менее 1 г/дм3) и удельной поверхностью 40 м2/г.

Химический состав исходного сапонитового продукта, %: MgO 15,6-15,9; SiO2 48-50; Fe2O3 6,5-7,3; Al2O3 6,7-7,0; CaO 4,3-4,5; K2O 1,6-1,7; TiO2 0,8-0,9; P2O5 0,4-0,5; Na20 0,3-0,5; MnO 0,1-0,12; потери при прокаливании 13-14.

Минеральный состав исходного сапонитового продукта содержит, %: сапонит (может быть с незначительной примесью монтмориллонита) 67-69; кварц 13,5-14,5; доломит 6,5-7,5; кальцит 1,9-2,1; гематит 2,4-2,6; апатит 1,9-2,1; иллит 1,9-2,1; рутил 1,5; анатаз 0,9-1,1.

Сапонитовый продукт после электрохимической сепарации характеризуется крупностью частиц 60-65% класса - 10 мкм (средний геометрический диаметр частиц от 6,0 до 6,7 мкм), содержанием твердой фазы от 580 до 620 г на 1 дм3 суспензии (сапонитовый продукт и техническая вода хвостохранилища с минерализацией менее 1 г/дм3) и удельной поверхностью 44 м2/г.

Химический состав сапонитового продукта после электрохимической сепарации, %: MgO 16-17; SiO2 45-47; Fe2O3 7,5-8,5; Al2O3 7-8; CaO 4-4,3; K2O 1,7-1,8; TiO2 0,9-1,0; P2O5 0,5-0,52; Na2O 0,2-0,25; MnO 0,1-0,12; потери при прокаливании 14,6-15,0.

Минеральный состав сапонитового продукта после электрохимической сепарации содержит, %: сапонит (может быть с незначительной примесью монтмориллонита) 73-75; кварц 11,5-12,5; доломит 4,5-5,5; кальцит 1,9-2,1; апатит 2,4-2,6; гематит 0,9-1,1; иллит 0,9-1,1; рутил 0,9-1,1; анатаз 0,9-1,1.

Указанная цель достигается тем, что изготовление керамических стеновых изделий и плитки включает сушку сапонитового продукта - хвостов обогащения алмазоносных руд, полусухое прессование и обжиг, исходный сапонитовый продукт подвергают электрохимической сепарации с получением концентрата - сгущенного сапонитового продукта и обесшламленных техногенных вод, а также тем, что получаемый концентрат электрохимической сепарации - сгущенный сапонитовый продукт содержит 580-620 г/дм3 твердой фазы, а влажность сгущенного сапонитового продукта доводят до 7-9% путем сушки при 100-110°С в течение 7-8 ч, при этом полусухое прессование ведут при давлении 16-24 МПа, а обжиг проводят при температуре 800-900°С в течение 1,0-1,2 ч.

Способ реализуется следующим образом.

Для извлечения сапонитового продукта и осветления техногенных вод проводят электрохимическую сепарацию, в которой реализуют процессы электрофоретического извлечения сапонитового продукта на аноде и осмотического выделения воды на катоде. При этом сгущенный сапонитовый продукт получают содержанием твердой фазы от 580 до 620 г/дм3, а удельный расход электроэнергии составляет от 4 до 7 кВт/ч на 1 м3 исходной суспензии в зависимости от содержания твердой фазы.

На втором этапе процесса влажность сгущенного сапонитового продукта доводят путем сушки от 100 до 110°С в течение 7-8 ч до 7-9%.

На следующем этапе из полученного сгущенного сапонитового продукта формуют изделия полусухим прессованием при удельном давлении от 16 до 24 МПа, и подвергают спрессованное изделия обжигу при температуре от 800 до 900°С в течение от 1,0 до 1,2 ч.

Таким образом, в результате использования электрохимической сепарации получают концентрат сгущенного сапонитового продукта содержанием твердой фазы от 580 до 620 г/дм3 и влажностью сапонитового продукта, от 52 до 56%, а путем сушки от 100 до 110°C в течение 7-8 ч до 7-9%, прессованию изделия и обжигу при температуре от 800 до 900°C в течение от 1,0 до 1,2 ч повышают прочности при сжатии и изгибе получаемых керамических строительных материалов. Повышают эффективность извлечения сапонитового продукта и обесшламливания оборотных вод алмазодобывающих предприятий, расширяют сырьевую базу и улучшают экологическую обстановку за счет использования техногенных отходов.

Сущность и преимущества изобретения проиллюстрированы примерами, представленными в таблице.

1. Примеры 1-6 выполнены при граничных и промежуточных значениях параметров предлагаемого способа изготовления керамических стеновых изделий и плитки из сгущенного сапонитового продукта.

2. Примеры 7, 8 выполнены с использованием исходного сапонитового продукта при давлении прессования 20 МПа и температурах обжига 800 и 900°C.

Из таблицы видно, что прочность при сжатии керамических изделий в примерах 1-6 превышает показатели в примерах 7, 8 в 1,4-1,8 раз, прочность при изгибе - в 1,3-1,5 раз.

Способ изготовления керамических стеновых изделий и плитки, включающий сушку сапонитового продукта - хвостов обогащения алмазоносных руд, полусухое прессование и обжиг, отличающийся тем, что исходный сапонитовый продукт подвергают электрохимической сепарации с получением обесшламленных техногенных вод и концентрата сгущенного сапонитового продукта с содержанием твердой фазы от 580 до 620 г/дм3, влажность сгущенного сапонитового продукта доводят до 7-9% путем сушки при 100-110°С в течение 7-8 ч, затем ведут полусухое прессование изделия при давлении 16-24 МПа и подвергают его обжигу при температуре 800-900°С в течение 1,0-1,2 ч.



 

Похожие патенты:

Изобретение относится к области углерод-углеродных композиционных материалов и изготовлению изделий из них и может быть использовано в ракетно-космической технике.
Изобретение относится к производству изделий из корунда медицинского назначения для хирургии, стоматологии, ортопедии, травматологии, изготовления конструкционной керамики, эндопротезов и имплантатов.

Изобретение относится к производству строительных материалов и предназначено для использования при реконструкции действующих и проектировании новых предприятий по производству керамического кирпича пластического формования.
Изобретение относится к составу шихты для высокопористого керамического материала с сетчато-ячеистой структурой для носителей катализаторов, состоящему из инертного наполнителя - электроплавленного корунда и дисперсной фазы с упрочняющей добавкой.

Изобретение относится к области криоэлектроники и может быть использовано при создании элементов наноэлектроники, активных элементов криоэлектронных схем, работающих в условиях космического вакуума и холода и использующих новые проводящие керамические материалы с очень малым температурным коэффициентом изменения сопротивления.

Изобретение относится к области машиностроения, в частности к обработке металлов резанием, и может быть использовано при изготовлении износостойкого режущего инструмента из керамики.

Изобретение относится к изготовлению композиционного материала на основе субоксида бора, который может быть применён в качестве абразива. .
Изобретение относится к технологии керамических материалов, в частности к материалам на основе диоксида циркония, и может быть использовано при изготовлении изделий сложной конфигурации, в частности деталей подшипников скольжения и других трущихся пар.

Изобретение относится к области получения высокотемпературных сверхпроводящих (ВТСП) материалов, применяемых в производстве соленоидов, быстродействующих счетных устройств, оборудования для медицины, а также в технике низких температур.

Расклинивающий агент для применения для разрыва геологических формаций получают из бокситовых руд и кальцийсодержащего соединения. Расклинивающий агент содержит, мас.%: 25-75 Al2O3, 0-70 SiO2, по меньшей мере 3 СаО и менее 0,1 кристобалита, а также по меньшей мере 5 (предпочтительно более 10) мас.% кальцийсодержащей кристаллической фазы, представляющей собой анортит.

Изобретение относится к радиоэлектронной технике, а именно к материалам, предназначенным для использования в высокочастотном и сверхвысокочастотном диапазонах. Предлагаемый керамический материал содержит следующие компоненты, вес.

Изобретение относится к производству высокотермостойких радиопрозрачных стеклокерамических материалов, используемых в изделиях радиотехнического назначения. Технический результат – упрощение технологического процесса получения стеклокерамического материала.
Изобретение относится к области синтеза жаростойких покрытий для защиты фехралиевых сплавов. Технический результат изобретения - повышение прочности и термостойкости кордиеритовой керамики для электронагревательных элементов.

Изобретение относится к производству стеклокристаллического материала радиотехнического назначения и может быть использовано в керамической и авиационной промышленности.

Изобретение относится к производству технической керамики кордиеритового состава, обладающей высокой термостойкостью, прочностью и хорошими диэлектрическими свойствами.
Изобретение относится к огнеупорным конструкционным материалам для изготовления термостойких керамических изделий на основе кордиерита, которые могут найти широкое применение в металлургии, машиностроении и химической промышленности в качестве огнеупоров, фильтров и носителей катализаторов.
Изобретение относится к производству технической керамики, а именно к составам шихт для получения кордиеритовой керамики. .

Изобретение относится к жаростойким волокнам, полученным золь-гельным методом, которые могут быть использованы в качестве термоизолирующих материалов, например, в опорных конструкциях тел катализаторов для борьбы с загрязнением окружающей среды в автомобильной системе каталитического дожигания выхлопных газов и фильтров для твердых частиц в отработанных газах двигателя.
Изобретение относится к производству огнеупоров и может использоваться в промышленности огнеупорных материалов и в металлургии. .
Изобретение относится к промышленности строительных материалов и касается составов шихты и сырьевых смесей для изготовления кирпича как лицевого, так и обычного, а также при производстве золокерамических камней.

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении керамических стеновых изделий и плитки. Техническим результатом изобретения является повышение прочности при сжатии и изгибе получаемых керамических строительных материалов, повышение эффективности извлечения сапонитового продукта и обесшламливания оборотных вод алмазодобывающих предприятий, расширение сырьевой базы и улучшении экологической обстановки за счет использования техногенных отходов. Исходный сапонитовый продукт подвергают электрохимической сепарации с получением концентрата - сгущенного сапонитового продукта и обесшламленных техногенных вод. Получаемый концентрат электрохимической сепарации - сгущенный сапонитовый продукт содержит 580-620 гдм3 твердой фазы. Влажность сгущенного сапонитового продукта доводят до 7-9 путем сушки при 100-110°С в течение 7-8 ч. Полусухое прессование ведут при давлении 16-24 МПа. Обжиг изделий ведут при температуре 800-900°С в течение 1,0-1,2 ч. 1 табл., 8 пр.

Наверх